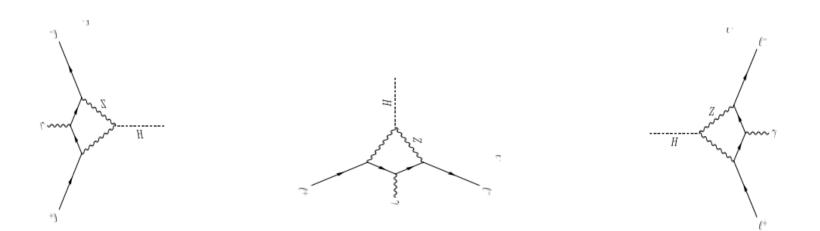
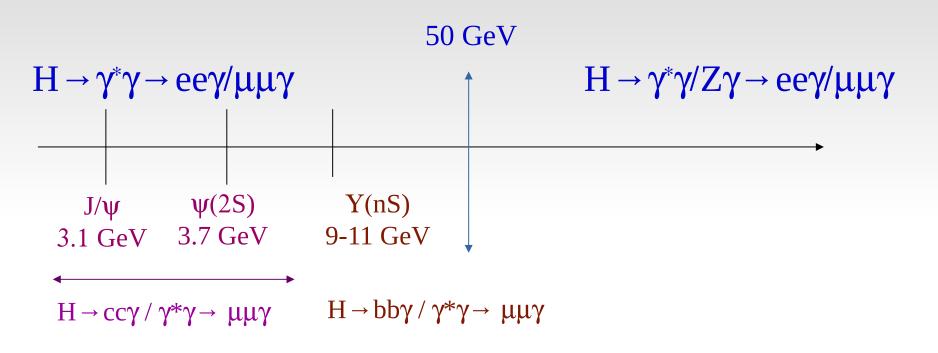

H in the photon : all what we want to see but have never seen till now

On behalf of CMS and ATLAS collaborations

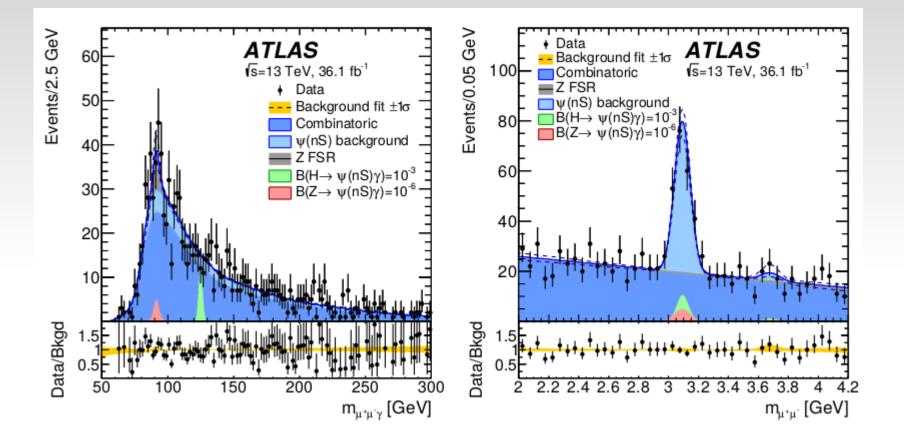

1) Introduction 2) $H \rightarrow II + \gamma$ 3) BEH potential: $HH \rightarrow 2\gamma 2b$


