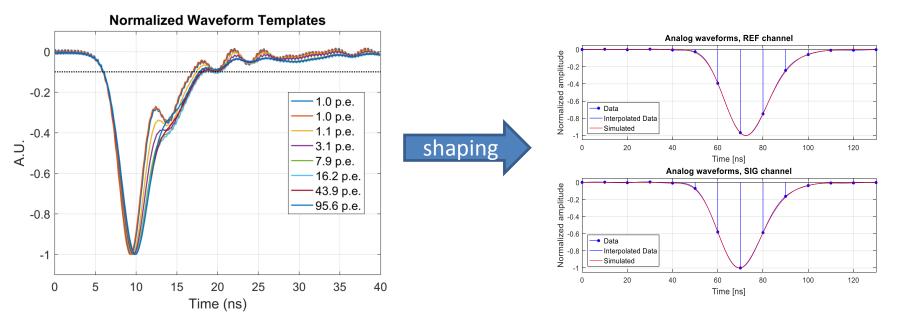
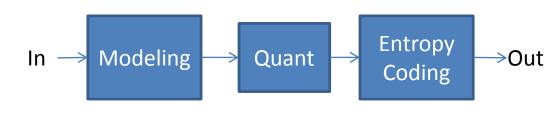

Data Compression Techniques

Grzegorz Pastuszak

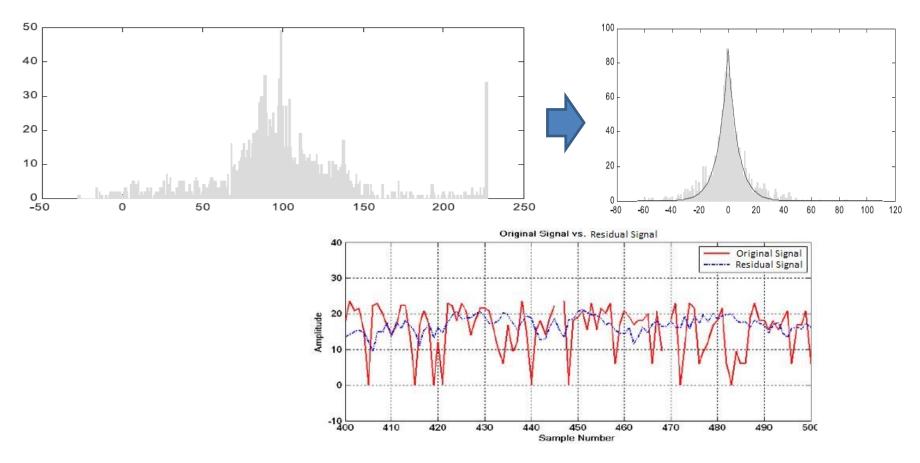
Need for compression


- Saving disk space for the archiving
- Limited bandwidth between detectors and the data acquisition system (DAQ)
- Saving RAM capacity in detector modules

• Constraints on resources and power


Input Signals

- Acquired PMT signals:
 - seems to be similar,
 - Stability is limited,
 - Shaping changes original signal from PMT.
- Allowable losses in processing should be small to preserve key signal features
- How strong is the correlation of signals from neighboring PMTs?

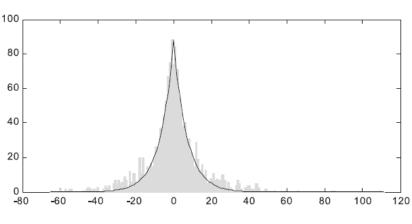


Compression Methods

- Modeling
 - Linear Prediction
 - Signal Models
 - Transforms
- Quantization
 - Scalar quantization
 - Vector quantization using signal models
- Entropy Coding
 - Variable length coding
 - Arithmetic coding more complex and better compression

Signal Modelling

- Predictions, Transformations decrease the dynamics
- Distributions of residual signal concentrated around zero
- Signal reconstruction using reverse operations


Linear Prediction

Prediction as a sum of previous samples multiplied by coefficients

$$x_{predicted}[t] = \sum_{i=1}^{n} a_i x[t-i]$$

 Residuals (equal to difference between input samples and their predictions) have much lower values and energy

$$\Delta x[t] = x[t] - \sum_{i=1}^{N} a_i x[t-i]$$

- Coefficients must be known at the decoder -> precomputed or sent with residuals
- Error energy: $E = \sum_{t=0}^{T} (\mathcal{E}[t])^2 = \sum_{t=0}^{T} \left(x[t] \sum_{i=1}^{N} a_i x[t-i] \right)^2$

Signal Models

• Set of representative sample sequences are compared with acquired samples to find the best matching in terms of SAD or MSE

$$i = \arg \min \left(\sum_{t} |x[t,i] - x[t]| \right)$$
$$i = \arg \min \left(\sum_{t} (x[t,i] - x[t])^2 \right)$$
$$x_{predicted}[t] = x[t,i]$$

- Residuals (equal to difference between input samples and their predictions) have much lower values and energy
- e heir r values

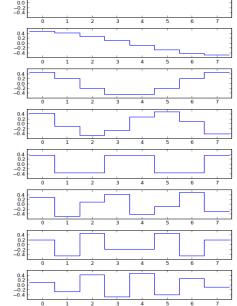
100

120

100

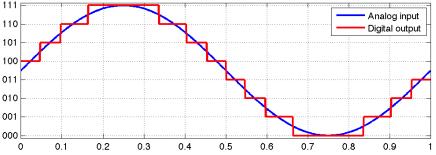
80

• In vector quantization residuals are neglected


Transforms

- Karhunen-Loeve Transform (KLT)
 - Best efficiency expected
 - Computed based on a number of signal sequences
 - Required similarity of signals to obtain better energy compaction

