

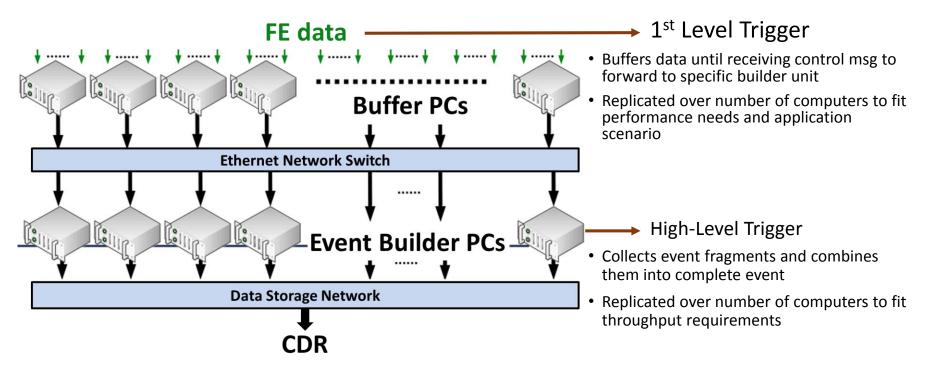
1

Integration of a Crosspoint switch in the COMPASS DAQ in 2018

D. Steffen

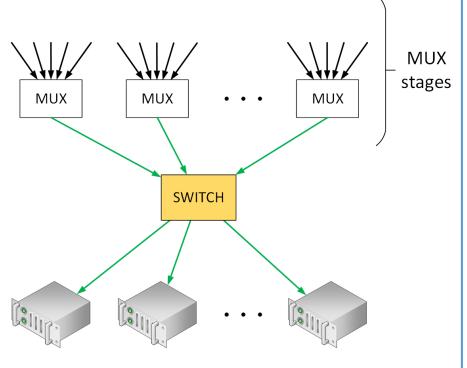
- 1. Motivation and Concept of the Switching Network Topology
- 2. Hardware Design and Implementation of the Crosspoint Switch
 - Hardware Layout
 - Software Developments
- 3. Performance in 2018 DY run and Outlook

Contents



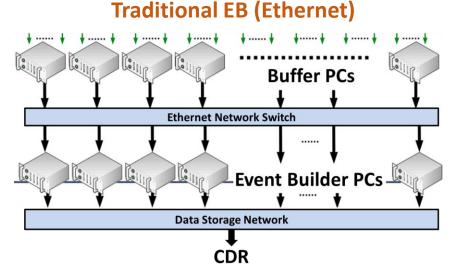
- 1. Motivation and Concept of the Switching Network Topology
- 2. Hardware Design and Implementation of the Crosspoint Switch
 - Hardware Layout
 - Software Developments
- 3. Performance in 2018 DY run and Outlook

Traditional Event Building


Event Building(EB): combination of logically connected, but physically split data fragments

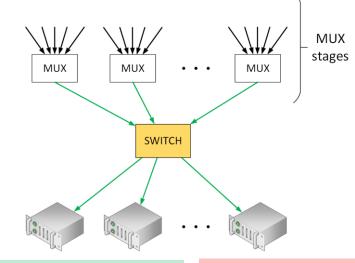
Sophisticated traffic shaping to optimize throughput of EBnetwork switch (buffer utilization and data rate) and load on EB computers

Hardware Event Building



- Usage of FPGAs and exploiting its properties:
 - Parallel processing
 - Pipeline architectures
- Continuation of the pipeline architecture in FEE
- o Collecting of all data in one FPGA-module
- Optional multiplexing stages to reduce number of incoming links
- Distribution of fully assembled events to different computer nodes

