Neutron lifetime anomaly

Bartosz Fornal

University of Utah

2nd Workshop on Hadronic Contributions to New Physics Searches
September 27, 2019, Tenerife

In collaboration with: Benjamin Grinstein
How does our Universe work?
How does our Universe work?
How does our Universe work?
We know quite a lot, but there is much more that we don’t understand!
We know quite a lot, but there is much more that we don’t understand!
What exactly is dark matter?
What exactly is dark matter?
Neutron decay in the Standard Model

\[n \rightarrow p + e^- + \bar{\nu}_e \]
Neutron lifetime in the Standard Model

Theoretical prediction

\[\tau_n = \frac{4908.6(1.9) \text{ s}}{|V_{ud}|^2 (1 + 3g_A^2)} \]

\[\mathcal{M} = \frac{1}{\sqrt{2}} G_F V_{ud} g_V \left[\bar{p} \gamma_\mu n - g_A \bar{p} \gamma_5 \gamma_\mu n \right] \left[\bar{e} \gamma^\mu (1 - \gamma_5) \nu \right] \]

Using the PDG average for \(g_A \)

\[880.5 \text{ s} < \tau_n < 886.0 \text{ s} \]

Chang et al., Nature 558, 91 (2018)

Lattice QCD result

\[870 \text{ s} < \tau_n < 900 \text{ s} \]
Bottle experiments

Decaying exponential fit to data points

\[
\frac{dN_n(t)}{dt} = -\frac{N_n(t)}{\tau_n}
\]

\[
N_n(t) = N_n(0) e^{-t/\tau_n}
\]

\[
\tau_{\text{bottle}} = \tau_n
\]

Source: https://www.scientificamerican.com
Beam experiments

Only the decay rate to **protons** is measured

\[
\frac{dN_p(t)}{dt} = - \frac{N_n(t)}{\tau_n^{\text{beam}}}
\]

Source: https://www.scientificamerican.com
Beam experiments

Only the decay rate to protons is measured

\[
\frac{dN_p(t)}{dt} = - \frac{N_n(t)}{\tau_n^{\text{beam}}}
\]

\[
\tau_n^{\text{beam}} = - \frac{N_n}{dN_p/dt}
\]
Beam experiments

Only the decay rate to protons is measured

\[\frac{dN_p(t)}{dt} = - \frac{N_n(t)}{\tau_n^{\text{beam}}} \]

\[\tau_n^{\text{beam}} = - \frac{N_n}{dN_p/dt} = - \frac{N_n}{\text{Br}(n \rightarrow p + \text{anything}) \cdot dN_n/dt} \]
Beam experiments

Only the decay rate to protons is measured.

\[
\frac{dN_p(t)}{dt} = - \frac{N_n(t)}{\tau_n^{\text{beam}}} \]

\[
\tau_n^{\text{beam}} = - \frac{N_n}{dN_p/dt} = - \frac{N_n}{\text{Br}(n \rightarrow p + \text{anything}) dN_n/dt} \]
Beam experiments

Only the decay rate to protons is measured

\[
\frac{dN_p(t)}{dt} = -\frac{N_n(t)}{\tau_n^{\text{beam}}}
\]

\[
\tau_n^{\text{beam}} = -\frac{N_n}{dN_p/dt} = \frac{N_n}{\text{Br}(n \rightarrow p + \text{anything}) dN_n/dt}
\]

\[
\tau_n \geq \tau_n^{\text{bottle}}
\]

Source: https://www.scientificamerican.com
Neutron lifetime measurements

Beam method average\(^*\) (blue zone): 888.0 ± 2.1 seconds

Bottle method average (green zone): 879.6 ± 0.6 seconds

Disagreement

\[\tau_{n}^{\text{beam}} = 888.0 \pm 2.1 \text{ s} \]

\[\tau_{n}^{\text{bottle}} = 879.3 \pm 0.8 \text{ s} \]

Discrepancy

\[\frac{\Delta \tau_{n}}{\tau_{n}} \approx 1\% \]

