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Digitization — Waveform Sampling

HV for 20” PMTs
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* Possibility to implement completely dead-time free system.
— Better ability to tag decay electrons that occur at short decay times and high muon

energies.

— E61 case — ability to disentangle in-bunch pile-up
* Pulse processing on-the-fly (i.e. send only time/charge — most of the time)
* Can subtract off periodic EMI by digital filters implemented in FPGA firmware.

* There s a price to pay: power consumption, cost, data rate.
— We need to reduce all without affecting physics performance

Power
supplies

DAQ




Lowering Power Consumption —
Switched Capacitor Arrays (DRS4 example)

Only short sampling  digitization
segments are [] |

interesting, SO ... 1‘ lost,events

JJ__ _ _

h"l

sampling digitization

1020
1000
980
960
940
920
900
880
860
840
820
800

1 1 I L I 1 L L 1 L L
0 200 400 600 800 1000
Time [ns]

_|'
‘

‘

2
‘

ADC value

III|III|III|III|III|III|III|III|I?“'¥II|III|
L ;Ii

r

3

3

%

Sensor

Avoiding dead time in capacitor arrays:

» Use chip with segmented memory
— Latch only part of array, keep other parts active
(DRSS solution — not yet available) slow sampling —

» Use multiple arrays for single waveform

fast sampling —




Study of Sampling Systems
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How poor can the system specs be to still be able to tell when
and how big the pulse was with satisfactory precision?
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Optimizing Signal Chain v
multiplier
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* Type of shaper/anti-aliasing filter?
* Speed and resolution of the ADC?

* Signal processing methods and sharing of signal processing between FPGA and
DAQ

* Optimization of resource usage within the FPGA — talk by M. Suchenek

* Quality of time & charge estimates
— Waveform compression in case this quality is unsatisfactory — talk by G. Pastuszak
* Treatment of pulse pile-up

* Model of the full signal chain

— Will allow exploration of various variants of shaper/ADC combinations without the need for
many prototypes



Timing Resolution of Sampling Digitizers
PURPOSE OF THE STUDY: Agilent 33600A (1 GSPS/80 MHz)

Determine how fast and how precise does a system
needs to be to achieve given performance specs?

e Use AWG instead of PMT.

* Use large reference pulse (timing
accuracy o ~ 10 ps) and small,
shaped signal pulse (1 mV ~
100 mV).

* Apply signal processing methods
and calculate time difference At
between ref. and sig. channels.

* Repeat multiple times and compute
RMS of At values.

 Two shapers:

DT15724

V1720 (250 MSPS/12b)
(100 MSPS/14b) 2.

— 15 ns and 30 ns rise time
(10% to 90%), 5-th order
Bessel-type low-pass filters.

e Shared project WUT/TRIUMF

Commercial ADCs (CAEN)



Sighal Processing Methods

Digital Constant Fraction
Discriminator:

* Simple processing — needs little
FPGA resources

e Does not make any assumption
as to the pulse shape

* Favors high sampling rate, but
some improvements are
possible for low sampling rates if
pulse shape is invariant

* Poor performance in low SNR
conditions
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R DPLMS

Zero DC gain — no baseline

How to get the filter? estimation needed Signal for timing

What shape?
FIR Filter E>“*¢ ITYQ,..,,
it ‘\ Time from

zero crossing

Sighal Processing — F

Sampled signal

Positionand 1, %
sizeofthe /| | |y

» Zero DC gain — no baseline ] ) .
template? I estimation needed Signal for charge estimation
O G e G @ G @ o L L I s = 2 T S K
I> FIR F|Iter >
Tested response types: C> ]  What shape:
NLEN H " t o ole = Cee e
« . OW 10 ge ‘
' Nllnear Charge from

'Gauss+ Imear

N _ b

| ——  thefilter? ,,pitude

.. or simply subtract pedestal and integrate.

* FIR = Finite Impulse Response
B | s | |+ ‘Black-box’ approach — transform known
Pk L o i % input into desired output, don’t care how.
— ‘, ‘ Nnon gero i * Arbitrary filter characteristic possible.
y Cosine + linear | ¢ Filter should be ‘optimal’ — minimize

certain cost function.

Gatti E., et al., “Digital Penalized LMS method for filter synthesis with
arbitrary constraints and noise”, NIM A523, 167-185, 2004
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Voltage [mV]

Signal Processing - FIR Filters

FIR response (event 1)
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shape of the waveform near zero-crossing. Need on-line Quality Factor to judge
accuracy of estimation 10



Signal Processing — Continued

Matched FIR Filter and Cross-Correlation Processing:

*  Much more complex processing Misaligned pulses
— Works well with filter orders of 9-12 Pulses Cross-correlation
* Assumes that shape is invariant
* Similar timing performance to zero- { N
average FIR figItZr A ‘
* Relatively easy to disentangle piled-up
pulses

Aligned pulses

Pulses Cross-correlation

Sub-sample shifts done using windowed

sinc interpolation (Blackman window). FFT ‘ ‘
interpolation also possible if shifting

impulse response.
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Results — Digital CFD

Simulation vs Data, Method = 'Digital CFD'
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Results — FIR DPLMS

Simulation vs Data, Method = 'FIR DPLMS'
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Good match of
model and data for
100 MHz ADC,
slightly worse for
250 MHz ADC

250 MHz data
better than model —
possibly due to
some correlation
which is not
reflected by
simulation.
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Example Histograms — FIR Timing

Large SNR case

Timing Histogram (run 781) Timing Histogram (run 784)
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100 MSPS ADC, 14-bit, 15 ns shaper
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Digital CFD / FIR DPLMS — Normalized