Traditional vs Hardware EB



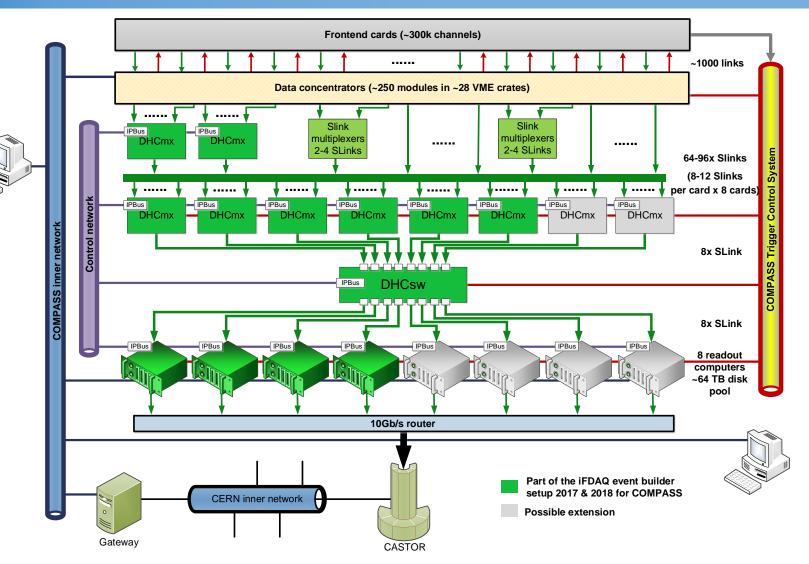
Advantages

- Easy integration of redundancy elements (traffic shaping according to load on nodes)
- Usage of massproduced components and standards

Disadvantages:

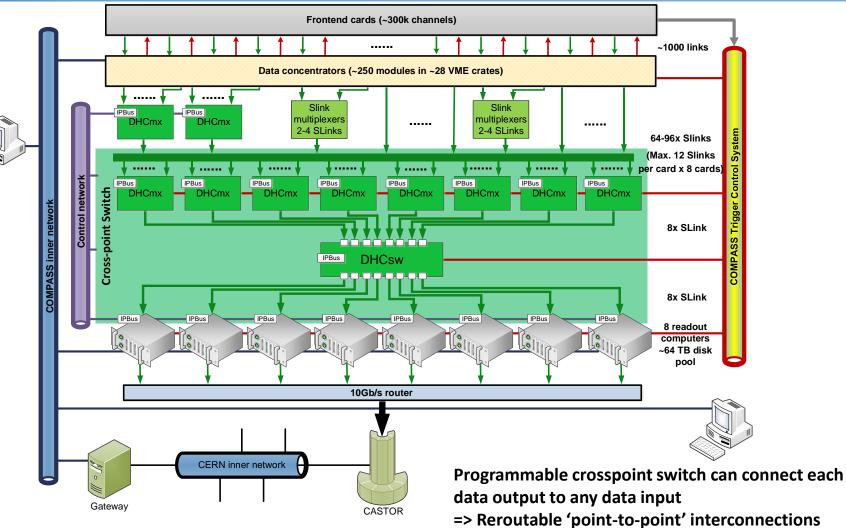
- Throughput limited by EB-network switch
- Inefficient usage of max. bandwith due to:
 - Improper comm. pattern (N senders -> 1 receiver) => network congestion
 - Data overhead due to addressing etc.

Hardware EB


Advantages:

- Independence of network switch
- Efficient usage of link bandwidth (no addressing etc.)
- High reliability

Disadvantages:

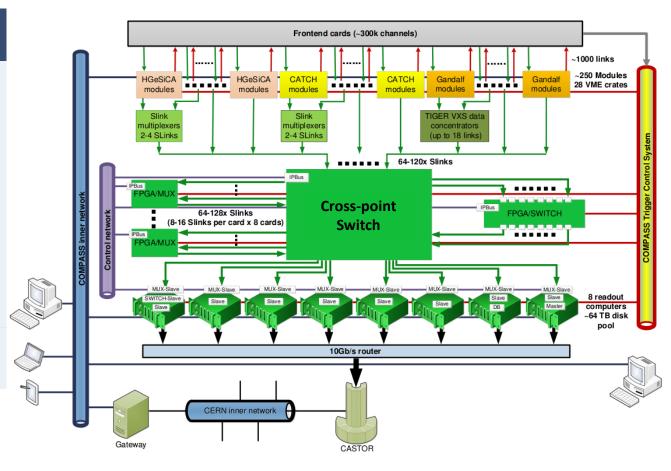

- Strong dependence on reliability of network nodes (no rerouting possibility in case of hardware failure)
- No possibility for dynamic network optimization (e.g. load balancing)

