## Standard Model Photon Measurements at ATLAS and CMS : $\mathrm{V} \gamma(\gamma)$ measurement



## Outline

- LHC and CMS/ATLAS
- Photon selection and signal extraction
- $\mathrm{V} \gamma$ measurements and aTGC
- $\mathrm{V}_{\gamma \gamma}$ measurements and aQGC
- Summary


## LHC and CMS/ATLAS

LHC－THE BIG TURN ON
The large Hadron collider will accelerate two beams of protons（and later lead ions）in opposite directions and collide them head－on at four locations where huge detectors will analyse the debris

Before the protons or ions enter the main LLC ring，they travel through a series of machines that accelerate them to increasingly higher energies


THE FIRST STEP
starts above ground and involves stripping electrons from atoms of hydrogen gas to make protons．these are sped up to $31.4 \%$ of the speed of light in a linear accelerator and then enter the accelerator chain
 Accelerates the protons to 91．6\％of the speed of light and feeds them into the 200 －metie－ diameter Proton Synchrotoon machine synchotron
1.2 GeV

OPROTON SYNCHROTRON
Almost 50 years old，this machine accelerates protons to $99.93 \%$ of the speed of light（ 25 GeV in energy）． For several weeks，starting in late 2009，it will also accelerate lead ions for the AUCE experiment

O｜SUPER PROTON SYNCHROTRON Located 40 metres underground，the SPS accelerates protons to $99.9998 \%$ of the speed of light（ 450 GeV in energy）． II feeds protons both clockwise and antidlockwise into the LHC

O LARGE HADRON COLIIDER（LHC）
Designed to accelerate protons to 99．9999991\％of the speed of light （ 7 TeV in energy）．The beams will be made to collide in four experimental areas

## ALICE

A LARGE ION
COLLIDER EXPERIMENT
Number of scientists：More than 15co

Countries involved： 31

Weight：
10,000 tonnes
26 m long． 16 m high， 16 m wide
Weigh

CMS
COMPACT MUON SOLENOID
Number of scientists：More than 2000
Countries involved： 38
Weight
size：

12，500 tonnes
21 m long， 15 m high， 15 m wide

ATLAS
A TOROIDAL LHC APPARATUS
A TOROIDAL LHC APPARATUS
Number of scientists：More than 1900
Number of scientists：Mor
Countries ivolved． 35

## CMS and ATLAS

－General purpose design to detect all particles． Wide reaches of physics potential


ECAL $3 \times 3$ matrix energy resolution

$$
\frac{\sigma(E)}{E}=\frac{2.8 \%}{\sqrt{E(\mathrm{GeV})}} \oplus \frac{12 \%}{E(\mathrm{GeV})} \oplus 0.3 \%
$$



ECAL energy resolution

$$
\frac{\sigma(E)}{E}=\frac{10 \%}{\sqrt{E(\mathrm{GeV})}} \oplus \frac{0.2}{E(\mathrm{GeV})} \oplus 0.2 \%
$$

## LHC luminosity

## －CMS and ATLAS recorded data＠7TeV and 8 TeV at Run1 and＠13TeV at Run2．



https：／／twiki．cern．ch／twiki／bin／view／CMSPublic／LumiPublicResults https：／／twiki．cern．ch／twiki／bin／view／AtlasPublic／LuminosityPublicResultsRun2 Photon 2019 Rong－Shyang Lu／NTU

June 3－7， 2019

- ~102 pb: Inclusive QCD diboson production. Probing:
- higher order QCD (and QED) perturbative corrections
- SM gauge structure: triple gauge couplings (TGC)
- $\sim^{-2} \mathrm{pb}$ : Inclusive QCD triboson production. Probing:
- higher order QCD (and QED) perturbative corrections
- SM gauge structure: quartic gauge couplings (QGC)


# Di-boson cross section ratio comparison to theory 

- Theory predictions updated to latest NNLO calculations where available compared to predictions in the CMS papers and preliminary physics analysis summaries.



## Standard Model Production Cross Section Measurements




## Photon Selection

- The $\mathrm{V} \gamma(\gamma)$ analyses use simple cut based photon identification, not multivariate methods as the inclusive photon or Higgs analyses
- ID requirements typically include
- shower shape (longitudinal and/or transverse)
- isolation energy (track, photon, hadron)
- energy leakage to the hadronic calorimeter
- It leaves freedom to flip a requirement, e.g. asking for failing an isolation energy cut, to obtain a control sample to study jets fake photons scenario.