Simulation vs Data, Method = 'Digital CFD’ Simulation vs Data, Method ='FIR DPLMS'
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 Don’t need extremely high sampling rates to maintain good timing resolution, as
long as SNR is sufficient

* Itseems that it is better to maintain sharp edge — logical, as we don’t cut
bandwidth of the signal that still has valid information

— Sharp edges help in pile-up resolution

* Oversampling help only in case of FIR-based algorithms — SNR gets better T



Normalized Amplitude Spectrum
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Where are we now?

e Re-designing the shaper

* Old shaper used for tests was
too noisy, had too low cutoff
frequency

* Decided to switch to fully
passive design (LC-ladder)

e Switch from Bessel to elliptic
(hopefully)

* Need additional digital
all-pass filter to correct
passband ripple and phase

Analog | Digital

LC Filter » ADC
v
Time & charge - All-pass filter
extraction (FIR) (IR if possible)

5(I;requency responses (N =10, ws = 2.21, Rs = -70.0 dB)
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Revised time estimation

Conclusions
* Digital CFD — limit shift to leading edge
only
* Much work already done * For FIR-based method, need to
* Pulse shape not guaranteed to parameterize impulse response of the
be constant — need to deal with filter wrt. charge
this for FIR-based methods 005 - Digital OF waveforms fevent19)

* Need to foresee that in FIR-
based methods the estimate
may be completely wrong in
case of non-standard shape
(for ex. pile-up)

* Need quality factor for each
time/charge estimate

e Should send full waveform for
off-line processing

* Need better Shaper \ -O'O?%OO 15IO 2(I)O 25IO 3(I)0 350
* Lower noise Sample no.

 Sharper rolloff (higher order)  Significant increase in data rate — need
* Fully passive (LC-ladder) efficient coding and possibly lossy waveform
compression (already working on this)

Sample value
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ECALO — Digitizer & Acquisition

 DAQ via MSADC cards, 80 MSPS, 12 bits, 64 channels/board

* 9-channel pre-amplifier for single Shashlyk module

vy

v

* On-detector signal amplifica- ,-ccccccccccoocaaaa s F Power (+5V)
tion & shaping L : .
(3 poles, 1 pole-zero, ' X ' >
40 ns peaking time) N . : MSADC
: L v X 8 /\E : :
 Differential signal output : X : ~
(analog) : T o
e Sum output for analog E : § E
trigger : - g1
0 x ' -
E | ]
E \\ E MSADC
' z 3 '
L |

Bl Trigger 20



System Model (each channel)

Used 250 MHz data to
determine actual AWG fs

AWG waveform

sqrt(noise periodogram)

— 2 2
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Signal Models

250 MHz,
CH1 = ref, CH2 = ref

100 MHz,
CH1 = ref, CH2 = ref
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250 MHz,
CH1 = ref, CH2 = sig (15 ns)

CH1 = ref,
CH2 = sig (15 ns low power)

Analog waveforms, REF channel
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Noise models

Power Spectral Density Estimates

—— Source
2k —— Simulated

Normalized Power/Frequency [dB/cycles/sample]

Normalized Frequency [cycles/sample]

.1 Example: ]
100 MHz, 15 ns shaper
_40 O.I‘I O.IZ O.IS O.I4

0.5

Normalized Power/Frequency [dB/cycles/sample]

1
N

Power Spectral Density Estimates

o

1
[N
T

—— Source
— Simulated | 7

Example:
250 MHz,
15 ns shaper

o

0.1 0.2 0.3 0.4 0.5
Normalized Frequency [cycles/sample]

* Good match of simulated periodogram with an experimental one.

e Potential problem:

— Some of the deterministic components (peaks in spectrum) do not have
random phase, but are correlated to sampling clock.
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Synthesizing FIR filter — Method 1

Digital Penalized LMS Method

Input Output
Filter P

Take multiple measurements, then:

input signal noiseless signal stationary Minimize overall variance of the response:
\ (our template) noise Sought filter
/ / % \

_ pLN . pN,N . pN,1
x[n] = x'[n] +x"[n] Var(y) = h R N, h
impulse response

number of filter taps of the filter

KFAi\lter is |inear’ so the output Signal iS: Minimize difference between filter
response and our desired response

Noise auto-covariance matrix

y[n] = Zh "= 1] +Zh x'n—1] EIk] —ﬂm 2=<h1'N-/'x'<k>N'1—vk>2

Value of k-th N past samples of x’,

Therefore, we can deal with noise and ,
) ’ sample of the starting from k
signal components separately response to x’
Gatti E., et al., “Digital Penalized LMS method for filter synthesis with )4

arbitrary constraints and noise”, NIM A523, 167-185, 2004



Synthesizing FIR filter — Method 1 (cont.)

Digital Penalized LMS Method

Add additional constraints for frequency response, including gain at DC ...

Add constraints related to bit-gain (i.e. how well we are supposed to reject
guantization noise) ...

Finally, build the error functional and minimize it:

Area
Area(FIR) = A—(y)
. Constraints for shape rea(x)
Constraint ¢ : |
for variance oT response to pulse Frequency constraints
template \ \
\ Y N |
2
e? =Var() + ) @ EGID = v)* + ) fi- (IF{).)
k=1 1=1
+ ¢ (P(h} =0 — Area(FIR) + - Z(h[n])2
7 L n |
DC gain (i.e. area) constraint \ Bit-gain constraint

All components are square functlons so there exists a global minimum — just need
to properly choose N, v (1 B @ and y — papers don’t say much about that