iFDAQ setup in 2018 DY

CERN

Switching Network Topology

Crosspoint Switch - Integration


Cross-point Switch

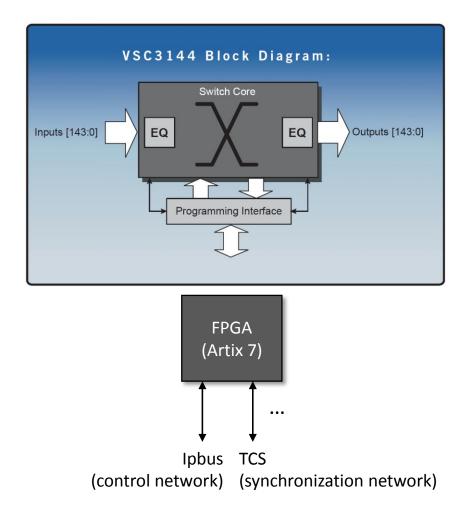
\circ connects:

- FE electronics
- DHCmx modules
- DHCsw module
- Spillbuffers

○ purpose:

- Ease of load balancing
- System redundancy to compensate hardware failures
- ⇒ provides fully customizable network topology

Contents


- 1. Motivation and Concept of the Switching Network Topology
- 2. Hardware Design and Implementation of the Crosspoint Switch
 - Hardware Layout
 - Software Developments
- 3. Performance in 2018 DY run and Outlook

Dominik Steffen | DAQFEET | 11/02/2019

 144 x 144 strictly non-blocking cross-point switch

Hardware: Vitesse VSC3144

- Up to 6.5 Gbps bandwidth per port
- No registers used in data path i.e. asynchronous data path => no restrictions on the phase, frequency, or signal pattern of any input (protocol independent)
- 45mm x 45mm 1072-pin BGA package
- Core programming on port-by-port basis
 OR simultaneous issuing of multiple
 queued assignments (low latency: ns)

MPO connectors

- High density fiber technology necessary
 → Multi-fiber Push-On technology
- Easy installation due intuitive push-pull latching sleeve mechanism
- MPO harness cable to interface with LCstandard used so far in iFDAQ

24 Fibers MPO/MTP Connector

Crosspoint Switch – Hardware Design

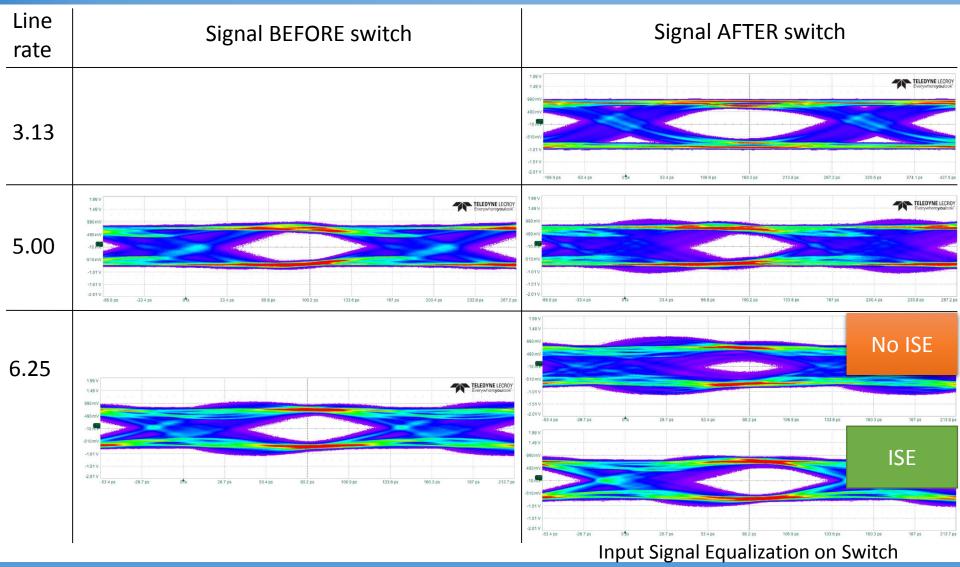
Crosspoint Switch Components

 \circ interfaces:

- 12 x 12 channel CXP transceiver (MPO fiber connectors)
- Ethernet for IPbus
- JTAG
- TCS (Trigger Control System) receiver