$H \rightarrow II\gamma$

M. Gouzevitch. $H \rightarrow II\gamma$ and $HH -> 2\gamma 2b$

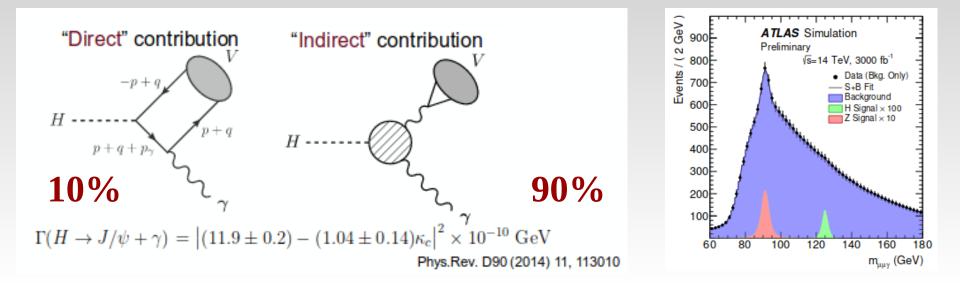
1.0) $H \rightarrow II\gamma$: reach zoology

This rare final state can be enhanced within many BSM theories.

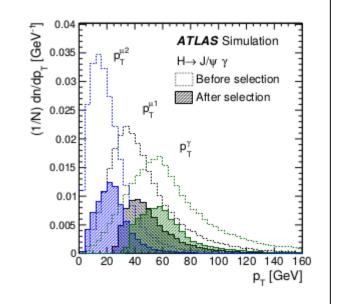


Small branchings but much rather pure signal than $H \rightarrow bb/cc \rightarrow 2jets$.

 $\begin{array}{ll} B(H \rightarrow cc) \sim 3\% & B(H \rightarrow J/\psi\gamma) \sim 3e\text{-}6 & B(H \rightarrow \psi(2S)\gamma) \sim 1e\text{-}6 \\ B(H \rightarrow bb) \sim 60\% & B(H \rightarrow Y^*\gamma) \sim 8e\text{-}9 \end{array}$


1.1) Example of H \rightarrow J/ ψ (nS) γ

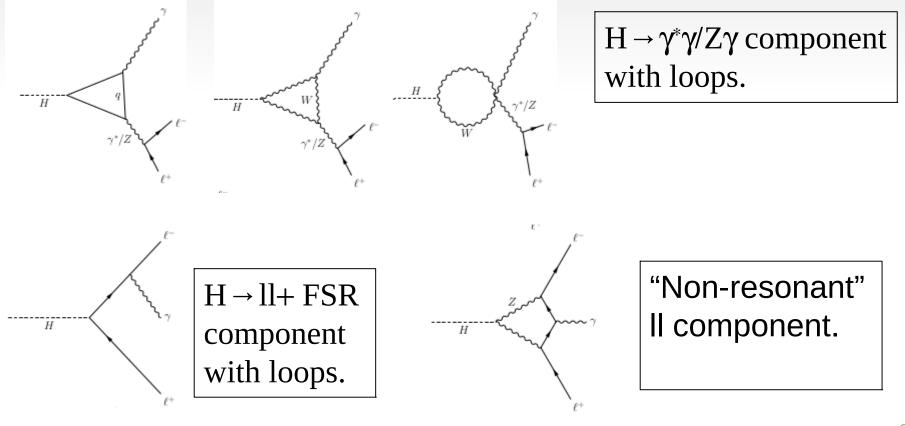
ATLAS – arXiv:1807.00802 CMS – arXiv:1810.10056 (only J/ψ γ)


- Minimal 3-body mass defined by kinematic selections.
- Large combinatoric background strongly constraint by the presence of 2 masses.

1.2) Constraints on H \rightarrow J/ ψ (nS) γ

BR Run I observed limit: 1.5e-3
BR Run II observed limit: 3.5e-4
BR HL-LHC expected limit: 4.4e-5
BR SM Expectation: 3e-6

Observation of those decays in Higgs final state is tough at HL-LHC. Requires to keep a very low second muon threshold for reconstruction.
But even if you see it you have to convince yourself you understand the "Indirect" contribution before claiming anything about H → cc couplings.



