

Short review on photon isolation

Photon19 satellite workshop - Frascati

Marius Höfer

niversity of

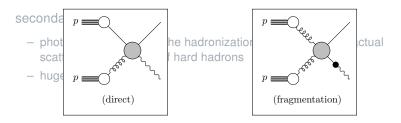
For any collider process with final state photons, distinguish between:

primary/promt/direct photons

- photons from hard partonic scattering process
- direct component: e.g. QCD-Compton or $q\bar{q}$ -annihilation
- fragmentation component: hard $q/g
 ightarrow \gamma$

secondary photons

- photons emitted during the hadronization process after the actual scattering, from decay of hard hadrons
- huge background

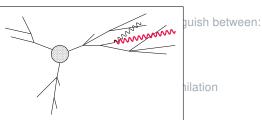


Introduction - I

niversity of

For any collider process with final state photons, distinguish between: primary/promt/direct photons

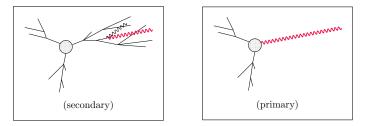
- photons from hard partonic scattering process
- direct component: e.g. QCD-Compton or $q\bar{q}$ -annihilation
- fragmentation component: hard $q/g
 ightarrow \gamma$



Introduction - I

For any collider pro primary/promt/dir

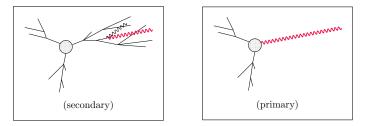
- photons from h
- direct compone
- fragmentation


secondary photons

- photons emitted during the hadronization process after the actual scattering, from decay of hard hadrons
- huge background

Introduction - II

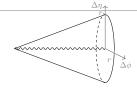
Idea: look for photons isolated from hardonic radiation


Photon Isolation

 \Rightarrow "Most of the (transverse) energy in the vicinity of the candidate isolated photon must be carried by the photon itself."

Introduction - II

Idea: look for photons isolated from hardonic radiation



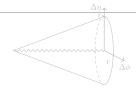
Photon Isolation

 \Rightarrow "Most of the (transverse) energy in the vicinity of the candidate isolated photon must be carried by the photon itself."

Physik-Institut

cone-based isolations

- define cone around photon with $r = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
- restrict allowed hadronic energy inside the cone
- examples:

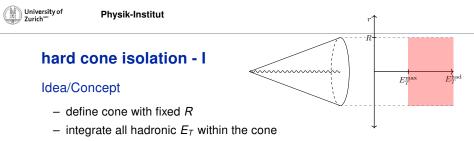

Jniversity of

- hard cone isolation
- smooth cone isolation
- modified versions

other concepts

- based on clustering of particles at parton level
- examples:
 - democratic isolation
 - softdrop isolation

cone-based isolations

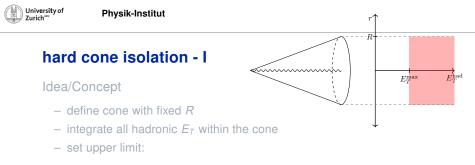

- define cone around photon with $r = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
- restrict allowed hadronic energy inside the cone
- examples:

niversity of

- hard cone isolation
- smooth cone isolation
- modified versions

other concepts

- based on clustering of particles at parton level
- examples:
 - democratic isolation
 - softdrop isolation


- set upper limit:

$$m{E}_{T}^{\mathsf{had}} \leq m{E}_{T}^{\mathsf{max}}(m{
ho}_{T}^{\gamma}) = arepsilonm{
ho}_{T}^{\gamma} + m{E}_{T}^{\mathsf{thres}}$$

technical complications

[Les Houches 2009, 2011, 2015 ...]

- direct component \checkmark , fragmentation component \checkmark
- fragmentation functions $D_{i\gamma}$ ($i = g, q, \bar{q}$) are complicated objects [M.Gluck et al. 1995; L.Bourhis et al.,hep-ph/9704447]
- $D_{i\gamma}$: $\mathcal{O}(\alpha_{em})$ or $\mathcal{O}(\alpha_{em}/\alpha_s)$?
- $-~E_T^{max} \rightarrow 0$ eliminates fragmentation contribution but is IR unsafe

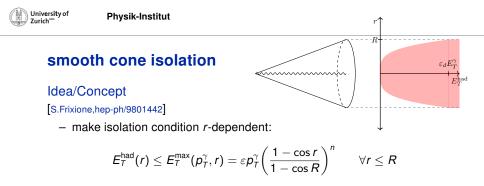
$$E_{ au}^{ ext{had}} \leq E_{ au}^{ ext{max}}(p_{ au}^{\gamma}) = arepsilon p_{ au}^{\gamma} + E_{ au}^{ ext{thres}}$$

technical complications

[Les Houches 2009, 2011, 2015 ...]