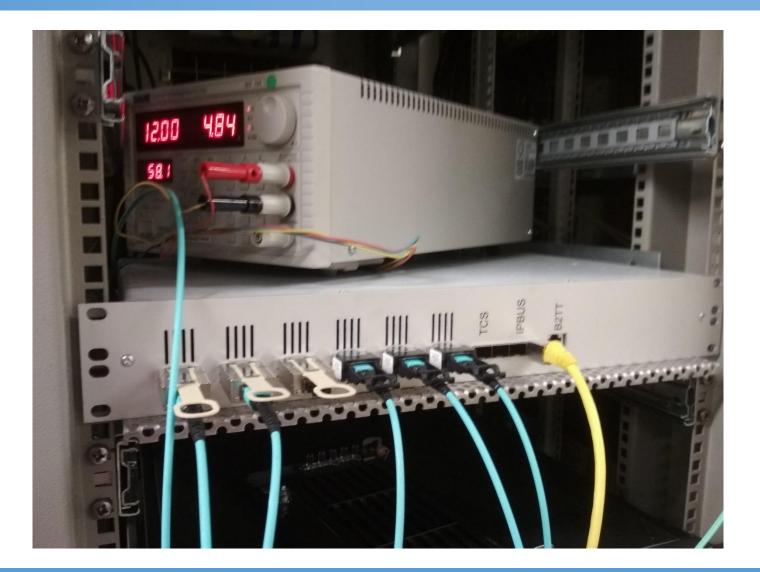
\odot Switching and Control:

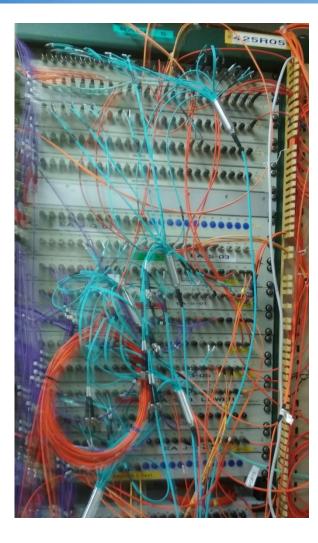
- Vitesse VSC3144-02 fully configurable 144x144, asynchronous, 6.5 Gbps crosspoint switch
- Xilinx Artix-7 FPGA for switch control and monitoring



Interface FPGA – Crosswitch:

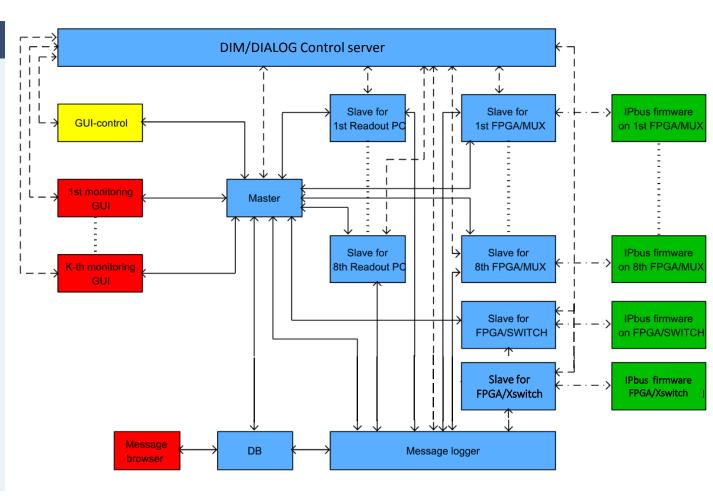
- 90 MHz, 11-bit parallel data bus
- Multiple program assignments can be queued and issued simultaneously ⇒ fast programming (<< 1us)


Crosspoint Switch – Signal Distortion


CERN

Crosspoint Switch in COMPASS DAQ

Crosspoint Switch in COMPASS DAQ



Software Development

Multilayer System:

- Master is the main control process
- Slave-control monitors and controls the DHCs (hardware nodes)
- Slave-readout: readout, verification, and transformation of the data
- Runcontrol GUI is a graphical user interface
- MessageLogger stores informative and error messages into the database
- MessageBrowser provides an intuitive access to messages stored in the database

