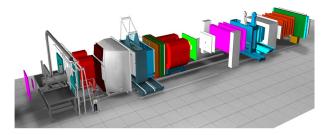
Introduction	New Architecture	Filtering	Scheduling oo	General plans oo	Conclusion

Plans for DAQ software beyond LS2

A. Kveton, M. Jandek, J. Novy

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague, Czech Republic & Charles University, Czech Republic & European Organization for Nuclear Research – CERN, Switzerland

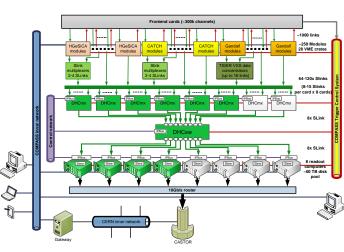

CTU Prague, CERN

A. Kveton, M. Jandek, J. Novy

Introduction	New Architecture	Filtering	Scheduling	General plans	Conclusion
•	00000000000	000	00	00	00

Targets of development

- Improve speed upto 1 GB/s per readout computer
- Improve modularity configurable dataflow through software
- Improve robustness isolation of crucial tasks to specialized processes



A. Kveton, M. Jandek, J. Novy Plans for DAQ software beyond LS2 CTU Prague, CERN

Introduction O	New Architecture	Filtering	Scheduling oo	General plans	Conclusion

Present Structure

- Hardware based E.B.
- Data concentrated by 6 (up to 8) DAQ modules with multiplexer firmware
- Distribution to 4 (up to 8) readout computers by DAQ module switch firmware
- Full events received by servers
- Consistency check at many layers
- Events checked and transferred to DATE data format

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

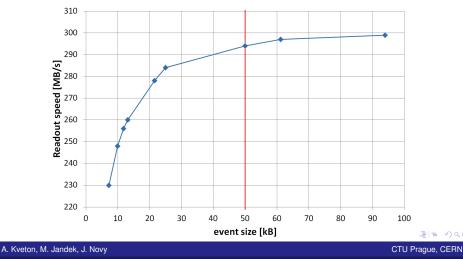
A. Kveton, M. Jandek, J. Novy

CTU Prague, CERN

Introduction O	New Architecture ○●○○○○○○○○○○	Filtering	Scheduling	General plans	Conclusion

Present Structure

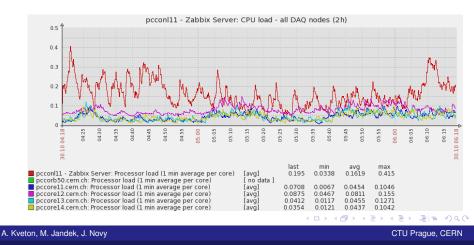
- Simple structure
- Obsolete monitoring tool
- No possibility of load balancing in software
- Inefficient data format



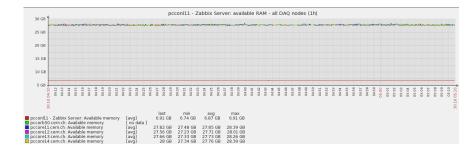
A. Kveton, M. Jandek, J. Novy Plans for DAQ software beyond LS2 CTU Prague, CERN

Introduction	New Architecture	Filtering	Scheduling	General plans	Conclusion
0	00000000000	000	00	00	00

Present speed limit


- Up to 150 MB/s readout/processing speed per computer
- Limited by HDD and Spillbuffer

Introduction	New Architecture	Filtering	Scheduling	General plans	Conclusion
0	00000000000	000	00	00	00