- direct component ✓, fragmentation component ✓
- fragmentation functions $D_{i\gamma}$ ($i = g, q, \bar{q}$) are complicated objects [M.Gluck et al. 1995; L.Bourhis et al.,hep-ph/9704447]
- $D_{i\gamma}$: $\mathcal{O}(\alpha_{em})$ or $\mathcal{O}(\alpha_{em}/\alpha_s)$?
- $-~E_T^{max} \rightarrow 0$ eliminates fragmentation contribution but is IR unsafe

Problems with narrow cones

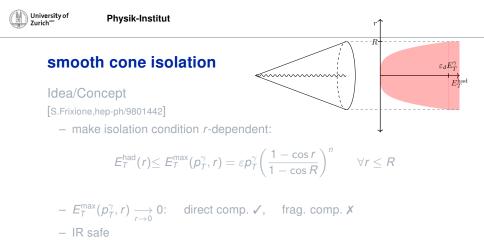

[S.Catani et al.,hep-ph/0204023; Les Houches 2011; S.Catani et al.,1306.6498; S.Catani et al.,1802.02095]

- artificial separation of phase space due to cone

$$\mathrm{d}\sigma^{\mathsf{in}}\sim \ln R\,,\qquad \mathrm{d}\sigma^{\mathsf{out}}\sim \ln rac{1}{R}$$

- without isolation: exact cancellation
- with isolation: residual In R-dependence
- $R \lesssim 0.1$: resummation necessary
- typical cone sizes (0.3 $\lesssim R \lesssim$ 0.5): effect negligible

Emax

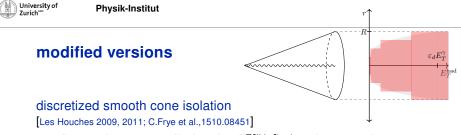


$$- E_T^{\max}(p_T^{\gamma}, r) \xrightarrow[r \to 0]{} 0: \text{ direct comp. } \checkmark, \text{ frag. comp. } X$$

- IR safe

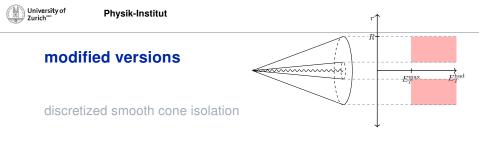
tight isolation parameters

[Les Houches 2013, 2015; S.Catani et al.,1802.02095]


- Problem: smooth profile cannot be implemented in experiment
- mimic experimental isolation with tight isolation parameters

tight isolation parameters

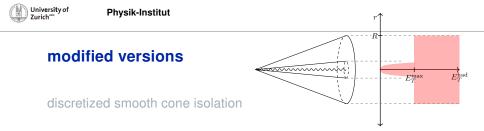
[Les Houches 2013, 2015; S.Catani et al.,1802.02095]


- Problem: smooth profile cannot be implemented in experiment
- mimic experimental isolation with tight isolation parameters

- fit smooth energy profile function $E_T^{\max}(p_T^{\gamma}, r)$ to detector cells \rightarrow concentric hard cones
- need finite E_T^{max} in innermost cone \rightarrow fragmentation contribution
- parameters have to be chosen carefully

hollow cone isolation

hybrid cone isolation



hollow cone isolation

Les Houches 2011; S.Catani et al.,1306.6498

- within hard cone (*R*) define smaller cone (r < R) in which weaker or no bounds on E_T^{had} are applied
- mimics experimental difficulty to deal with em shower in detector
- suffers from large logs , $\ln r$, like narrow cones \rightarrow resummation

hybrid cone isolation

hollow cone isolation

hybrid cone isolation

[F.Siegert,1611.07226; X.Chen et al.,1904.01044]

- within hard cone (*R*) define smaller smooth cone ($r^2 \ll R^2$), which eliminates the fragmentation contribution
- outer hard cone describes experimental isolation exactly
- dependence on isolation parameters can be determined correctly, no uncertainty from tuning of isolation parameters

democratic isolation

[N.Glover, A.Morgan 1994] [ALEPH 1995] [A.Gehrmann-De Ridder et al.,hep-ph/9705305]

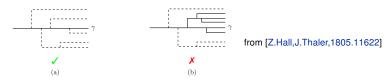
- used during in LEP era
- treat photon candidates and partons democratically in jet algorithm:

if
$$z = \frac{E_{\text{EM}}}{E_{\text{EM}} + E_{\text{HAD}}} > z_{\text{cut}} \Rightarrow$$
 "photon-jet " = isolated photon

- idea similar to hard cone isolation, different notion of "photon-vicinity"
- direct component \checkmark , fragmentation component \checkmark
- unfeasible for LHC due to huge event rate

Physik-Institut

softdrop isolation


University of

Z.Hall,J.Thaler,1805.11622

- based on soft-drop declustering [A.Larkoski et al., 1402.2657]

$$\frac{\min\left(\boldsymbol{p}_{T}^{1}, \boldsymbol{p}_{T}^{2}\right)}{\boldsymbol{p}_{T}^{1} + \boldsymbol{p}_{T}^{2}} \geq z_{\text{cut}} \left(\frac{\boldsymbol{R}_{12}}{\boldsymbol{R}_{0}}\right)^{\beta}$$

- if jet fails soft-drop at all stages \rightarrow left with one hard constituent
- if remaining hard constituent is photon \rightarrow isolated photon

- − direct component ✓, fragmentation component X
- equivalent to smooth cone at leading non-trivial order in small R-limit

Summary

two main classes of photon isolation

- cone based
- clustering based

cone based isolations differ in distribution of allowed hadronic energy

- fixed upper limit
- smooth energy profile
- combinations and modifications of both

different approached preferred by experiment and theory

- mostly used in experiment: hard cone
- mostly used in theory: smooth cone

Summary

two main classes of photon isolation

- cone based
- clustering based

cone based isolation energy

- fixed upper limit
- smooth energy profile
- combinations and modifications of both

different approaches preferred by experiment and theory

Thank you!

- mostly used in experiment: hard cone
- mostly used in theory: smooth cone

lowed hadronic