## Photon Selection

- Shower width in $\eta$ direction $\sigma_{i n i \eta}$
- Construct template for a fitting

- Longitudinal and transverse energy spread
- Tight and Loose ID


## Background Estimation

- Most of the photon backgrounds are jets faking photons.
- Analyses estimate this contribution from data directly.
- Template fit with a variable (CMS) or ABCD method (ATLAS) to obtain statistical results on signal and background contribution or purity ( $\mathrm{S} / \mathrm{S}+\mathrm{B}$ ) for the signal region.


## ATLAS

## Signal Extraction（CMS） <br> 者率天装 <br> CMS





## Signal Extraction（ATLAS）

## ATLAS

－If ID and Isolation are independent，the ratio of background between（A，B） and $(C, D)$ are the same
－Assume B，C，D to be background only
－Correct this hypothesis with MC

－Systematic uncertainties from：MC inputs；bkg control regions

## $\mathrm{V} \gamma$ measurements and aTGC

|  | CMS |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 8 TeV | 13 TeV | 8 TeV | 13 TeV |
| $\mathrm{Z}_{\gamma} \rightarrow \mathrm{l} \ell_{\gamma}$ | JHEP 04 (2015) 164 Cross section and aTGC measurement |  | PRD 93, 112002 (2016) Cross section, and aTGC measurement |  |
| $\mathrm{Z}_{\gamma} \rightarrow \mathrm{vv} \mathrm{\gamma}$ | PLB 760 (2016) 448 Cross section and aTG measurement | CMS-PAS-SMP-16-004 Cross section |  | JHEP 12 (2018) 010 Cross section and aTGC measuremen |
|  | 7 TeV |  | 7 TeV |  |

$W_{\gamma} \rightarrow \ell \nu \gamma$

Phys. Rev. D 89 (2014) 092005
Cross section and aTGC measurement

Phys. Rev. D 87, 112003 (2013)
Cross section and aTGC measurement

- Standard model (SM) predicts self-interactions of gauge bosons: $\mathrm{U}(1)_{\gamma} \times \mathrm{SU}(2)$ L gauge group $\rightarrow$ no $\mathrm{ZZ}_{\gamma}$ and $\mathrm{Z}_{\gamma \gamma}$ coupling.
- Photons couple on charged particles: incoming quarks (ISR) or leptons ( $\mu$ or e) in the final state (FSR).
- aTGCs lead to an excess of photons with high transverse momentum ( $\mathrm{p}_{\mathrm{T}}$ ).


Rong-Shyang Lu / NTU
June 3-7, 2019

## $\mathrm{Z}_{\gamma} \rightarrow \mathrm{e} \mathrm{\ell} \mathrm{\gamma}$



## －ISR and FSR event signatures




Photon 2019
Rong－Shyang Lu／NTU
June 3－7， 2019

## $z_{y} \rightarrow$ el Measurements

- Cross section phase space: $|\eta(\gamma)|<2.5,|\eta(\ell)|<2.5, \mathrm{p}_{\mathrm{T}}(\ell)>20 \mathrm{GeV}$, $\Delta \mathrm{R}(\ell, \gamma)>0.7, \mathrm{M}_{\ell}>50 \mathrm{GeV}$.
- Additional uncertainties. : di-lepton(2\%) and photon(2\%) reconstruction, photon energy scale and resolution (2.3\%), luminosity (2.6\%).
- Consistent with MCFM (NLO) and SHERPA (LO) calculations.