Software Operating Mode ERI DB table holding information DB table holding information **Control Slave for** modules $\leftarrow \rightarrow$ Xswitch about module interconnections **FPGA/Xswitch** XswitchUI web configuration interface - • × Xswitch Connections Ports (16) MUX12 SMC12 RE15 🧹 921 R Tools DAQ Module SlaveControl on pccore15 Attached Equipment on cage: 0 10.152.72.230 Port 0 Src-ID: 619 ECAL2 3 Port: 0 Ports (16) 0 2 4 6 8 10 1 3 5 7 9 11 0 2 4 6 8 10 1 3 5 7 9 11 SWITCH SWITCH RE11 CXP 0 CXP 6 / 944 R Port 1 DAQ Module SlaveControl on pccore15 10.152.72.234 Src-ID: 620 ECAL2 4 Port: 0 Port 2 Src-ID: 146 SciFi-L7 Port: 0 SMC01 RE11 Ports (16) 0 2 4 6 8 10 1 3 5 7 9 11 0 2 4 6 8 10 1 3 5 7 9 11 MUX01 CXP1 🧹 945 R DAQ Module SlaveControl on pccore15 Port 3 10.152.72.238 NOTHING CONNECTED Port 0: → 944 SWITCH (Port 0) Disconnect Port 4 0 2 4 6 8 10 1 3 5 7 9 11 0 2 4 6 8 10 1 3 5 7 9 11 Src-ID: 144 SciFi-J_5 Port: 0 **R** Port 1: ← 2 Mastertime_1 (Port 0) Disconnect Xswitch Firmware Version 4121830 CXP 2 R Port 2: ← 978 SMUX-Mastertime/Trigger (Port 0) Disconnect Port 5 Src-ID: 618 ECAL2_0 Port: 0 R Port 3: ← 977 SMUX-Trigger1 (Port 0) Disconnect Port 6 R Port 4: ← 976 SMUX-Trigger2 (Port 0) Disconnect 0 2 4 6 8 10 1 3 5 7 9 11 0 2 4 6 8 10 1 3 5 7 9 11 Src-ID: 145 SciFi-J_6 Port: 0 61 °C СХР З R Port 5: ← 981 SMUX-Scalers (Port 0) Disconnect Port 7 **R** Port 6: ← 998 SMUX-SciFI-J-1 (Port 0) Disconnect Port: 0 Src-ID: 148 SciFi-J/D_1 **R** Port 7: ← 997 SMUX-Veto (Port 0) Disconnect Port 8 0 2 4 6 8 10 0 2 4 6 8 10 CXP 4 Src-ID: 740 GEM_5 Port: 0 1 3 5 7 9 11 R Port 8: ← 996 SMUX-SVS (Port 0) Disconnect 1 3 5 7 9 11 R Port 9: ← 999 SMUX-Scaler (Port 0) Disconnect Port 9 Src-ID: 739 GEM_4 Port: 0 R Port 10: ← 750 PGEM_1 (Port 0) Disconnect Port 10 0 2 4 6 8 10 R Port 11: ← -- Select equipment --\$ CXP 5 CXP 11 1 3 5 7 9 11 1 3 5 7 9 11 Src-ID: 960 SciEiBeamMon 2 Port: 0 R Port 12: Not connected. Connect Port 11 R Port 13: Not connected. Connect Src-ID: 985 SMUX-MWPC-A Port: 0 R Port 14: Not connected. Connect R Port 15: Not connected. Connect

