Lorentz-violating effects in hadronic processes _p

Nathan Sherrill Indiana University

http://www.indiana.edu/~iucss/

*Talk based on: V. A. Kostelecký, E. Lunghi, N. S., A. R. Vieira — to appear

Lorentz invariance: the laws of physics are the same for all inertial observers

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

Consider $\mathcal{L}_{a}\supset -a_{\mu}ar{\psi}\gamma^{\mu}\psi$

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

Consider
$$\mathcal{L}_{a}\supset -a_{\mu}\bar{\psi}\gamma^{\mu}\psi$$

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

Consider
$$\mathcal{L}_{a}\supset -a_{\mu}ar{\psi}\gamma^{\mu}\psi$$

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

Consider
$$\mathcal{L}_{a}\supset -a_{\mu}\bar{\psi}\gamma^{\mu}\psi$$

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

Consider
$$\mathcal{L}_{a}\supset -a_{\mu}\bar{\psi}\gamma^{\mu}\psi$$

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

Consider
$$\mathcal{L}_{a}\supset -a_{\mu}\bar{\psi}\gamma^{\mu}\psi$$

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

Consider
$$\mathcal{L}_{a}\supset -a_{\mu}\bar{\psi}\gamma^{\mu}\psi$$

$$\begin{aligned} a^{\mu} &\to \Lambda^{\mu}{}_{\nu} a^{\nu} \\ \psi(x) &\to \psi'(x') = S \psi(x) \\ -a_{\mu} \bar{\psi} \gamma^{\mu} \psi &\to -a_{\mu} \bar{\psi} \gamma^{\mu} \psi \end{aligned}$$

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

Consider
$$\mathcal{L}_{a}\supset -a_{\mu}\bar{\psi}\gamma^{\mu}\psi$$

An observer Lorentz transformation is a coordinate transformation

No change in the physics; the presence of the background cannot be seen by performing observer transformations

A particle transformation is a transformation of the physical system itself

A particle transformation is a transformation of the physical system itself

A particle transformation is a transformation of the physical system itself

A particle transformation is a transformation of the physical system itself

$$a_{\mu} \to a_{\mu}$$

$$\psi(x) \to \psi'(x) = S\psi(\Lambda^{-1}x)$$

Net physical effect

$$-a_{\mu}\bar{\psi}\gamma^{\mu}\psi \to -\left(\Lambda^{-1}\right)_{\mu\nu}a^{\nu}\bar{\psi}\gamma^{\mu}\psi$$

$$\neq -a_{\mu}\bar{\psi}\gamma^{\mu}\psi$$

A particle transformation is a transformation of the physical system itself

$$a_{\mu} \to a_{\mu}$$

$$\psi(x) \to \psi'(x) = S\psi(\Lambda^{-1}x)$$

Net physical effect

$$-a_{\mu}\bar{\psi}\gamma^{\mu}\psi \to -\left(\Lambda^{-1}\right)_{\mu\nu}a^{\nu}\bar{\psi}\gamma^{\mu}\psi$$

$$\neq -a_{\mu}\bar{\psi}\gamma^{\mu}\psi$$

Unlike observer transformations, particle transformations can produce physical effects as a result of the background

A particle transformation is a transformation of the physical system itself

$$\begin{aligned} a_{\mu} &\to a_{\mu} \\ \psi(x) &\to \psi'(x) = S\psi(\Lambda^{-1}x) \end{aligned}$$

Net physical effect

$$-a_{\mu}\bar{\psi}\gamma^{\mu}\psi \to -\left(\Lambda^{-1}\right)_{\mu\nu}a^{\nu}\bar{\psi}\gamma^{\mu}\psi$$

$$\neq -a_{\mu}\bar{\psi}\gamma^{\mu}\psi$$

Unlike observer transformations, particle transformations can produce physical effects as a result of the background

Rotated system obeys different physical law than rotated coordinates

⇒ Lorentz violation!