$Z \gamma \rightarrow \ell l_{\gamma}$ Measurements


## ATLAS

## Overall consistent except for MCFM

 underestimates the cross section when NJet >0


## $Z_{y} \rightarrow l \ell y$ aTGC

－$Z Z \gamma$ or $Z \gamma \gamma$ aTGC are formulated in the framework of an effective field theory（EFT）considering dimension 6 and 8 operators，fulfiling the requirement of Lorentz invariance and local $\mathrm{U}(1)$ gauge symmetry and unitarity．

$$
\mathcal{L}^{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}+\sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}+\sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)}+\ldots
$$

－The aTGC models are parametrized at NLO with MCFM ．
－The weighted events are corrected for detector acceptance and efficiency of the leptons and the photon．
－Added a description of the $\pi^{0+f a k e ~ b a c k g r o u n d ~}$
－Theoretical uncertainties of $6 \sim 12 \%$ from PDF and scale variations． Data with $2 \%$ systematics on di－lepton and photon efficiency and depends on photon pT ，up to $8 \%$ in the background estimation with $\sigma \eta \eta$ method．

## $\mathrm{Z}_{\gamma} \rightarrow$ ely aTGC





Photon 2019
Rong-Shyang Lu / NTU
June 3-7, 2019

## $\mathrm{Z}_{\gamma} \rightarrow$ el $\mathrm{e}_{\mathrm{y}} \mathrm{aTGC}$

## - Uses exclusive 0 -jet events which has reduced SM contribution at high $\mathrm{E}_{\mathrm{T}}$.



## $\mathrm{z}_{\gamma} \rightarrow \mathrm{vw} \mathrm{\gamma} @ 13 \mathrm{TeV}$

## $\overbrace{2 \times X \in E R M E N T}$

ATLAS

## ATLAS

## $\mathrm{z}_{\gamma} \rightarrow \mathrm{vw} \mathrm{\gamma} @ 13 \mathrm{TeV}$



- Again, Njets=0 has good agreement with MCFM, but not Njet>0
- Needs more statistics exploring $\mathrm{E}_{\mathrm{T}}>600 \mathrm{GeV}$ bin.



## $\mathrm{z}_{\gamma} \rightarrow \mathrm{vw} \mathrm{\gamma} @ 13 \mathrm{TeV}$



- CMS measured cross section but no aTGC interpretation yet.
- Consistent with SM expectation.


Photon 2019
Rong-Shyang Lu / NTU
June 3-7, 2019

## $z_{\gamma} \rightarrow v y \gamma$ aTGC

－No excess is observed relative to the SM expectation．
－Limits on 2d $h_{3}^{V}$ and $h_{4}^{V}$ of aTGC parameters are evaluated．



## $\mathrm{V}_{\gamma \gamma}$ and aQGC

|  | CMS | AREEAS ATLAS |
| :---: | :---: | :---: |
|  | 8 TeV | 8 TeV |
| $W \gamma \gamma \rightarrow \ell \nu \gamma \gamma$ | JHEP 10 (2017) 072 <br> Cross sections and aTGC measurement | PRL 115, 031802 (2015) <br> Cross section and aQGC measurement |
| $Z_{\gamma \gamma} \rightarrow \ell \ell \gamma \gamma$ |  | PRD 93, 112002 (2016) <br> Cross sections and aTGC measurement |
| $Z \gamma \gamma \rightarrow \nu \nu \gamma \gamma$ | PLB 760 (2016) 448 Cross section and aTGC measurement |  |

## $\mathrm{V}_{\gamma \gamma}$ measurement

旁旁学
－First time measured in a hadron collider（ATLAS $\mathrm{W}_{\gamma \gamma} @ 8 \mathrm{TeV}$ ）
－Theory predicts large NLO／LO k－factors（W $W_{\gamma \gamma}$ ）of cross sections．
－Data is compared with NLO calculation of MadGraph5＿aMC＠NLO（CMS）or SHERPA（ATLAS）
－Wry sensitive to TGC and QGC．QGC most interesting（TGC better studied in higher rate processes）．Set limits on aQGC with dimension－ 8 Effective Field Theory