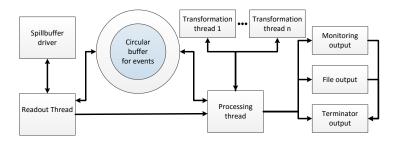

Present speed limit

Low CPU usage - with 6 core 2 GHz Xeon E5-2620 peak at 15 %

Present speed limit

Low RAM usage - less than 1 GB

3 CTU Prague, CERN

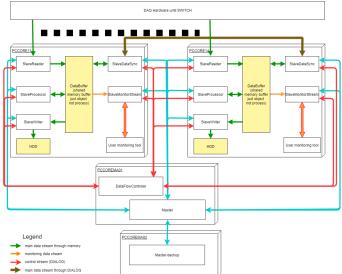

= nac

A. Kveton, M. Jandek, J. Novy

Introduction o	New Architecture	Filtering	Scheduling	General plans	Conclusion

Present readout process

- Readout data from spillbuffer to server memory (internal circular buffer)
- Transformation to DATE format
- Data error checks
- File writing and distribution to other outputs



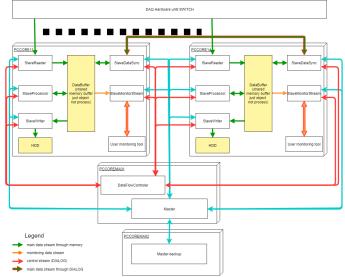
◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

A. Kveton, M. Jandek, J. Novy

Introduction	New Architecture	Filtering	Scheduling	General plans	Conclusion
0	00000000000	000	00	00	00

- Readout process divided to several sub-processes -> Spreading of the load
- Configurable storage target
- Possibility to add filtration processes
- Backup master process
- Scheduling -> load equalization
- New monitoring channel through DIALOG

A. Kveton, M. Jandek, J. Novy Plans for DAQ software beyond LS2 CTU Prague, CERN


Introduction	New Architecture	Filtering	Scheduling	General plans	Conclusion
0	000000000000	000	00	00	00

SlaveReader

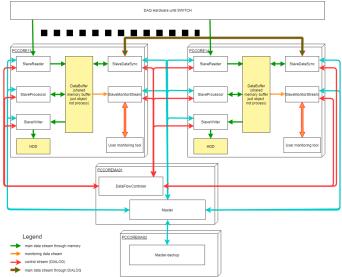
- Reads messages to shared DataBuffer
- Needed for each spillbuffer

SlaveDataSync

- Transfer between databuffers
- Needed for each server
- SlaveMonitorStream
 - Interface to monitoring tools

A. Kveton, M. Jandek, J. Novy

CTU Prague, CERN


Introduction	New Architecture	Filtering	Scheduling	General plans	Conclusion
0	000000000000	000	00	00	00

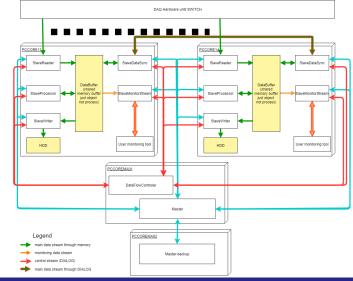
SlaveProcessor

- Not just one type of sub-process
- HLT
- Event building
- Format transformation

SlaveWriter

- Writing of data designated for storage
- Possibility to write data of one spill to one file

A. Kveton, M. Jandek, J. Novy Plans for DAQ software beyond LS2 CTU Prague, CERN

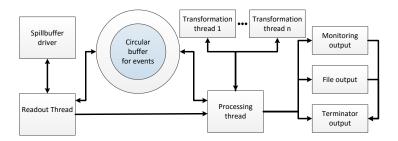

Introduction	New Architecture	Filtering	Scheduling	General plans	Conclusion
0	000000000000	000	00	00	00

DataFlowControler

- Control of data transfer between buffers
- Scheduling
- Controls dataflow not states

Master-backup

► Fail-safe


A. Kveton, M. Jandek, J. Novy

CTU Prague, CERN

Introduction	New Architecture	Filtering	Scheduling	General plans	Conclusion
0	000000000000	000	00	00	00

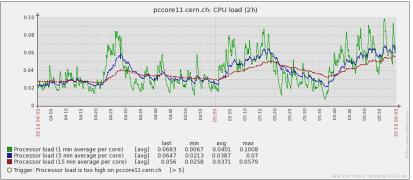
Transformation plan

- Possible to transform step by step
- Firstly separating monitoring and preparation of DataFlowControler
- Secondly separating file output
- Thirdly separating processing

