Short-distance constraints and resonance exchange in HLbL

Oscar Catà

HC2NP 2019, Puerto de la Cruz, September 26th, 2019
(in collaboration with L. Cappiello, G. D’Ambrosio, D. Greynat and A. Iyer)
Status of the muon \((g - 2)_\mu\)

- While awaiting for the Fermilab number:
 \[
a^\text{exp}_\mu = 116592091(54)(33) \times 10^{-11}
\]

- Long-standing discrepancy\(^a\) with the SM estimate (3 to 4\(\sigma\)):
 \[
a^\text{SM}_\mu = 116591823(1)(34)(26) \times 10^{-11}
\]

- Excellent control over the dominant EW and EM corrections. Hadronic contributions small but dominate the uncertainty.

\(^a\)Only one experiment, not yet challenged...
Hadronic contributions

- HVP leading effect ($\sim 700 \times 10^{-10}$). Uncertainties can be reduced with e^+e^--based and/or τ-based analyses.

 Lattice QCD at a really advanced stage.

 [Davier et al, Teubner et al]

 [Mainz, BMWc, RBC/UKQCD]

- HLbL much harder to estimate. Connection to experiment more convoluted, albeit dispersion analyses promising.

 Lattice QCD catching up fast.

 [Bern, Mainz]

 [Mainz, RBC/UKQCD]

- Experimentally, we have a much improved projected uncertainty, 16×10^{-11}.

- Hadronic contributions cannot account for the present discrepancy, but we need better control of theoretical uncertainties to claim NP interpretations, when(if) the time comes.
HLbL estimates

- Three main routes: form factor ansatz, lattice QCD, dispersion relations.

- Main contributions from form factor analyses:

<table>
<thead>
<tr>
<th>Contribution</th>
<th>BPP</th>
<th>HKS,HK</th>
<th>KN</th>
<th>MV</th>
<th>PdRV</th>
<th>N,JN</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^0, η, η'</td>
<td>85(13)</td>
<td>82.7(6.4)</td>
<td>83(12)</td>
<td>114(10)</td>
<td>114(13)</td>
<td>99(16)</td>
</tr>
<tr>
<td>axial vectors</td>
<td>2.5(1.0)</td>
<td>1.7(1.7)</td>
<td>-</td>
<td>22(5)</td>
<td>15(10)</td>
<td>22(5)</td>
</tr>
<tr>
<td>scalars</td>
<td>-6.8(2.0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-7(7)</td>
<td>-7(2)</td>
</tr>
<tr>
<td>π, K loops</td>
<td>-19(13)</td>
<td>-4.5(8.1)</td>
<td>-</td>
<td>-</td>
<td>-19(19)</td>
<td>-19(13)</td>
</tr>
<tr>
<td>π,K loops</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>0(10)</td>
<td>-</td>
</tr>
<tr>
<td>+subl. N_C</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quark loops</td>
<td>21(3)</td>
<td>9.7(11.1)</td>
<td>-</td>
<td>-</td>
<td>2.3</td>
<td>21(3)</td>
</tr>
<tr>
<td>Total</td>
<td>83(32)</td>
<td>89.6(15.4)</td>
<td>80(40)</td>
<td>136(25)</td>
<td>105(26)</td>
<td>116(39)</td>
</tr>
</tbody>
</table>

- Overall agreement with the 'pion-pole' contribution, main discrepancies in other contributions.

- Used PDG average not really coming from a calculation.

- A number of theoretical issues still open.
Form factor analysis

Pion-pole contribution:

- Vertices given by the $\pi \gamma \gamma$ form factor,

$$\int d^4x \ e^{iq_1 \cdot x} \langle 0 | T \{ J_{EM}^\mu (x) \ J_{EM}^\nu (0) \} | \pi^0(p) \rangle = \epsilon^{\mu \nu \alpha \beta} q_1^\alpha q_2^\beta F_{\gamma^* \gamma^* \pi^0} (Q_1^2, Q_2^2)$$

- $F_{\pi^0 \gamma \gamma}$ not known from first principles. Information only on certain kinematical limits:

 (a) $F_{\gamma^* \gamma^* \pi^0} (0, 0) = -\frac{N_C}{12 \pi^2 f_\pi} K(0, 0), \ K(0, 0) = 1$ (Anomaly)

 (b) $\lim_{Q^2 \to \infty} K(Q^2, Q^2) = \frac{8 \pi^2 f_\pi^2}{N_c} \frac{1}{Q^2}$ (OPE)

 (c) $\lim_{Q^2 \to \infty} K(0, Q^2) \sim \frac{1}{Q^2}$ (Brodsky-Lepage)
Form factor analysis

- Ansätze with different short and long-distance constraints:

\[K(q_1^2, q_2^2) = 1; \]
\[K(q_1^2, q_2^2) = \frac{m_V^2}{m_V^2 - q_1^2 - q_2^2}; \]
\[K(q_1^2, q_2^2) = \frac{m_V^4}{(q_1^2 - m_V^2)(q_2^2 - m_V^2)} \]
\[K(q_1^2, q_2^2) = \frac{m_V^4 - \frac{4\pi^2 f_\pi^2}{N_c}(q_1^2 + q_2^2)}{(q_1^2 - m_V^2)(q_2^2 - m_V^2)} \]

- In principle, the more constraints the better (closer to QCD). However, interesting to play with them to test which ones are numerically important.