## 路

- Define tight/loose ID for photons. Solve the combination of pairs to estimate signal/fake
- CMS has systematics dominated by template method estimating jet faking photon. Fake template obtained in $\mathrm{Z}+$ jet sample in data.
- $Z_{\gamma}$ subtraction ( $\sim 15 \%$ )
- Loosening procedure correction factor (~10\%)
- Conservative approach, compatible with


$$
\left(\begin{array}{l}
N_{\mathrm{TT}} \\
N_{\mathrm{TL}} \\
N_{\mathrm{LT}} \\
N_{\mathrm{LL}}
\end{array}\right)=\left(\begin{array}{cccc}
\epsilon_{1} \epsilon_{2} & \epsilon_{1} f_{2} & f_{1} \epsilon_{2} & f_{1} f_{2} \\
\epsilon_{1}\left(1-\epsilon_{2}\right) & \epsilon_{1}\left(1-f_{2}\right) & f_{1}\left(1-\epsilon_{2}\right) & f_{1}\left(1-f_{2}\right) \\
\left(1-\epsilon_{1}\right) \epsilon_{2} & \left(1-\epsilon_{1}\right) f_{2} & \left(1-f_{1}\right) \epsilon_{2} & \left(1-f_{1}\right) f_{2} \\
\left(1-\epsilon_{1}\right)\left(1-\epsilon_{2}\right) & \left(1-\epsilon_{1}\right)\left(1-f_{2}\right) & \left(1-f_{1}\right)\left(1-\epsilon_{2}\right) & \left(1-f_{1}\right)\left(1-f_{2}\right)
\end{array}\right)\left(\begin{array}{c}
N_{\gamma \gamma} \\
N_{\text {rjet }} \\
N_{\text {jetr }} \\
N_{\text {jetjet }}
\end{array}\right) .
$$

## $\mathrm{V}_{\gamma \gamma}$ measurement

－Irreducible background estimated by MC．
－Measured cross section consistent with theoretical expectation．



Photon 2019
Rong－Shyang Lu／NTU
June 3－7， 2019

## ATLAS

－Measurements include $W(\mathrm{e} v, \mu v) \gamma \gamma$ and $Z(\mu \mu$ ，ee， $\mathrm{vv}) \gamma \gamma$
－The measurements were statistically limited． Data and SM prediction agree within the uncertainties．


PRL 115， 031802 （2015）


PRD 93， 112002 （2016）


Rong－Shyang Lu／NTU

PRL 115， $031802(2015$


PRD 93， 112002 （2016）


June 3－7， 2019

EXPERIMENT

## $\mathrm{V}_{\gamma \gamma}$ and aQGC

－No excess in $W \gamma \gamma$ observed in either experiment．
－Set limit on field strength $\mathrm{f}_{\mathrm{TO}, \mathrm{T} 5, \mathrm{~T} 9, \mathrm{M} 2, \mathrm{M3}} / \Lambda^{4}$ of aQGC with lowest－dimension（Dim－8）operators．


## Summary

－Both CMS and ATLAS have utilized the photon object to measure cross sections of $W \gamma / Z \gamma$ and $W \gamma \gamma /$ $Z_{\gamma \gamma}$ processes with different collision energies．Results are consistent with Standard Model expectation．
－Both experiments use conservative approaches to select photons（ID）and extract signals．
－ $\mathrm{V} \gamma(\gamma)$ measurements not only provide a test with Standard Model and also searches of anomalous triple／quartic gauge coupling which is expected to be 0 in Standard Model．

- LHC and CMS
- Isolated photon
@ 7TeV
- Impact on PDF constraint
- Isolated photon
@ 13TeV
- Summary


## Backup Slides

 counlings
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC aTGC Limits @95\% C.L. $\times 10^{-4}\left(h_{4}^{3}\right)$
Photon 2019
Rong-Shyang Lu / NTU
June 3-7, 2019
limits on dimension 8 mixed transverse and longitudinal parameters $\mathrm{f}_{\mathrm{M}, \mathrm{i}}$

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGc aQGC Limits @95\% C.L. [TeV ${ }^{-4}$ ]