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

A. Kveton, M. Jandek, J. Novy

Triggerless 1 GB/s goal


- Processing speed not a problem
- New spillbuffer needed new readout driver implementation
- Significant investment in HDD/SSD needed
 - at least two servers with 8 HDD or one with 4 SSD in RAID 10 per one 1 GB/s readout card
 - SSD faster, smaller, more expensive, reliability to be investigated (3 Drive Writes Per Day for 3 years)
 - NVMe SSD fastest, the most expensive
- Faster network connection to CASTOR or significant event filtration needed
- Store also raw data?

- E - - E

Introduction o	New Architecture	Filtering ●00	Scheduling	General plans	Conclusion

Data filtering

 SlaveProcessor sub-process could contain routines for data filtering at start

A. Kveton, M. Jandek, J. Novy

CTU Prague, CERN

Techniques of Data Filtering

- Possible approaches:
 - Pattern recognition
 - Neural networks
 - k-NN
 - kernel PCA
 - ► ...
 - Anomaly detection
 - Similar methods with different configuration may be used for pattern recognition
 - Searching for specific "known" data words and their combinations
- The basic problem is always the amount of available computational resources

- E - - E

A. Kveton, M. Jandek, J. Novy

Implementation

- Current architecture
 - Event building is done in DAQ hardware
 - Readout slaves receive whole events, analysis of events is therefore possible
- Triggerless DAQ
 - Data are received in "frames". Physics events may be spread over multiple frames
 - Event preparation from "frames" needed
 - All frames containing physics event must be available to a readout slave machine
 - New DAQ architecture contains a shared memory buffer and flowcontroler, which should take care of frames availability
 - All frames needed for an analysis of the event are available as a result

★ 문 → ★ 문 →

Scheduling (with triggers)

- Data read out by the SlaveReader process -> the scheduler decides what to do with them
- The scheduler has to make an educated guess of the processing time in order to be able to balance the load effectively.
- Information available to the scheduler:
 - Progress status of currently scheduled jobs on the individual pccores
 - Queued jobs per pccore
 - Event metadata
 - Event size
 - Trigger flags
 - Possible pattern recognition flags (filtration)
- The scheduler's estimation of processing time will be determined by a statistical (ML) approach

Scheduling (triggerless)

- Same idea, but we no longer have the trigger flags to use for the statistical model? -> increase need for some other evaluation -> possible usage of neural network
- HLT adds another stage of processing which metadata can we use for the model?

= ~ ~

A. Kveton, M. Jandek, J. Novy

General plans for DAQ SW

- Easier configuration (remove ALL the hardcoded constants)
- Continuous integration (GitLab)
 - Automated reformatting of code to comply with code style standards
 - Sanity tests (automated compilation)
 - In the future, possibly even more advanced automated testing
 - Command-line tools for faster deployment of new versions

= nar

- E - - E

A. Kveton, M. Jandek, J. Novy

General plans for DAQ SW

- Complete rework of run number incrementing logic as well as the logbook-accessing logic
- Logging improvements (especially the msglogger DB)
- User experience improvements
 - GUI threading
 - State machine timeout info
 - Video tutorial
 - Possibly ACK logic for MSGbrowser

= ~ Q Q

A. Kveton, M. Jandek, J. Novy

Introduction o	New Architecture	Filtering	Scheduling	General plans	Conclusion ●○

Conclusion

- Huge amount of work in front of us
- Discussion about storage policy needed (where? when? what?)
- Discussion about resources needed for processing of triggerless data
- Step-by-step transition possible
- Many changes can be very useful also for 2021 run

A. Kveton, M. Jandek, J. Novy

・ロト・日本・日本・日本・日本・ショー

A. Kveton, M. Jandek, J. Novy

CTU Prague, CERN

P. Abbon, et al. (the COMPASS collaboration); The COMPASS experiment at CERN, In; Nucl. Instrum, Methods Phys. Res., A 577, 3 (2007) pp. 455-518

V. Y. Alexakhin, et al. (the COMPASS Collaboration); COMPASS-II Proposal, CERN-SPSC-2010-014, SPSC-P-340, May 2010,

M. Nakao , S. Y. Suzuki; Network shared memory framework for the Belle data acquisition control system, Real Time Conference, 1999, Santa Fe 1999, 11th IEEE NPSS.