- The same strategy can be repeated for the other contributions.

Main Hurdles:

- Hard to pin down the discrepancies: different interpolators for different channels, subject to different constraints.

- Not always clear how the short distances can be incorporated into form factors.

- Related to discussions on 'on-shellness' vs 'off-shellness' of the pion.
Correlators vs form factors

- In general,

\[
\text{Correlator} \neq \sum \text{(particle exchange)}
\]

- The presence of contact terms is important to fulfill general properties e.g. gauge invariance or anomaly matching.

- Simple example: AA correlator at low energies.

\[
\Pi_{AA}^{\mu\nu}(q) = \left(g^{\mu\nu} - \frac{p^\mu p^\nu}{p^2} \right) f_\pi^2
\]

- Pion propagation is not enough. Contact terms are fundamental.

- How can one implement the correct contact terms? External sources in Lagrangian formulations, e.g. ChPT.

- Problem: Lagrangians only at specific kinematical regimes (pQCD, ChPT).

Q1: Is there a way to make progress (apart from lattice QCD)?

Q2: Is this an issue for \(a_\mu \)?
The Melnikov-Vainshtein limit

• In the limit $Q_2^2 \simeq Q_3^2 \gg Q_1^2 \gtrsim \Lambda_{\text{QCD}}$ an OPE links VVVV to the (anomalous) VVA.

• The resulting short-distance constraint leads to a (sizeable) increase

<table>
<thead>
<tr>
<th>Contribution</th>
<th>BPP</th>
<th>HKS,HK</th>
<th>KN</th>
<th>MV</th>
<th>PdRV</th>
<th>N,JN</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^0, η, η'</td>
<td>85(13)</td>
<td>82.7(6.4)</td>
<td>83(12)</td>
<td>114(10)</td>
<td>114(13)</td>
<td>99(16)</td>
</tr>
<tr>
<td>axial vectors</td>
<td>2.5(1.0)</td>
<td>1.7(1.7)</td>
<td>--</td>
<td>22(5)</td>
<td>15(10)</td>
<td>22(5)</td>
</tr>
</tbody>
</table>

• Attempts to implement it with form factors not entirely successful. E.g., [Melnikov, Vainshtein]

$$A_{\pi^0} = F_{\pi\gamma\gamma}(q_2, q_3) \frac{1}{q_2^2 - m_{\pi}^2} F_{\pi\gamma\gamma}(q_1, 0)$$

consistent only if $F_{\pi\gamma\gamma}(q_1, 0) = 1$. Hard to argue phenomenologically...
A toy model

• 5-dimensional model:

\[S_5 = \int d^4x \int_0^{z_0} dz \left\{ -\lambda \sqrt{-g} \text{tr} \left[F_{(L)}^{MN} F_{(L)MN} + F_{(R)}^{MN} F_{(R)MN} \right] + c \text{tr} \left[\omega_5(L_M) - \omega_5(R_M) \right] \right\} \]

with \(\omega_5(L) = \text{tr} \left[LF_{(L)}^2 + \frac{i}{2} L^3 F_{(L)} - \frac{1}{10} L^5 \right] \)

• Choose AdS\(_5\) space, \(ds^2 = g_{MN} dx^M dx^N = \frac{1}{z^2} (-dz^2 + \eta_{\mu\nu} dx^\mu dx^\nu) \), with \(\eta_{\mu\nu} \) mostly negative.
A toy model

- UV boundary conditions (AdS/CFT prescription): fields on the boundary are sources of the 4d theory, i.e.,

\[L_\mu(x, 0) = l_\mu(x) \quad R_\mu(x, 0) = r_\mu(x) \]

coupled to \(J^a_{L\mu} = \bar{q}_L \gamma^\mu t^a q_L \) and \(J^a_{R\mu} = \bar{q}_R \gamma^\mu t^a q_R \).

- IR boundary conditions:

\[L_\mu(x, z_0) - R_\mu(x, z_0) = 0 \quad F_{L\mu}^{z_0}(x, z_0) + F_{R\mu}^{z_0}(x, z_0) = 0 \]

such that chiral symmetry is (spontaneously) broken to \(SU(3)_L \times SU(3)_R \rightarrow SU(3)_V \).