H wavalet


DCT base:

DWT base:

Quantization

- Scalar Quantization division by quantization step
- Scalar Dequantization multiplication by quantization step
- Quantization step can be dependent on charge to keep sufficient SNR

- Possible to apply quantization from video coding
 - Quantization parameter (6 bits) determines quantization step
 - Increments decrease SNR by about 1dB
 - Division replaced by equivalent multiplication

Quantizer: $X_q(i, j) = \text{sign} \{X(i, j)\} [(|X(i, j)| A(Q_M, i, j) + f2^{17+Q_E}) \gg (17 + Q_E)]$


Dequantizer: $X_r(i,j) = X_q(i,j) B(Q_M,i,j) \ll Q_E$

Entropy coding (1)

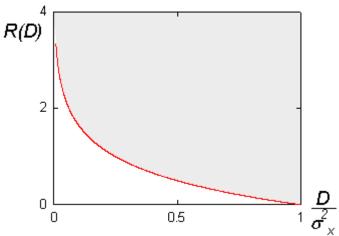
- Assignment of input values to codewords
- Codewords with variable lengths inversely proportional to probabilities
- Bit rate greater than the information entropy by a fraction of bit per sample
- Variable Length Coding is simple in implementation
- Arithmetic Coding achieve entropy at higher implementation complexity

Entropy coding (2)

- Golomb/Rice codes suitable for geometric distribution
- Exp-Golomb codes suitable for exponential distribution

Golomb Codewords for different orders

i	m = 1	m=2	m = 3	m = 4	m = 5	m = 6	m = 7
0	0	0 0	0 0	0 00	0 00	0 00	0 00
1	10	0 1	0 10	0 01	0 01	0 01	0 010
2	110	10 0	0 11	0 10	0 10	0 100	0 011
3	1110	10 1	10 0	0 11	0 110	0 101	0 100
4	11110	110 0	10 10	10 00	0 111	0 110	0 101
5	111110	110 1	10 11	10 01	10 00	0 111	0 110
6	1111110	1110 0	110 0	10 10	10 01	10 00	0 111
7	11111110	1110 1	110 10	10 11	10 10	10 01	10 00
8	111111110	11110 0	110 11	110 00	10 110	10 100	10 010
9	1111111110	11110 1	1110 0	110 01	10 111	10 101	10 011
10	111111111110	111110 0	1110 10	110 10	110 00	10 110	10 100
:							
•							

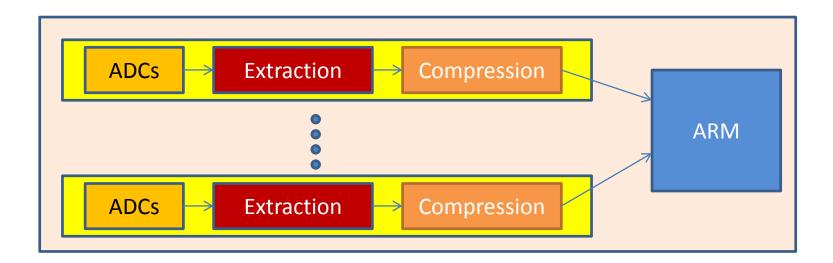

Compression Efficiency

• Lossless Coding of signals

– Compression ratio: about 2-3

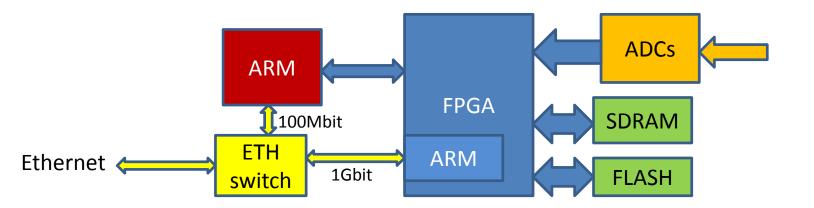
- Lossy Coding of signals
 - Compression ratio: more than 3, e.g. 10
 - Distortion (D) and bit rate (R) depend on quantization step
 - RD Tradeoff

More accurate estimation of compression ratios after the statistical analysis



Multi-channel Compression

- Neighboring PMTs may be excited in similar moments
 - each separate time descriptor consumes about 32 bits
 - common time descriptor (offset) for 19 channels is useful
 - Time Delta values for each channel should be close to zero
 ->suitable variable length coding
- Waveforms from neighboring PMTs may be similar
 - Use of one channel to predict others
- Common packets where one-bit flags can indicate the presence of the hit in each channel


FPGA – architecture

- Compression in basic version is not complex
- Parallel processing for 19 PMTs significantly increases requirements on resources and power
- Extraction of time stamps will make the architecture more complex filters utilize multiplications

FPGA – power consumption

- Strong limitations on power consumption 4/10 W
- The digital system should include:
 - FPGA device 2W
 - SDRAM memory 1W
 - External ARM microcontroller 0.5W 1W
 - DC/DC converters 0.5W
- Low-power modes should be used when data are not acquired
- 1Gbit Ethernet requires switch and more complex FPGA with internal ARM – higher power consumption by 1W-2W

Summary

- A number of compression methods must be examined
- The level of loss must be decided
- Architecture must be reduced to keep power at minimum