4 σ
Neutron dark decay

Dark Matter Interpretation of the Neutron Decay Anomaly

Bartosz Fornal and Benjamín Grinstein

Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA

(Received 19 January 2018; revised manuscript received 3 March 2018; published 9 May 2018)

\[
\text{Br}(n \rightarrow p + \text{anything}) \approx 99\%
\]

\[
\text{Br}(n \rightarrow \text{anything} \neq p) \approx 1\%
\]

\[n \rightarrow \text{dark particle(s)} + \text{SM particle(s)}\]

\[n \rightarrow \text{dark particles}\]
Nuclear physics bounds

p MEAN LIFE

A test of baryon conservation. See the "p Partial Mean Lives" section below for limits for identified final states. The limits here are to "anything" or are for "disappearance" modes of a bound proton (p) or (n). See also the 3ν modes in the "Partial Mean Lives" section. Table 1 of BACK 03 is a nice summary.

<table>
<thead>
<tr>
<th>LIMIT (years)</th>
<th>PARTICLE</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>>5.8 × 10^{29}</td>
<td>n</td>
<td>90</td>
<td>1</td>
<td>ARAKI</td>
<td>06</td>
</tr>
<tr>
<td>>2.1 × 10^{29}</td>
<td>p</td>
<td>90</td>
<td>2</td>
<td>AHMED</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>1.9 × 10^{29}</td>
<td>n</td>
<td>90</td>
<td>2</td>
<td>AHMED</td>
<td>04</td>
</tr>
<tr>
<td>>1.8 × 10^{25}</td>
<td>n</td>
<td>90</td>
<td>3</td>
<td>BACK</td>
<td>03</td>
</tr>
<tr>
<td>>1.1 × 10^{26}</td>
<td>p</td>
<td>90</td>
<td>3</td>
<td>BACK</td>
<td>03</td>
</tr>
<tr>
<td>>3.5 × 10^{28}</td>
<td>p</td>
<td>90</td>
<td>4</td>
<td>ZDESENO</td>
<td>03</td>
</tr>
<tr>
<td>>1 × 10^{28}</td>
<td>p</td>
<td>90</td>
<td>5</td>
<td>AHMAD</td>
<td>02</td>
</tr>
<tr>
<td>>4 × 10^{23}</td>
<td>p</td>
<td>95</td>
<td>6</td>
<td>TRETYAK</td>
<td>01</td>
</tr>
<tr>
<td>>1.9 × 10^{24}</td>
<td>p</td>
<td>90</td>
<td>6</td>
<td>BERNABEVI</td>
<td>00B</td>
</tr>
<tr>
<td>>1.6 × 10^{25}</td>
<td>p, n</td>
<td>7,8</td>
<td>7</td>
<td>EVANS</td>
<td>77</td>
</tr>
<tr>
<td>>3 × 10^{23}</td>
<td>p</td>
<td>8</td>
<td>8</td>
<td>DIX</td>
<td>70</td>
</tr>
<tr>
<td>>3 × 10^{23}</td>
<td>p, n</td>
<td>8,9</td>
<td>8</td>
<td>FLEROV</td>
<td>58</td>
</tr>
</tbody>
</table>

- - - We do not use the following data for averages, fits, limits, etc. - - -
Nuclear physics bounds

p MEAN LIFE

A test of baryon conservation. See the “p Partial Mean Lives” section below for limits for identified final states. The limits here are to “anything” or are for “disappearance” modes of a bound proton (p) or (n). See also the 3ν modes in the “Partial Mean Lives” section. Table 1 of BACK 03 is a nice summary.

<table>
<thead>
<tr>
<th>LIMIT (years)</th>
<th>PARTICLE</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$>5.8 \times 10^{29}$</td>
<td>n</td>
<td>90</td>
<td>1</td>
<td>ARAKI 06</td>
<td>KLND</td>
</tr>
<tr>
<td>$>2.1 \times 10^{29}$</td>
<td>p</td>
<td>90</td>
<td>2</td>
<td>AHMED 04</td>
<td>SNO</td>
</tr>
<tr>
<td>$>1.9 \times 10^{29}$</td>
<td>n</td>
<td>90</td>
<td>2</td>
<td>AHMED 04</td>
<td>SNO</td>
</tr>
</tbody>
</table>

We do not use the following data for averages, fits, limits, etc.