- Pion multiplet related to \(A_5(x, z) \). Defining the Wilson line

\[\xi_L(x, z) = P \exp \left\{ -i \int_{z}^{z_0} dz' L_z(x, z') \right\} \]

the change of variables

\[L^\xi_M(x, z) = \xi_L^\dagger(x, z) \left[L_M(x, z) + i \partial_M \right] \xi_L(x, z), \]

replaces \(A_5 \) by

\[U(x) \equiv \xi_L(x) \xi_R^\dagger(x) = \exp \left[\frac{2i\pi^a(x)t^a}{f_\pi} \right] \]
A toy model

• Important: the change of variables does not leave the CS term invariant, but induces a shift

\[\omega_5(L^\xi) = \omega_5(L) + \omega_5(\Sigma_L) + d\alpha_4(L, \Sigma_L) \]

where

\[\alpha_4(L, \Sigma_L) = \frac{1}{2} \text{tr} \left[\Sigma_L (L F(L) + F(L) L) + i \Sigma_L L^3 - \frac{1}{2} \Sigma_L L \Sigma_L L - i \Sigma_L^3 L \right] \quad , \quad \Sigma_L = d\xi L^\xi \]

• The 3 free parameters of the model can be fixed to

\[\lambda = \frac{N_c}{48\pi^2} ; \quad z_0^2 = \frac{N_c}{6\pi^2 f_\pi^2} ; \quad c = \frac{N_c}{24\pi^2} \]

from the pQCD quark loop in \(\Pi_{AA} \), \(f_\pi \) and the chiral anomaly.

Holographic recipe: Given an action \(S_5(A_M) \),

1. Split the fields as \(A_\mu(x, z) = a(x, z) \hat{a}_\mu^\perp(x) + \bar{a}(x, z) \hat{a}_\mu^\parallel(x) + \frac{\alpha(z)}{f_\pi} \partial_\mu \pi(x) \)

2. Solve the EoM and plug them back in. This defines \(S_{\text{eff}}(\hat{a}_\mu(x)) \).

3. Correlators fully analytical:

\[\Pi_{AA}^{\mu\nu} = \frac{\delta^2 S_{\text{eff}}}{\delta \hat{a}_\mu \delta \hat{a}_\nu} \]
How far can we go with the toy model?

Not QCD but interesting features:

- Via Kaluza-Klein reduction, the 4d theory is a full-fledged realization of large-N_c QCD.
- Lagrangian approach: guarantees not just unitarity, but allows to compute correlators.
- The topological term ensures that the chiral anomaly is correctly implemented.
- With the AdS metric, one reproduces all the short-distance constraints we tested so far.
- The spectrum of V and A is not accurately reproduced. However, on the Euclidean this has a tiny impact. Consider e.g. Π_{LR},

Excellent laboratory to explore QFT issues in HLbL.
The HLbL tensor

Using the effective action, one finds a close expression for it:

$$
\Pi_{\mu\nu\lambda\rho} = \varepsilon_{\mu\nu\alpha\beta} \varepsilon_{\rho\alpha'\beta'} \left[\frac{c^2}{\lambda} \int dz \int dz' T_{12}^\beta(z) G_A^{\alpha\alpha'}(z, z'; p) T_{34}^{\beta'}(z') + F^{(12)}_{\pi\gamma\gamma} \frac{q_1^\alpha q_2^\beta q_3^{\alpha'} q_4^{\beta'}}{p^2 - m_\pi^2} F^{(34)}_{\pi\gamma\gamma} \right]
$$

where

$$
F_{\pi\gamma\gamma}(Q_1^2, Q_2^2) = \frac{N_c}{12\pi^2 f_\pi} \int_0^{z_0} dz \alpha'(z) v(z, Q_1^2) v(z, Q_2^2)
$$

- This represents the full contribution of the Goldstone modes and axial excitations.
- The (inclusive) calculation of the HLbL in the large-N_c limit is straightforward.
• The longitudinal piece of the HLbL tensor can be projected via
\[G_{A}^{\mu\nu} = \frac{p^{\mu}p^{\nu}}{p^2} G_{A}^{\parallel} \]

The result is simplified to
\[W_{L} = \frac{N_{c}^{2}}{144\pi^{4} f_{\pi}^{2} p^2} \left[\int_{0}^{z_{0}} dz \alpha'(z)v_{1}(z)v_{2}(z)v_{3}(z)v_{4}(z) \right] \]
\[+ \frac{N_{c}^{2}}{144\pi^{4} f_{\pi}^{2} p^2} \int_{0}^{z_{0}} dz' \alpha'(z)v_{1}(z)v_{2}(z) \int_{0}^{z_{0}} dz' \alpha'(z')v_{3}(z')v_{4}(z') - F^{(12)}_{\pi\gamma\gamma} \frac{1}{p^2 - m_{\pi}^{2}} F^{(34)}_{\pi\gamma\gamma} \]
\[= \frac{N_{c}^{2}}{144\pi^{4} f_{\pi}^{2} p^2} \left[\int_{0}^{z_{0}} dz \alpha'(z)v_{1}(z)v_{2}(z)v_{3}(z)v_{4}(z) \right] + \mathcal{O}(m_{\pi}^{2}) \]

i.e., there is a cancellation and one is left (in the chiral limit) with a contact piece only!