## limits on dimension 8 transverse parameters $\mathrm{f}_{\mathrm{T}, \mathrm{i}}$

| May 2019 | $\underset{\text { ATLAS }}{\text { CMS }}$ | Channel | Limits | 1 Ldt | $\sqrt{s}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\mathrm{T}, 0} / \Lambda^{4}$ | $\longrightarrow$ | $\mathrm{w}^{\text {Wr }}$ | $[-1.6 e+01,1.6 e+01]$ | $20.3 \mathrm{fb}^{-1}$ | $8 \mathrm{~T}^{\text {TV }}$ |
|  |  | $\mathrm{zr}^{\mathrm{m}}$ | ［－1．6e＋01，1．9e＋01］ | $20.3 \mathrm{fb}^{-1}$ | 8 TeV |
|  | H | www | $[-1.2 e+00,1.2 e+00]$ | 35.9 fb ${ }^{-1}$ | 13 TeV |
|  | － | ${ }_{z \gamma}$ | ［－3．8e＋00，3．4e＋00］ | $19.7 \mathrm{fb}^{-1}$ | ${ }_{8}^{8 \mathrm{TeV}}$ |
|  | 1 | ${ }_{\text {W }}^{\mathrm{w}_{\gamma}}$ |  | 29．2 ${ }_{19} 9.7 \mathrm{fb}^{-1}$ | 8 8 8 TeV |
|  | $\longmapsto$ | ss WW | ［－4．2e $+00,4.6 \mathrm{e}+00]$ | $19.4 \mathrm{fb}^{-1}$ | 8 TeV |
|  | H | ss WW | ${ }^{[-6.2 .2 e-01, ~ 6.5 e-01] ~}$ | $35.9 \mathrm{fb}{ }^{-1}$ | ${ }^{13} \mathrm{TeV}$ |
|  | H | WZ | ［－7．5e－01，8．1e－01］ | $35.9 \mathrm{fb}^{-1}$ | ${ }^{13} \mathrm{TeV}$ |
|  | 1 | Wv zv | ［－1．2e－01，1．1e－01］ | 35.9 fb ${ }^{-1}$ | 13 TeV |
| $\mathrm{f}_{\mathrm{T}, 1} / \Lambda^{4}$ | － | WWW | ［－3．3e＋00，3．3e＋00］ | 35.9 fb ${ }^{-1}$ | ${ }^{13 \mathrm{TeV}}$ |
|  | $\stackrel{\square}{\square}$ | ${ }_{W}^{2 \gamma}$ |  | 19.7 $197 \mathrm{fb}^{-1}$ $19.7 \mathrm{fb}^{-1}$ | ${ }^{8} \mathrm{~T}$ TeV |
|  | H | ss WW | ［－2．1e＋$+00,2.4 \mathrm{e}+00]$ | 19.4 fb 19 | ${ }_{8} \mathrm{TeV}$ |
|  | 1 | ss WW | ［－2．8e－01，3．1－01］ | $35.9 \mathrm{fb}^{-1}$ | ${ }^{13} \mathrm{TeV}$ |
|  | H | WZ | ［－4．9e－01，5．5e－01］ | $35.9 \mathrm{fb}^{-1}$ | ${ }^{13} \mathrm{TeV}$ |
|  | H | zz ${ }_{\text {zV }}$ | ${ }^{[-6.1 e-01-01, ~ 6.1 e-01] ~}$ | $35.9 \mathrm{fb}^{-1}$ | ${ }^{13} \mathrm{TeV}$ |
| $\mathrm{f}_{\mathrm{T}, 2} / \Lambda^{4}$ | H | WWw | ［－2．7e $+00,2.6 \mathrm{e}+00]$ | $35.9 \mathrm{fb}{ }^{-1}$ | ${ }_{13} \mathrm{TeV}$ |
|  | $\xrightarrow{1}$ | $z^{2}$ | $[-9.9 e+00,9.0 \mathrm{e}+00]$ | $19.7 \mathrm{fb}^{-1}$ | 8 TeV |
|  | $\cdots$ | ${ }_{\text {ws }}^{\text {s }}$ WW | ［－1．1e＋01， $1.2 .2 \mathrm{e}+01]$ | ${ }^{19.7} \mathrm{fb}^{-1}$ | ${ }_{8}^{8} \mathrm{8TeV}$ |
|  | H | ss WW | ［－8．9e－01， $1.0 \mathrm{e}+00]$ | $35.9 \mathrm{fb}^{-1}$ | 13 TeV |
|  |  | wz | ［－1．5e＋00，1．9e＋00］ | $35.9 \mathrm{fb}{ }^{-1}$ | ${ }^{13} \mathrm{TeV}$ |
|  | ${ }_{4}$ |  | $\begin{aligned} & {[-1.2 \mathrm{e}+00,1.2 \mathrm{e}+000} \\ & {[-2.8 \mathrm{e}-01,2.8 \mathrm{e}-01]} \end{aligned}$ | 35．9 fb ${ }^{\text {d }}$ | 13 TeV |
| $\mathrm{f}_{\mathrm{T}, 5} / \Lambda^{4}$ | $\checkmark$ | $\mathrm{w}^{\mathbf{W} \gamma}$ | ［－2．0e $+01,2.1 \mathrm{e}+01]$ | $20.2 \mathrm{fb}^{-1}$ | 8 TeV |
|  | $\vdash$ | $\mathrm{z}_{\mathrm{W}}^{\mathrm{W}}$ |  | $20.3 \mathrm{fb}^{-1}$ $19.7 \mathrm{fb}^{-1}$ | 8 PeV 8 TeV |
| $\mathrm{f}_{\mathrm{T}, 6} / \Lambda^{4}$ | H | ${ }_{W}^{W} \gamma$ | ［－2．5e＋01，2．5e＋01］ | 20.2 fb ${ }^{-1}$ | 8 TeV |
| $\mathrm{f}_{\mathrm{T} /} / \Lambda^{4}$ | H | $W^{W}{ }_{\gamma}$ |  | 19.7 f $\mathrm{b}^{-1}$ | 8 8 TeV |
| $\underline{\text { T，} 7 / \Lambda}$ | $\stackrel{\square}{1}$ | $\mathrm{w}_{\gamma}$ | $[-7.3 e+00,7.7 e+00]$ | $19.7 \mathrm{fb}^{-1}$ | ${ }_{8} \mathrm{TeV}$ |
| $\mathrm{f}_{\mathrm{T}, 8} / \Lambda^{4}$ | H H | Zy $\mathrm{Z}_{\gamma}$ | （$[-1.8 e+00, ~ 1.8 e+00] ~$ <br> $[-1.8 e+00, ~$ | $19.7 \mathrm{fb}^{-1}$ 20.2 fb | 8 8 8 TeV |
|  | H | zz | ［－8．4e－01，8．4e－01］ | $35.9 \mathrm{fb}{ }^{-1}$ | 13 TeV |
| $\mathrm{f}_{\mathrm{T}, 9} / \Lambda^{4}$ |  | $\frac{\mathrm{Z}}{2}$ | ［－7．4e＋00，7．4e＋00］ | $20.3 \mathrm{fb}^{-1}$ | 8 TeV |
|  |  | $\mathrm{z} \mathrm{\gamma}$ $\mathrm{Z}_{\gamma}$ | （l－4．0e＋00， $4.0 .0 \mathrm{e}+00]$ | 19．7 $\mathrm{fb-1}^{-1}$ | 8 TeV 8 TeV |
|  | H | zz | $[-1.8 \ominus+00,1.8 \mathrm{e}+00]$ | $35.9 \mathrm{fb}^{-1}$ | 13 TeV |
| 0 |  | 100 |  | 20 |  |