16O limits valid only if sum of masses of neutron decay products $M_f < m_n - 20.9$ MeV

$m_n - 20.9$ MeV < M_f < m_n is not ruled out this way!
Nuclear physics bounds – 9Be

9Be would not be stable if $M_f < m_n - S_n$

9Be is stable if $m_n - S_n < M_f < m_n$

$937.900 \text{ MeV} < M_f < 939.565 \text{ MeV}$
8Be is not stable with respect to the decay into two alpha particles, thus one gets a more restrictive bound on M_f

\[937.993 \text{ MeV} < M_f < 939.565 \text{ MeV} \]

Pfutzner & Riisager, PRC 97, 042501(R) (2018)
New neutron decay channels

$937.993 \text{ MeV} < M_f < 939.565 \text{ MeV}$

- neutron \rightarrow dark particle + photon
- neutron \rightarrow dark particle + e^+e^-
- neutron \rightarrow two dark particles
- neutron \rightarrow ...
Neutron → dark particle + photon

Dark particle mass
\[937.993 \text{ MeV} < m_\chi < 939.565 \text{ MeV} \]

Photon energy
\[0 < E_\gamma < 1.572 \text{ MeV} \]

Dark matter case
\[0.782 \text{ MeV} < E_\gamma < 1.572 \text{ MeV} \]
Neutron \rightarrow dark particle + photon

Effective Lagrangian

$$\mathcal{L}_{1}^{\text{eff}} = \bar{n} \left(i \slashed{\partial} - m_n + \frac{g_{n\epsilon}}{2m_n} \sigma^{\mu\nu} F_{\mu\nu} \right) n + \bar{\chi} \left(i \slashed{\partial} - m_\chi \right) \chi + \varepsilon (\bar{n} \chi + \bar{\chi} n)$$

$$\mathcal{L}_{n\rightarrow\chi\gamma}^{\text{eff}} = \frac{g_{n\epsilon}}{2m_n} \frac{\varepsilon}{(m_n - m_\chi)} \bar{\chi} \sigma^{\mu\nu} F_{\mu\nu} n$$

Neutron dark decay rate

$$\Delta \Gamma_{n\rightarrow\chi\gamma} = \frac{g_{n\epsilon}^2 \epsilon^2}{8\pi} \left(1 - \frac{m_\chi^2}{m_n^2} \right)^3 \frac{m_n \varepsilon^2}{(m_n - m_\chi)^2}$$
Model 1
(minimal)

Lagrangian

\[\mathcal{L}_1 = \left(\lambda_q \varepsilon^{ijk} u_{Li}^c d_{Rj} \Phi_k + \lambda_\chi \Phi^* i \bar{\chi} d_{Ri} + \text{h.c.} \right) - M_\Phi^2 |\Phi|^2 - m_\chi \bar{\chi} \chi \]

\[\varepsilon = \frac{\beta \lambda_q \lambda_\chi}{M_\Phi^2} \]

where

\[\langle 0 | \varepsilon^{ijk} (u_{Li}^c d_{Rj}) d_{Rk}^\rho |n \rangle = \beta \left(\frac{1+\gamma_5}{2} \right)^\rho \sigma u^{\sigma} \]

To explain the neutron lifetime discrepancy

\[\Delta \Gamma_{n \to \chi \gamma} \approx \frac{\Gamma_n}{100} \]

\[\frac{M_\Phi}{\sqrt{|\lambda_q \lambda_\chi|}} \approx 400 \text{ TeV} \]
Neutron → two dark particles

Constraints on masses

\[937.993 \text{ MeV} < m_\chi + m_\phi < 939.565 \text{ MeV} \]

\[937.993 \text{ MeV} < m_\tilde{\chi} \]
Neutron dark decay rate

\[\Delta \Gamma_{n \rightarrow \chi \phi} = \frac{|\lambda_\phi|^2}{16\pi} \sqrt{f(x,y)} \frac{m_n \varepsilon^2}{(m_n - m_\chi)^2} \]

\[f(x,y) = [(1 - x)^2 - y^2][(1 + x)^2 - y^2]^3 \]

\[x = m_\chi/m_n \quad y = m_\phi/m_n \]

\[\varepsilon = \frac{\beta \lambda_q \lambda_\chi}{M_\Phi^2} \]

\[\lambda_\phi \approx 0.04 \]

\[\Delta \Gamma_{n \rightarrow \chi \phi} \approx \frac{\Gamma_n}{100} \]

\[\frac{M_\Phi}{\sqrt{|\lambda_q \lambda_\chi|}} \approx 1600 \text{ TeV} \]
Theoretical and experimental developments

Theory
- Neutron star constraints
- Self-interacting dark sector
- Repulsive DM-baryon interactions
- Baryogenesis, meson dark decays, ...