• This piece is responsible also for the correct implementation of the MV short-distance constraint, i.e., the MV constraint is not saturated by propagating terms.

• The origin of this contact term is closely related to the chiral anomaly of the VVA triangle.
Consider the correlator
\[\Gamma_{\mu\nu\lambda}(q_3) = i \int d^4x d^4y \ e^{iq_3 \cdot (x-y)} \langle 0 | T \{ j^\text{em}_\mu(x) j^\text{em}_\nu(y) j^5_\lambda(0) \} | 0 \rangle \]
\[= \frac{1}{24\pi^2} \left[\omega_L(q_3^2) t^\parallel_{\mu\nu\lambda} + \omega_T(q_3^2) t^\perp_{\mu\nu\lambda} \right] \]

It is known that
\[\omega_L(q) = -\frac{2N_c}{q^2} \]
to all orders in pQCD. Corrections are \(\mathcal{O}(m_\pi^2) \).

In the model VVA can be computed from the effective action:
\[(S^{(3)}_{\text{CS}})^\perp = \frac{2c}{3} \varepsilon^{\mu\nu\lambda\rho} \int d^4x \left[1 + 3 \int_0^{z_0} dz a(z, k_1) v(z, k_2) v'(z, k_3) \right] \hat{a}^\perp_{\mu}(k_1) \partial_\nu \hat{v}_\lambda(k_2) \hat{v}_\rho(k_3) \]
\[(S^{(3)}_{\text{CS}})^\parallel = \frac{c}{3} \varepsilon^{\mu\nu\lambda\rho} \int d^4x \left[1 + 3 \int_0^{z_0} dz a'(z) v(z, k_2) v(z, k_3) \right] \frac{\partial^\alpha \hat{a}^\parallel_{\alpha}(k_1)}{\Box} \partial_\nu \hat{v}_\lambda(k_2) \partial_\mu \hat{v}_\rho(k_3) \]
together with the pion propagation.
The VVA triangle

- Longitudinal component: the pion cancels against the energy-dependent part of the 3-point vertex.

- Only the boundary piece survives (in the chiral limit) and $\omega_L(q)$ is recovered. In general,

$$\omega_L(q) = -\frac{2N_c}{q^2} \left[1 - \frac{12\pi^2 f_\pi}{N_c} \frac{m^2_\pi}{q^2 - m^2_\pi} F_{\pi\gamma\gamma}(0, q) \right]$$

- Compare with the continuation proposed in [Melnikov, Vainshtein]

$$\omega_L(q) = -\frac{2N_c}{q^2 - m^2_\pi}$$

Different chiral continuations, which could be numerically important.

- If one takes only the pion piece at low energies one finds

$$\lim_{q \to 0} \omega^{(\pi)}_L(q) = -\frac{2N_c}{q^2}$$

Pion dominance cannot be such a bad approximation after all.

- Subtlety: the action is in the LR prescription, so one should actually shift to the Adler-Bardeen one with

$$\Gamma_{\mu\nu\lambda} = \hat{\Gamma}_{\mu\nu\lambda} + \frac{N_c}{12\pi^2} \varepsilon_{\mu\nu\lambda\alpha}(q_1 - q_2)^\alpha$$
Conclusions

• A Lagrangian approach to HLbL provides an inclusive analysis of the leading large-N_c effects. One has access to full correlators and can clarify unresolved issues of form factor analyses. Nice perks: unitarity, anomaly and short-distance constraints correctly implemented.

• Pion dominance is not compatible with the correct implementation of the chiral anomaly, but numerically it gives an excellent estimate.

• The anomaly is saturated by a contact term. This is the main contribution to HLbL. The uncertainty on HLbL must be reassessed: presumably smaller than previously estimated.

• The contact term is crucial to fulfill the MV short-distance constraint, i.e., it is not saturated with a form factor. The infamous structureless form factor is just a manifestation of this.

• The previous results are generic QFT consequences for the leading large-N_c contributions to HLbL. Specific numbers will of course depend on the model, but even part of the result should be model-independent. Preliminary numbers seem to indicate so.

• Lattice simulations should be able to (hopefully) confirm these features.