Being a fundamental symmetry/assumption, it should be tested to assess its validity

Many new physics scenarios can incorporate departures form exact Lorentz symmetry*

*See, e.g., V. A. Kostelecký, S. Samuel, Phys. Rev. D39, 683 (1989); S. Carroll, J. Harvey, V. A. Kostelecký, C. Lane, T. Okamoto Phys. Rev. Lett. 87 141601 (2001)

Being a fundamental symmetry/assumption, it should be tested to assess its validity

Many new physics scenarios can incorporate departures form exact Lorentz symmetry*

We use a model-independent, effective field theory framework: the Standard-Model Extension (SME)*

$$\mathcal{L}_{\mathrm{SME}} = \mathcal{L}_{\mathrm{GR}} + \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{LV}}$$

*See, e.g., V. A. Kostelecký, S. Samuel, Phys. Rev. D39, 683 (1989); S. Carroll, J. Harvey, V. A. Kostelecký, C. Lane, T. Okamoto Phys. Rev. Lett. 87 141601 (2001)

*D. Colladay, V. A. Kostelecký, PRD 55, 6760 (1997); PRD 58, 1166002 (1998)

*V. A. Kostelecký, PRD 69, 105009 (2004)

Being a fundamental symmetry/assumption, it should be tested to assess its validity

Many new physics scenarios can incorporate departures form exact Lorentz symmetry*

We use a model-independent, effective field theory framework: the Standard-Model Extension (SME)*

$$\mathcal{L}_{\mathrm{SME}} = \mathcal{L}_{\mathrm{GR}} + \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{LV}}$$

*See, e.g., V. A. Kostelecký, S. Samuel, Phys. Rev. D39, 683 (1989); S. Carroll, J. Harvey, V. A. Kostelecký, C. Lane, T. Okamoto Phys. Rev. Lett. 87 141601 (2001)

*D. Colladay, V. A. Kostelecký, PRD 55, 6760 (1997); PRD 58, 1166002 (1998)

*V. A. Kostelecký, PRD 69, 105009 (2004)

Contains <u>all possible</u> terms that break Lorentz and CPT symmetry* consistent with the particle/field content of GR and the SM

 $CPTV \Rightarrow LV$ in realistic EFT^*

*D. Colladay, V. A. Kostelecký, PRD 55, 6760 (1997)

*O. W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002)

Being a fundamental symmetry/assumption, it should be tested to assess its validity

Many new physics scenarios can incorporate departures form exact Lorentz symmetry*

We use a model-independent, effective field theory framework: the Standard-Model Extension (SME)*

$$\mathcal{L}_{\mathrm{SME}} = \mathcal{L}_{\mathrm{GR}} + \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{LV}}$$

$$\mathcal{L}_{ ext{LV}} = \sum_{i} k_{i\mu
u}...\mathcal{O}_{i}^{\mu
u}...$$

*See, e.g., V. A. Kostelecký, S. Samuel, Phys. Rev. D39, 683 (1989); S. Carroll, J. Harvey, V. A. Kostelecký, C. Lane, T. Okamoto Phys. Rev. Lett. 87 141601 (2001)

*D. Colladay, V. A. Kostelecký, PRD 55, 6760 (1997); PRD 58, 1166002 (1998)

*V. A. Kostelecký, PRD 69, 105009 (2004)

Contains <u>all possible</u> terms that break Lorentz and CPT symmetry* consistent with the particle/field content of GR and the SM

 $CPTV \Rightarrow LV$ in realistic EFT^*

*D. Colladay, V. A. Kostelecký, PRD 55, 6760 (1997)

*O. W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002)

Being a fundamental symmetry/assumption, it should be tested to assess its validity

Many new physics scenarios can incorporate departures form exact Lorentz symmetry*

We use a model-independent, effective field theory framework: the Standard-Model Extension (SME)*

$$\mathcal{L}_{\mathrm{SME}} = \mathcal{L}_{\mathrm{GR}} + \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{LV}}$$

$$\mathcal{L}_{ ext{LV}} = \sum_{i} k_{i\mu\nu} ... \mathcal{O}_{i}^{\mu\nu ...}$$

- "Coefficients for Lorentz violation"
- Observer Lorentz tensors
- Necessarily small (perturbative)
- Experimentally accessible!

