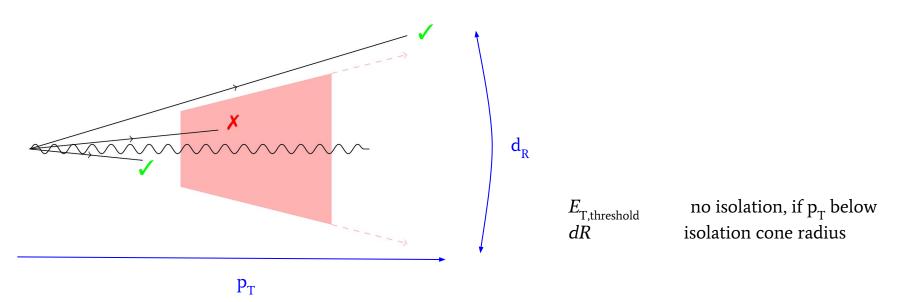


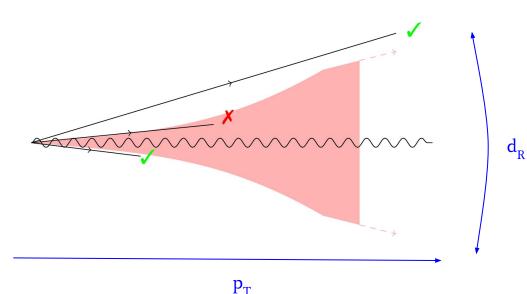
Fakultät Physik Institut für Kern- und Teilchenphysik

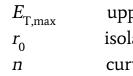
Smooth Photon Isolation - Probing the limits -


Johannes Krause

Frascati, 2019

Measurements


- Detector: discrete resolution in energy and angular distance
- infrared safety needed



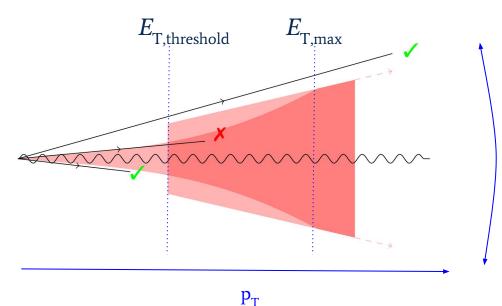
Theory Predictions

- Collinear limit must be damped (or absorbed into FF functions)
- Infrared singularities (e.g. soft gluons) must be respected

Smooth isolation: [arXiv:hep-ph/9801442]

 r_0

п


upper boundary for smoothening isolation cone radius curvature behavior

 d_{R}

Combining both approaches: "hybrid" isolation

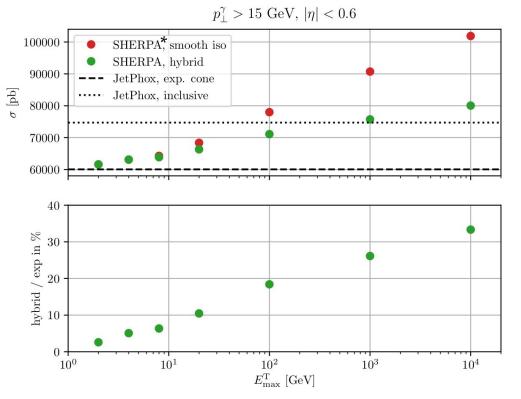
Use smooth cone below $E_{\text{T,threshold}}$ and the experimental one above

- region of interest: below $E_{\text{T.threshold}}$!
- smooth cone there: can be controlled by *n*, $E_{\text{T.max}}$ or r_0

Here studied:

- $pp \rightarrow \gamma j @NLO$
- limits of hybrid isolation cone: \rightarrow variation of $E_{\text{T,max}}$
- smooth (hybrid) cone predictions by Sherpa[<u>arXiv:1905.09127</u>] (+ Rivet[<u>arXiv:1003.0694</u>])
- comparisons to Jetphox [<u>arXiv:hep-ph/0204023</u>] and ATLAS data

fixed-order NLO: $p_{T,photon} > 15 \text{ GeV}$



- $p_{\mathrm{T,photon}} > 15 \mathrm{~GeV}$
- isolation:

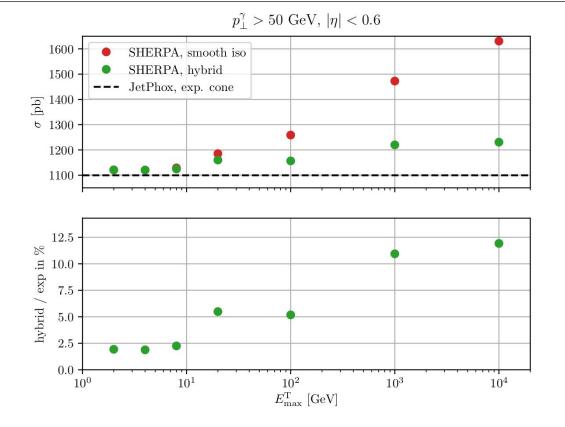
•
$$E_{\text{T,threshold}} = 4 \text{ GeV}$$

• $dR = 0.4$

Prediction

- smooth / hybrid cone
- $r_0 = 0.4$, n = 1
- 2 GeV < $E_{\rm Tmax}$ < 10000 GeV

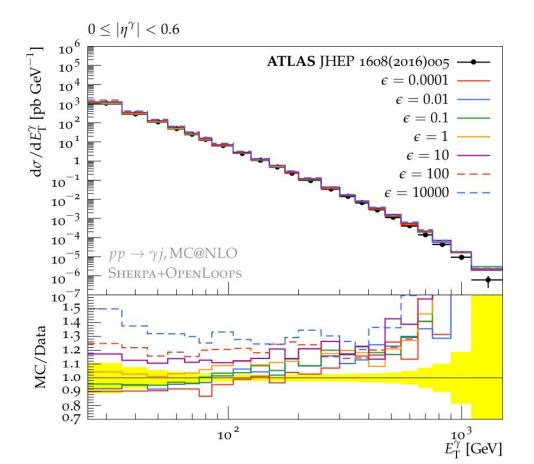
* Sherpa results cross checked with Jetphox, thanks to Gudrun Heinrich for providing a implementation!


fixed-order NLO: $p_{T,photon} > 50 \text{ GeV}$

- $p_{\text{T,photon}} > 50 \text{ GeV}$
- isolation:
 - $\begin{array}{l} \circ \quad E_{\text{T,threshold}} = 4 \text{ GeV} \\ \circ \quad dR = 0.4 \end{array}$

Prediction

- smooth / hybrid cone
- $r_0 = 0.4$, n = 1
- 2 GeV < $E_{\rm Tmax}$ < 10000 GeV

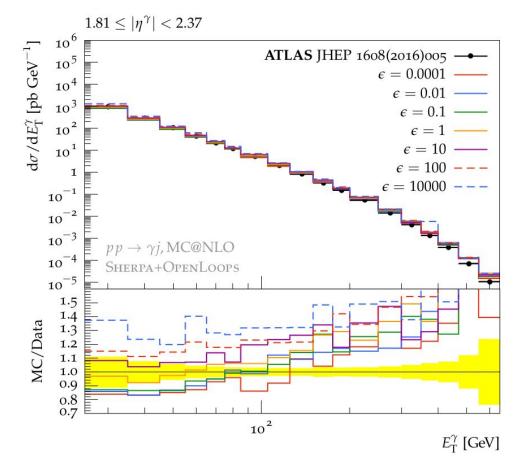


Data

- Inclusive, prompt photon production
- ATLAS, 8 TeV [arXiv:1605.03495]
- Isolation:
 - $\circ \quad E_{\text{T,threshold}} = 4.8 \text{ GeV} + \text{corrections}$
 - \circ dR = 0.4

Prediction

- Sherpa, NLO+PS
- Smooth cone with n = 1, $r_0 = 0.4$ and $E_{T,max} = \varepsilon * E_{T, photon}$



Data

- Inclusive, prompt photon production
- ATLAS, 8 TeV [arXiv:1605.03495]
- Isolation:
 - $E_{\text{T,threshold}} = 4.8 \text{ GeV} + \text{corrections}$ • dR = 0.4

Prediction

- Sherpa, NLO+PS
- Smooth cone with n = 1, $r_0 = 0.4$ and $E_{T,max} = \varepsilon * E_{T, photon}$

9

- wanted:
 - Event generation as inclusive as possible
 - no cut dependence

Is there really an issue?

- Extreme choices of parameters discussed here
- still good agreement if parameters are matched

Uncertainties

- Is the choice of isolation parameters a separate uncertainty?
- How to estimate it?

How to overcome this problem?

- No calculations available using FFs beyond NLO-FO
- Use QED showers?
- QCD+QED merging (LO only): [arXiv:0912.3501]
- QED shower with Powheg: [arXiv:1709.04154, arXiv:1610.02275]