Book of Abstracts
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible COMPASS software improvements during LS2</td>
<td>1</td>
</tr>
<tr>
<td>COMPASS support software tools</td>
<td>1</td>
</tr>
<tr>
<td>Spin Physics Detector at the NICA collider in Dubna</td>
<td>1</td>
</tr>
<tr>
<td>Opening remarks</td>
<td>1</td>
</tr>
<tr>
<td>COMPASS and COMPASS++ Physics Program after LS2</td>
<td>2</td>
</tr>
<tr>
<td>COMPASS iFDAQ Performance</td>
<td>2</td>
</tr>
<tr>
<td>Cross-Switch</td>
<td>2</td>
</tr>
<tr>
<td>CEDAR Performance during 2018 Run</td>
<td>2</td>
</tr>
<tr>
<td>Trigger Less DAQ : Architecture and Challenges</td>
<td>2</td>
</tr>
<tr>
<td>Unified Communication Framework</td>
<td>2</td>
</tr>
<tr>
<td>iFTDC Architecture and Status</td>
<td>2</td>
</tr>
<tr>
<td>iFDAQ XCKU Card</td>
<td>3</td>
</tr>
<tr>
<td>SRS VMM: A next generation generic readout system</td>
<td>3</td>
</tr>
<tr>
<td>A hydrogen-filled TPC as an active target for a proton-radius measurement</td>
<td>3</td>
</tr>
<tr>
<td>Status of NUSTAR R3B detector readout</td>
<td>3</td>
</tr>
<tr>
<td>Proton Radius in High-Energy Muon Scattering</td>
<td>3</td>
</tr>
<tr>
<td>MuPix8 Pixel Detector</td>
<td>4</td>
</tr>
<tr>
<td>SciFi Trecking Detector</td>
<td>4</td>
</tr>
<tr>
<td>Low Noise High Integration Electronics for TPC</td>
<td>4</td>
</tr>
<tr>
<td>iFTDC</td>
<td>4</td>
</tr>
<tr>
<td>Trigger Processor I</td>
<td>4</td>
</tr>
<tr>
<td>On-line Pulse Parameterization based on Waveforms</td>
<td>4</td>
</tr>
<tr>
<td>Data Compression Techniques</td>
<td>4</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Efficient FIR Filter Implementation in FPGAs</td>
<td>5</td>
</tr>
<tr>
<td>Xilinx Zinq FPGA Experience and Performance</td>
<td>5</td>
</tr>
<tr>
<td>Spin Physics Detector at the NICA collider in Dubna</td>
<td>5</td>
</tr>
<tr>
<td>ToAST ASIC development</td>
<td>5</td>
</tr>
<tr>
<td>Monolithic Active Pixel Sensors on high resistivity substrates: status and perspective</td>
<td>5</td>
</tr>
<tr>
<td>ATLAS DAQ from Run 2 to HL-LHC</td>
<td>5</td>
</tr>
<tr>
<td>Freiburg University Contribution</td>
<td>6</td>
</tr>
<tr>
<td>Round Table, Discussion, Plans</td>
<td>6</td>
</tr>
<tr>
<td>Plans for DAQ software beyond LS2</td>
<td>6</td>
</tr>
<tr>
<td>Conclusion remarks and discussion</td>
<td>6</td>
</tr>
</tbody>
</table>
Possible COMPASS software improvements during LS2

Author: Antonin Kveton¹

¹ *Charles University (CZ)*

Corresponding Author: antonin.kveton@cern.ch

LS2 presents a fitting time to revisit and rework existing software concepts and architectures used at COMPASS. Going beyond the DAQ software itself, this talk will explore pitfalls in current COMPASS software architectures, databases, and user interfaces. A number of potential projects to alleviate these pitfalls will be presented. The aim of this talk is to start a long-term discussion to assess the feasibility and priority of the given projects.

COMPASS support software tools

Author: Martin Zemko¹

¹ *Charles University (CZ)*

Corresponding Author: martin.zemko@cern.ch

Recently, new software support tools (such as the electronic checklist and the shift manager) have been introduced to the COMPASS experiment. They should help shifters and other members with their responsibilities. This contribution will briefly introduce these tools and summarize their benefits. Moreover, it will present several brand new support tools that are currently under development and will be deployed during the long shutdown.