Experiment
- Neutron dark decays
- Nuclear dark decays
- Beam and bottle measurements
Neutron star constraints

Tolman-Oppenheimer-Volkoff equation without self-interactions

→ neutron star masses < 0.8 M_\odot

McKeen, Nelson, Reddy & Zhou,
PRL 121, 061802 (2018), arXiv:1802.08244

Baym, Beck, Geltenbort & Shelton,
PRL 121, 061801 (2018), arXiv:1802.08282

Motta, Guichon & Thomas,
Neutron star constraints

Tolman-Oppenheimer-Volkoff equation without self-interactions

→ neutron star masses < 0.8 M_\odot

Observed neutron star masses allowed if there are:

→ strong repulsive self-interactions in the dark sector

~ SIDM (Spergel & Steinhardt, PRL 84, 3760 (2000))

→ repulsive DM-neutron interactions
Model with dark sector self-interactions (1)

Effective Lagrangian

\[
\mathcal{L}_{\text{eff}} = \bar{n} \left(i \slashed{D} - m_n + \frac{g_n e}{2m_n} \sigma^{\mu\nu} F_{\mu\nu} \right) n \\
+ \bar{\chi} \left(i \slashed{D} - m_{\chi} \right) \chi + \varepsilon (\bar{n} \chi + \bar{\chi} n) \\
- \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{\delta}{2} F_{\mu\nu} F'^{\mu\nu} - \frac{1}{2} m_{A'}^2 A'_\mu A'^{\mu}
\]

\[D_\mu = \partial_\mu - ig' A'_\mu\]

Neutron dark decay

\[n \rightarrow \chi A'\]

-Cline & Cornell, JHEP 07, 081 (2018)-

Low-scale baryogenesis

-Bringmann, Cline & Cornell, PRD 99, 035024 (2019)-
Model with dark sector self-interactions (2)

Dark sector Lagrangian

\[\mathcal{L}_D = g \bar{\chi} Z^D \chi + (\lambda \phi \bar{\chi} \chi \phi + \text{h.c.}) - i g Z^\mu_D (\phi^* \partial_\mu \phi - \phi \partial_\mu \phi^*) \]

Highlights of the model:

- \(\chi \) can constitute all of the dark matter in the universe; model consistent with astrophysical constraints
- solves small-scale structure problems of \(\Lambda \)CDM
Model with DM-neutron repulsive interactions

Lagrangian

\[\mathcal{L} = \lambda_q \epsilon^{ijk} u^c_{Li} d_{Rj} \Phi_k + \lambda_X \Phi^* i \bar{\chi} d_{Ri} + \lambda_{\phi} \bar{\chi} \chi \phi \]
\[+ \mu H^\dagger H \phi + g_{\chi} \bar{\chi} \chi \phi + \text{h.c.} \]

Grinstein, Kouvaris & Nielsen,
PRL 123 (2019) 091601

Costs energy to convert neutrons to dark matter in a neutron environment:

\[\Delta E_0 = m_\chi - \mu_{\text{nuc}}(n_F) + \frac{n_F |g_\chi g_n|}{2m_\phi^2} > 0 \]

Zero DM density energetically favored
Other theoretical follow-ups

Neutral hadron dark decays

Barducci, Fabbrichesi & Gabrielli, PRD 98, 035049 (2018)

Neutron-mirror neutron oscillations

Berezhiani, EPJ C 79, 484 (2019); Berezhiani, LHEP 118, 1 (2019); BF & Grinstein, arXiv:1902.08975

Special case of neutron dark decay with

$\chi = n'$
Other theoretical follow-ups

Neutral hadron dark decays
Barducci, Fabbrichesi & Gabrielli, PRD 98, 035049 (2018)

Neutron-mirror neutron oscillations
Berezhiani, EPJ C 79, 484 (2019); Berezhiani, LHEP 118, 1 (2019);
BF & Grinstein, arXiv:1902.08975

Special case of neutron dark decay with $\chi = n'$
Experiment: Neutron → dark matter + photon