C, Gaspar, M, Dönszelmann, Ph, Charpentier: DIM, a Portable, Light Weight Package for Information Publishing, Data Transfer and Inter-process Communication. International Conference on Computing in High Energy and Nuclear Physics, Padova, Italy, 1-11th February 2000.

C. Gaspar, M. Dönszelmann: DIM - A Distributed Information Management System for the DELPHI Experiment at CERN. Proceedings of the 8th Conference on Real-Time Computer applications in Nuclear, Particle and Plasma Physics, Vancouver, Canada, June 1993.

C. Gaspar, J. J. Schwarz; A Highly Distributed Control System for a Large Scale Experiment, 13th IFAC workshop on Distributed Computer Control Systems - DCCS'95, Toulouse, France, 27-29th September 1995.

M. Bodlak, et al.: Development of new data acquisition system for COMPASS experiment. Nuclear and Particle Physics Proceedings, 37th International Conference on High Energy Physics (ICHEP), April–June 2016, vol. 273–275, pp. 976–981, Available at: http://dx.doi.org/10.1016/j.nuclphysbps.2015.09.153.

M. Bodlak, et al.: FPGA based data acquisition system for COMPASS experiment. Journal of Physics: Conference Series. 2014-06-11, vol. 513, issue 1, s. 012029-, DOI: 10.1088/1742-6596/513/1/012029, Available at:

http://stacks.iop.org/1742-6596/513/i=1/a=012029?key=crossref.78788d23de2b4a6a34d127c361123b8c.

M. Bodlak, et al.: New data acquisition system for the COMPASS experiment. Journal of Instrumentation. 2013-02-01, vol. 8, issue 02, C02009-C02009, DOI: 10.1088/1748-0221/8/02/C02009, Available at:

http://stacks.iop.org/1748-0221/8/i=02/a=C02009?key=crossref.a76044facdf29d0fb21f9eefe3305aa5.

CTU Prague, CERN

M. Bodlak, et al.: Developing Control and Monitoring Software for the Data Acquisition System of the COMPASS Experiment at CERN. Acta polytechnica: Scientific Journal of the Czech Technical University in Prague. Prague, CTU, 2013, issue 4. Available at: http://ctn.cvut.cz/ap/.

T. Anticic, et al. (ALICE DAQ Project): ALICE DAQ and ECS User's Guide CERN, EDMS 616039, January 2006.

C. Ghabrous Larrea, et al.: IPbus: a flexible Ethernet-based control system for xTCA hardware, 2015 JINST 10 C02019. doi:10.1088/1748-0221/10/02/C02019.

CASTOR - CERN Advanced Storage manager. Available at: http://castor.web.cern.ch. (Accessed: 2017-05-01).

Electronic developments for COMPASS at Freiburg. Available at:

http://hpfr02.physik.uni-freiburg.de/projects/compass/electronics/catch.html. (Accessed: 2017-05-01).

The GANDALF Module. (online). Available at:

http://hpfr03.physik.uni-freiburg.de/gandalf/pages/information/about-gandalf.php?lang=EN. (Accessed: 2017-05-01).

iMUX/HGESICA module. (online). Available at:

https://twiki.cern.ch/twiki/pub/Compass/Detectors/FrontEndElectronics/imux_manual.pdf. (Accessed: 2017-05-01).

S-Link - High Speed Interconnect. (online). Available at: http://hsi.web.cern.ch/HSI/s-link/. (Accessed: 2017-05-01).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ のへの

A. Kveton, M. Jandek, J. Novy

CTU Prague, CERN