Invited Talks / 3

Spin Physics Detector at the NICA collider in Dubna

Author: Anatoly Kulikov¹

¹ *JINR, Dubna*

Co-author: on behalf of the SPD working group

Corresponding Author: koulikov@jinr.ru

Spin Physics Detector (SPD) is to be built at collider NICA, which construction is well underway in the Joint Institute for Nuclear Research, Dubna, Moscow region. A wide program of experiments with polarized protons and deuterons will be realized with SPD. SPD is a 4π detector with magnetic system and a set of detectors providing coordinate, time and energy measurements in conditions of high luminosity. The data acquisition system of SPD is planned to be close to the modernized COMPASS DAQ. The SPD collaboration is in the state of formation and new participants are welcome.
Opening remarks

COMPASS and COMPASS++ Physics Program after LS2
Corresponding Author: annika.vauth@cern.ch

COMPASS iFDAQ Performance
Corresponding Author: josef.novy@cern.ch

Cross-Switch
Corresponding Author: dominik.steffen@cern.ch

CEDAR Performance during 2018 Run
Corresponding Author: b.veit@cern.ch

Trigger-less DAQ: Architecture and Challenges
Corresponding Author: igor.konorov@cern.ch

Unified Communication Framework
Corresponding Author: stefan.huber@cern.ch
iFTDC Architecture and Status

Corresponding Author: igor.konorov@cern.ch

iFDAQ XCKU Card

Corresponding Author: d.gaisbauer@tum.de

Invited Talks / 13

SRS VMM: A next generation generic readout system

Author: Michael Lupberger

1 CERN

Corresponding Author: michael.lupberger@cern.ch

The Scalable Readout System (SRS) of the RD51 collaboration with the APV25 ASIC is driving R&D for gaseous detectors. Discontinuation of APV25 and demands on flexibility concerning e.g. detector capacitance and readout rate induced a replacement of the ASIC, for which the collaboration has chosen the VMM chip of the ATLAS New Small Wheel upgrade. Several prototype SRS VMM systems are operational with small GEM detectors and were used at test beams. Hardware components are now finalised in the transition phase from development to larger quantities production. More than twelve groups signed as primary system users.

The SRS as well as the VMM ASIC will be introduced, followed by an overview of the specific implementation of the ASIC into the system and its current status. Finally, applications and further developments will be outlined.

A hydrogen-filled TPC as an active target for a proton-radius measurement

Corresponding Author: o.kiselev@gsi.de

Status of NUSTAR R3B detector readout

Corresponding Author: h.toernqvist@gsi.de

Proton Radius in High-Energy Muon Scattering
COMPASS / 17

MuPix8 Pixel Detector

Corresponding Author: max.raphael.mynter@cern.ch

COMPASS / 18

SciFi Trecking Detector

Corresponding Author: martin.losekamm@cern.ch

COMPASS / 19

Low Noise High Integration Electronics for TPC

Corresponding Author: damien.neyret@cern.ch

COMPASS / 20

iFTDC

Corresponding Author: igor.konorov@cern.ch

Trigger-less DAQ / 21

Trigger Processor I

Corresponding Author: b.veit@cern.ch

Invited Talks / 22

On-line Pulse Parameterization based on Waveforms

Corresponding Author: marcin.ziembicki@cern.ch

Invited Talks / 23
Data Compression Techniques

Corresponding Author: g.pastuszak@ire.pw.edu.pl

Invited Talks / 24

Efficient FIR Filter Implementation in FPGAs

Corresponding Author: msu@op.pl

Invited Talks / 25

Xilinx Zinq FPGA Experience and Performance

Corresponding Author: lggarcia2742@gmail.com

Invited Talks / 26

Spin Physics Detector at the NICA collider in Dubna

Corresponding Author: anatoli.koulikov@cern.ch

COMPASS / 29

ToAST ASIC developmnet

Corresponding Author: gmzzcms@cern.ch

COMPASS / 30

Monolithic Active Pixel Sensors on high resistivity substrates: status and perspective

Corresponding Author: manuel.rolo@cern.ch

Invited Talks / 31

ATLAS DAQ from Run 2 to HL-LHC

Corresponding Author: j.panduro.vazquez@cern.ch
Trigger-less DAQ / 32

Freiburg University Contribution
Corresponding Author: horst.fischer@cern.ch

COMPASS / 33

Round Table, Discussion, Plans

Trigger-less DAQ / 34

Plans for DAQ software beyond LS2
Corresponding Author: josef.novy@cern.ch

Closing Sessions / 35

Conclusion remarks and discussion
Corresponding Author: igor.konorov@cern.ch