*See, e.g., V. A. Kostelecký, S. Samuel, Phys. Rev. D39, 683 (1989); S. Carroll, J. Harvey, V. A. Kostelecký, C. Lane, T. Okamoto Phys. Rev. Lett. 87 141601 (2001)

*D. Colladay, V. A. Kostelecký, PRD 55, 6760 (1997); PRD 58, 1166002 (1998)

*V. A. Kostelecký, PRD 69, 105009 (2004)

Contains <u>all possible</u> terms that break Lorentz and CPT symmetry* consistent with the particle/field content of GR and the SM

 $CPTV \Rightarrow LV$ in realistic EFT^*

*D. Colladay, V. A. Kostelecký, PRD 55, 6760 (1997)

*O. W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002)

Data Tables for Lorentz and CPT Violation

V. Alan Kostelecký^a and Neil Russell^b

^aPhysics Department, Indiana University, Bloomington, IN 47405

^bPhysics Department, Northern Michigan University, Marquette, MI 49855

January 2019 update of Reviews of Modern Physics 83, 11 (2011) [arXiv:0801.0287]

This work tabulates measured and derived values of coefficients for Lorentz and CPT violation in the Standard-Model Extension. Summary tables are extracted listing maximal attained sensitivities in the matter, photon, neutrino, and gravity sectors. Tables presenting definitions and properties are also compiled.

•

Table D17. Nonminimal photon sector, $d=5$			
Combination	Result	System	Ref.
$\left \sum_{jm} Y_{jm}(110.47^{\circ}, 71.34^{\circ})k_{(V)jm}^{(5)}\right $	$<1\times 10^{-23}~{\rm GeV^{-1}}$	Spectropolarimetry	[163]
$\left \sum_{jm} Y_{jm}(110.47^{\circ}, 71.34^{\circ})k_{(V)jm}^{(5)}\right $ $\left \sum_{jm} Y_{jm}(330.68^{\circ}, 42.28^{\circ})k_{(V)jm}^{(5)}\right $	$< 3 \times 10^{-23} \; \mathrm{GeV^{-1}}$	"	[163]
$ k_{(V)00}^{(5)} $	$< 5 \times 10^{-23} \; \mathrm{GeV^{-1}}$	"	[163]
$ k_{(V)00}^{(5)} $	$<5.0\times 10^{-26}~{\rm GeV^{-1}}$	Astrophysical birefringence	[167]
$ k_{(V)10}^{(5)} $	$<6.5\times 10^{-26}~{\rm GeV^{-1}}$	77	[167]

:

100s of bounds for nearly every major subfield of physics*

Much of the QCD sector is yet to be explored!

Quick overview of high-energy hadrons

Consider a high-energy hadron

Partons have momenta that scale like p^{μ}

Fraction of plus momentum is boost invariant, leading to familiar parameterization for high-energy, massless, on-shell partons within hadrons

$$\xi \equiv k^+/p^+$$
$$k^\mu = \xi p^\mu$$

Covariant expression; can be used in any frame

Quark-sector Lorentz-violating effects

Massless quarks modified by Lorentz-violating effects

$$\mathcal{L} \supset \frac{1}{2} \bar{\psi} \left[\gamma^{\mu} i D_{\mu} \right] \psi + \text{h.c.} + \mathcal{L}_{\psi D}^{(d)}$$

$$\mathcal{L}_{\psi D}^{(d)} \supset -(a^{(3)})^{\mu} \bar{\psi} \gamma_{\mu} \psi + (c^{(4)})^{\mu\nu} \bar{\psi} \gamma_{\mu} i D_{\nu} \psi + \cdots$$

$$-(a^{(5)})^{\mu\alpha\beta} \bar{\psi} \gamma_{\mu} i D_{(\alpha} i D_{\beta)} \psi + \cdots$$

$$+(c^{(6)})^{\mu\alpha\beta\gamma} \bar{\psi} \gamma_{\mu} i D_{(\alpha} i D_{\beta} i D_{\gamma)} \psi + \cdots$$

$$+\cdots$$

Modified Dirac equation, dispersion relation

$$\gamma_{\mu}\widetilde{k}^{\mu}\psi = 0,$$

$$\widetilde{k}^{2} = k^{2} + \mathcal{O}(\text{coefficients}) = 0$$

Bottom line: implies $k^{\mu}=\xi p^{\mu}$ is no longer consistent

Instead, for a covariant definition to be retained $k^\mu = \xi p^\mu$

Want to understand effects in lepton-hadron and hadron-hadron collisions E.g., deep inelastic scattering (DIS)