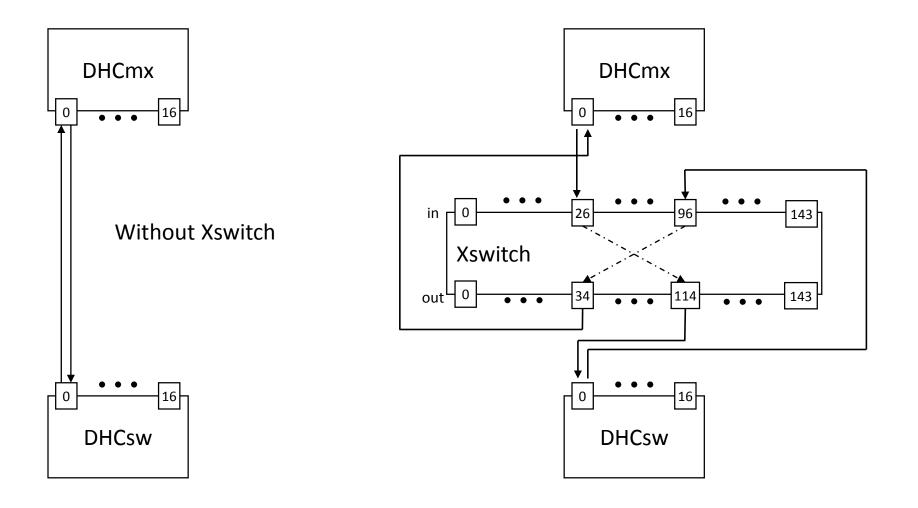
Dominik Steffen | DAQFEET | 11/02/2019

Software Operating Mode DB table holding information DB table holding information **Control Slave for** modules $\leftarrow \rightarrow$ Xswitch about module interconnections **FPGA/Xswitch** Powers Xswitch on transition 'Slaves started' \rightarrow 'Configured' No apparent changes for shifter • Sends configuration commands on transition Web Configuration Tool can be used between 'Slaves started' \rightarrow 'Configured' to reconfigure topology without human intervention (Monitors Xswitch module in states: 'Configured', 'Dry Run', and 'Run') **IPbus firmware FPGA/Xswitch**

Affected DB tables

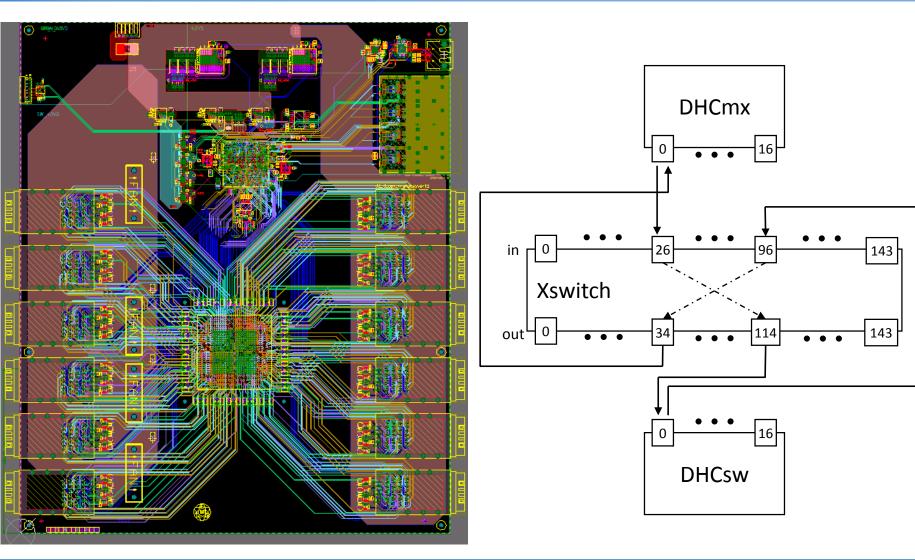
Existing table

New tables


Port connection					
Port out	Port in	Runtype			
357	587	4			

Xswitch connections				
Port id	In			
357	892			
587	888			

Xswitch pairs					
Port id	In	Out	Cage	Fiber	
892	26	34	2	11	
888	96	114	3	2	


Interconnection example

Interconnection example

Contents

- 1. Motivation and Concept of the Switching Network Topology
- 2. Hardware Design and Implementation of the Crosspoint Switch
 - Hardware Layout
 - Software Developments

3. Performance in 2018 DY run and Outlook

Performance during 2018

- First installation attempt in April failed due to wrong mapping
- Step-by-step installation starting from June
- Incidents during run: 2 (over 5.5 months)
 - Wrong powering procedure during start-up after power cut led to failing programming of interconnections => Bug fixed in software
 - One "unknown" failure => Fixed by reset of the X-switch, not reproducible in the Lab, did not repete

Xswitch – Spare Situation

- 2 working modules in Munich
- 1 module broken (damage caused by water)
- VSC3144 module discontinued by manufacturer
 - => alternatives for future modules by MACOM:

Part Nmb	Max Data Rate	Switch Matrix	Unit Price [\$]
M21601G-12	12.5 Gbps	120x120	897.44
M21605G-12	12.5 Gbps	160x160	1217.95

- Fully non-blocking array crosspoint switch
- Four integrated temperature sensors with programmable alarm
- JTAG boundary scan
- Programmable input equalization to compensate for up to 27 dB of loss at 6.25 GHz
- Low latency, less than 2 ns