https：／／twiki．cern．ch／twiki／bin／view／CMSPublic／PhysicsResultsSMPaTGC

## $Z_{\gamma \gamma}$ aQGC limit






PRD 93， 112002 （2016）

## ECAL Energy Resolution

－The energy resolution of a calorimeter is usually parametrized as： $\sigma_{\mathrm{E}} / \mathrm{E}=\mathrm{a} / \sqrt{ } \mathrm{E} \oplus \mathrm{b} / \mathrm{E} \oplus \mathrm{c} \quad$（where $\oplus$ denotes a quadratic sum）
－The first term，with coefficient a，is the stochastic term arising from contribution of shower containment，fluctuations in the number of signal generating（gain）processes（and any further limiting process，such as photo－electron statistics in a photodetector）
－The second term，with coefficient b ，is the noise term and includes：
－noise in the readout electronics
－fluctuations in ‘pile－up’（simultaneous energy deposition by uncorrelated particles）
－The third term with coefficient c ，is the constant term and includes：
－imperfections in calorimeter construction（dimensional variations，etc．）
－non－uniformities in signal collection
－channel to channel inter－calibration errors
－fluctuations in longitudinal energy containment
－fluctuations in energy lost in dead material before or within the calorimeter
－The goal of calorimeter design is to find，for a given application，the best compromise between the contributions from the three terms
－For EM calorimeters，energy resolution at high energy is usually dominated by c