Want to understand effects in lepton-hadron and hadron-hadron collisions E.g., deep inelastic scattering (DIS)

$$\sigma \sim \int d\xi \sigma_{\rm parton}(\xi) f(\xi) + {\rm small \ corrections}$$

- kinematical corrections
- QCD radiative effects

Want to understand effects in lepton-hadron and hadron-hadron collisions E.g., deep inelastic scattering (DIS)

Similar conclusions reached for the Drell-Yan process

What happens when Lorentz violation is present?

$$\sigma \sim \int d\xi \sigma_{\rm parton}(\xi) f(\xi) + {\rm small \ corrections}$$

- kinematical corrections
- QCD radiative effects

$$\sigma \sim \int d\xi \sigma_{\rm parton}(\xi) f(\xi) + {\rm small \ corrections}$$

- kinematical corrections
- QCD radiative effects

Factorization at the parton-level occurs in a modified Breit frame $\vec{p} + \vec{q} = \vec{0}$

E.g.
$$\mathcal{L}_{c} \supset \frac{1}{2} c_{f}^{\mu\nu} \bar{\psi}_{f}(x) i \gamma_{\mu} \overset{\leftrightarrow}{\partial}_{\nu} \psi_{f}(x)$$

$$\left| \xi_p \right\rangle \left| \right|^2 \sim \operatorname{Tr} \left[(\gamma^{\mu} + \frac{c_f^{\alpha \mu}}{f} \gamma_{\alpha}) \frac{1}{(\xi p^{\alpha} + q^{\alpha} + \frac{c_f^{\alpha \beta}}{f} q_{\beta}) \gamma_{\alpha} + i\epsilon} (\gamma^{\nu} + \frac{c_f^{\alpha \nu}}{f} \gamma_{\alpha}) \gamma_{\beta} \xi p^{\beta} \right]$$

$$\langle \text{hadron} | \Gamma^+ | \text{hadron} \rangle$$

$$\frac{\langle \text{hadron} | \Gamma^{+} | \text{hadron} \rangle}{r} \sim f_{f}(\xi, \dots) = \int \frac{d\lambda}{2\pi} e^{-i\xi p \cdot n\lambda} \langle p | \bar{\psi}(\lambda \tilde{n}_{f}) \frac{\gamma_{\mu} n^{\mu}}{2} \psi(0) | p \rangle$$

$$n^{\mu} + c_{f}^{\mu \alpha} n_{\alpha}$$

PDFs

PDFs still satisfy reparameterization invariance and are consistent with the operator product expansion (OPE)

PDFs

PDFs still satisfy reparameterization invariance and are consistent with the operator product expansion (OPE)

Test this for DIS and DY using minimal and nonminimal spin-independent coefficients for Lorentz violation*

$$\mathcal{L} = \sum_{f=u,d} \frac{1}{2} \bar{\psi}_f \gamma^{\mu} i D_{\mu} \psi_f + \frac{1}{2} (c_f^{(4)})^{\mu\nu} \bar{\psi}_f \gamma_{\mu} i D_{\nu} \psi_f$$
*V. A. Kostelecký, E. Lunghi, and A. R. Vieira, Phys. Lett. B
769, 272 (2017);
V. A. Kostelecký and Z. Li, Phys. Rev. D 99, 056016 (2019)

physical comps. $(c_{Sf}^{(4)})^{\mu\nu} = 16 - 6 - 1 = 9$

physical comps. $(a_{Sf}^{(5)})^{\mu\alpha\beta} = 40 - 16 - 2 * 4 = 16$

PDFs

PDFs still satisfy reparameterization invariance and are consistent with the operator product expansion (OPE)