Los Alamos UCN

Tang et al., PRL 121, 022505 (2018)

$0.782 \text{ MeV} < E_\gamma < 1.664 \text{ MeV}$

2.2 σ exclusion
Experiment: Neutron \rightarrow dark particle $+ e^+e^-$

Los Alamos UCN

ILL, Grenoble

Sun et al., PRC 97, 052501 (2018)

Klopf et al., PRL 122, 222503 (2019)

$E_{e^+e^-} \gtrsim 2m_e + 100$ keV

$E_{e^+e^-} \gtrsim 2m_e + 30$ keV
Nuclear dark decays

Possible in unstable nuclei with $S_n < 1.572 \text{ MeV}$

$937.993 \text{ MeV} < M_f < m_n - S_n$

$^{11}\text{Li} \rightarrow ^{10}\text{Li} + \chi \rightarrow ^{9}\text{Li} + n + \chi$

$S_n(^{11}\text{Li}) = 0.396 \text{ MeV}$

Best candidate:

$^{11}\text{Be} \rightarrow ^{10}\text{Be} + \tilde{\chi}^* \rightarrow ^{10}\text{Be} + \chi + \phi$

$S_n(^{11}\text{Be}) = 0.502 \text{ MeV}$

Pfutzner & Riisager, Examining the possibility to observe neutron dark decay in nuclei, PRC 97, 042501(R) (2018)
Unexplained result in 11Be decays

Unexpectedly high number of 10Be nuclei produced in 11Be decays was observed

$$\text{Br } (^{11}\text{Be} \to ^{10}\text{Be} + ?) \approx 8 \times 10^{-6}$$

Riisager et al., 11Be(βp), a quasi-free neutron decay?, PLB 732, 305 (2014)

[Image: Element decay diagram and predicted branching ratios]
Unexplained result in ^{11}Be decays

Unexpectedly high number of ^{10}Be nuclei produced in ^{11}Be decays was observed

$$\text{Br}\left(^{11}\text{Be} \rightarrow ^{10}\text{Be} + ?\right) \approx 8 \times 10^{-6}$$

Riisager et al., $^{11}\text{Be}(\beta p)$, a quasi-free neutron decay?, PLB 732, 305 (2014)

^{10}Be nuclei can be produced through β-delayed proton emission, but theoretical estimates give

$$\text{Br}({^{11}\text{Be} \xrightarrow{\beta} ^{11}\text{B} \rightarrow ^{10}\text{Be} + p}) \approx 2 \times 10^{-8}$$

https://www.nndc.bnl.gov/nudat2
Unexplained result in 11Be decays

Unexpectedly high number of 10Be nuclei produced in 11Be decays was observed

$$\text{Br} \left(^{11}\text{Be} \rightarrow ^{10}\text{Be} + ? \right) \approx 8 \times 10^{-6}$$

Riisager et al., 11Be(βp), a quasi-free neutron decay?, PLB 732, 305 (2014)

10Be nuclei can be produced through β-delayed proton emission, but theoretical estimates give

$$\text{Br} \left(^{11}\text{Be} \beta \rightarrow ^{11}\text{B} \rightarrow ^{10}\text{Be} + p \right) \approx 2 \times 10^{-8}$$

Narrow resonance or dark decay ?

Pfutzner & Riisager, PRC 97, 042501(R) (2018)

https://www.nndc.bnl.gov/nudat2
^{11}Be decay experiments

Are there protons in the final state of ^{11}Be decays?

This would test ALL neutron dark decay channels with:

$937.993 \text{ MeV} < M_f < 939.064 \text{ MeV}$

\rightarrow CERN – ISOLDE

\rightarrow TRIUMF

\rightarrow MSU
Ongoing beam and bottle experiments

NIST Center for Neutron Research

J–PARC, Japan
Ongoing beam and bottle experiments

Add a proton detection system in bottle experiments!
Final remarks

Working models solving the neutron lifetime puzzle

Neutron dark decays with a smaller rate possible

\[\frac{\Delta \Gamma_{n \rightarrow \chi + \ldots}}{\Gamma_n} \ll 1\% \]

+ dark Z

or

+ repulsive \(n - \chi \) interaction
Very wishful thinking

https://en.wikipedia.org, modified
Thank you!