Test this for DIS and DY using minimal and nonminimal spin-independent coefficients for Lorentz violation*

$$\mathcal{L} = \sum_{f=u,d} \frac{1}{2} \bar{\psi}_f \gamma^{\mu} i D_{\mu} \psi_f + \frac{1}{2} (c_f^{(4)})^{\mu\nu} \bar{\psi}_f \gamma_{\mu} i D_{\nu} \psi_f$$

$$+ \frac{1}{2} (c_f^{(4)})^{\mu\nu} \bar{\psi}_f \gamma_{\mu} i D_{\nu} \psi_f \gamma_{\mu}$$

Matching to OPE gives the potential *nonperturbative* dependence on Lorentz violation in the considered model

$$f_f(\xi, \dots) = f_f(\xi, (c_{Sf}^{(4)})^{pp}, (a_{Sf}^{(5)})^{ppp}/\Lambda^2)$$

Estimating sensitivities at colliders

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

Rely on coefficient combinations that exhibit sidereal-time dependence

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain estimates on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

E.g., comparison between up quark coefficient combinations between DIS at the EIC overall and Drell-Yan at the LHC

E.g., comparison between up quark coefficient combinations between DIS at the EIC overall and Drell-Yan at the LHC

Preliminary!

	EIC	LHC
$ (c_{Su}^{(4)})^{XX} - (c_{Su}^{(4)})^{YY} $	0.74	15
$ (c_{Su}^{(4)})^{XY} $	0.26	2.7
$ (c_{Su}^{(4)})^{XZ} $	0.23	7.3
$(c_{Su}^{(4)})^{YZ} $	0.23	7.1
$ (a_{Su}^{(5)})^{TXX} - (a_{Su}^{(5)})^{TYY} $	0.15	0.022
$ (a_{Su}^{(5)})^{TXY} $	0.12	0.0039
$ (a_{Su}^{(5)})^{TXZ} $	0.13	0.010
$ (a_{Su}^{(5)})^{TYZ} $	0.13	0.010

$$\times 10^{-5} \; {\rm GeV}^{-1}$$

E.g., comparison between up quark coefficient combinations between DIS at the EIC overall and Drell-Yan at the LHC

Preliminary!

	EIC	LHC
$ (c_{Su}^{(4)})^{XX} - (c_{Su}^{(4)})^{YY} $	0.74	15
$ (c_{Su}^{(4)})^{XY} $	0.26	2.7
$ (c_{Su}^{(4)})^{XZ} $	0.23	7.3
$(c_{Su}^{(4)})^{YZ} $	0.23	7.1
$ (a_{Su}^{(5)})^{TXX} - (a_{Su}^{(5)})^{TYY} $	0.15	0.022
$ (a_{Su}^{(5)})^{TXY} $	0.12	0.0039
$ (a_{Su}^{(5)})^{TXZ} $	0.13	0.010
$ (a_{Su}^{(5)})^{TYZ} $	0.13	0.010

$$\times 10^{-5} \text{ GeV}^{-1}$$

Results suggest improved sensitivity to nonminimal coefficients through the Drell-Yan process at the LHC and minimal coefficients through DIS at the EIC*

*E. Lunghi and N. S., Phys. Rev. D **98**, 115018 (2018)

Recap + Conclusions

- We developed a framework for studying quark-sector Lorentz violation in hadronic processes using the SME
- Show factorization at the parton level for DIS and the Drell-Yan process
- Consistency checks: Approach is consistent with the OPE and Ward identities
- Lorentz- and CPT-violating effects on PDFs deduced
- Estimated limits for minimal spin-independent coefficients are improved and first determination of nonminimal coefficient sensitivities are placed
- Overall this work opens up many new experimental opportunities to search for Lorentz and CPT violation in a variety of hadronic processes

Recap + Conclusions

- We developed a framework for studying quark-sector Lorentz violation in hadronic processes using the SME
- Show factorization at the parton level for DIS and the Drell-Yan process
- Consistency checks: Approach is consistent with the OPE and Ward identities
- Lorentz- and CPT-violating effects on PDFs deduced
- Estimated limits for minimal spin-independent coefficients are improved and first determination of nonminimal coefficient sensitivities are placed
- Overall this work opens up many new experimental opportunities to search for Lorentz and CPT violation in a variety of hadronic processes

Thank you!