07/06/2019

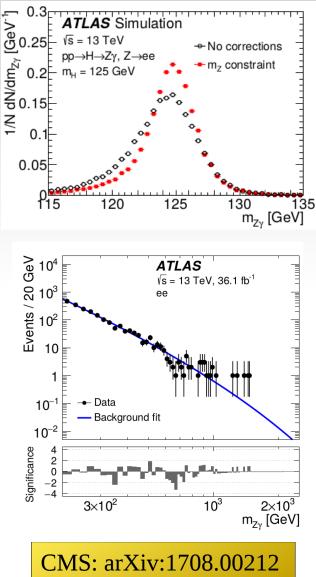
$$\begin{split} \mathbf{M}_{\mathbf{II}} &< \mathbf{50 \ GeV} \qquad \qquad \mathbf{M}_{\mathbf{II}} &> \mathbf{50 \ GeV} \\ \frac{\mathcal{B}(\mathbf{H} \to \gamma^* \gamma \to \mu \mu \gamma)}{\mathcal{B}(\mathbf{H} \to \gamma \gamma)} &= (1.69 \pm 0.10)\%, \quad \frac{\mathcal{B}(\mathbf{H} \to \mathbf{Z} \gamma \to \mathbf{e}^+ \mathbf{e}^- \gamma / \mu \mu \gamma)}{\mathcal{B}(\mathbf{H} \to \gamma \gamma)} &= (2.27 \pm 0.14)\% \end{split}$$

Rich and complex interference patters, small BF and lots of space for BSM contributions

M. Gouzevitch. $H \rightarrow II\gamma$ and $HH -> 2\gamma 2b$

1.4) $H \rightarrow \gamma^* \gamma / Z \gamma$: few words about analyses

- Excludes exclusive decays.


- For $Z \rightarrow ll$ part the kinematic fit and FSR corrections are extremely important to improve the sensitivity.

- Good signal acceptance: 30-40%.

- Multi-category analysis as for $H \rightarrow \gamma \gamma$. Signal extracted from parametric fit to $ll\gamma$ lineshape.

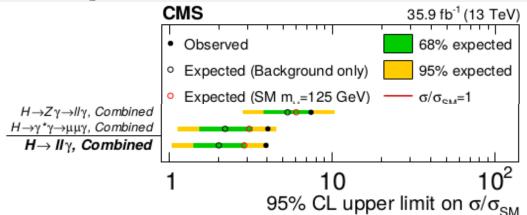
> One of high purity categories ATLAS analysis

See also CMS: arXiv:1806.05996

1.5) $H \rightarrow \gamma^* \gamma / Z \gamma$: few words about analyses

- The Higgs Dialitz decay $\gamma^* \gamma$ exploited in CMS have a larger sensitivity to SM production that $Z\gamma$.
 - $\sigma(m_{_{\gamma*\gamma}} < 50 \text{ GeV}) \sim 70\% \sigma(m_{_{\gamma*\gamma}} > 50 \text{ GeV})$
 - Background (Dialitz) << Background ($Z\gamma$) = SM $Z\gamma$ production.
 - $p_{T\gamma}$ (Dialitz, 35 GeV) >> $p_{T\gamma}$ (Z γ , 15 GeV) because of less energy taken by the **II** system.
 - No Dialitz ee channel because of « merged electron clusters » reconstruction requested \rightarrow to come soon.

High purity categories of CMS analysis (slightly


07/06/2019

170

1.5) $H \rightarrow \gamma^* \gamma / Z \gamma$: Results

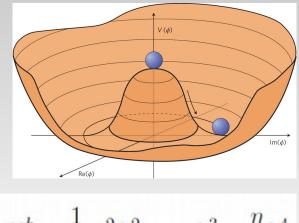
- ATLAS and CMS results similar on $H \rightarrow Z\gamma$ channel excluding ~ 7-8 x SM (5-6 expected) using 1/3 of Run II data.

- Adding $H \rightarrow \gamma^* \gamma$ uncreases significantly the sensitivity to ~ 4 x SM (2-3 expected) \rightarrow BSM physics can be different in both channels so the combination is ultimately the best interpretation.

- Full Run II dataset is not enough, but Run III may provide enough data to have some hints combining CMS and ATLAS.

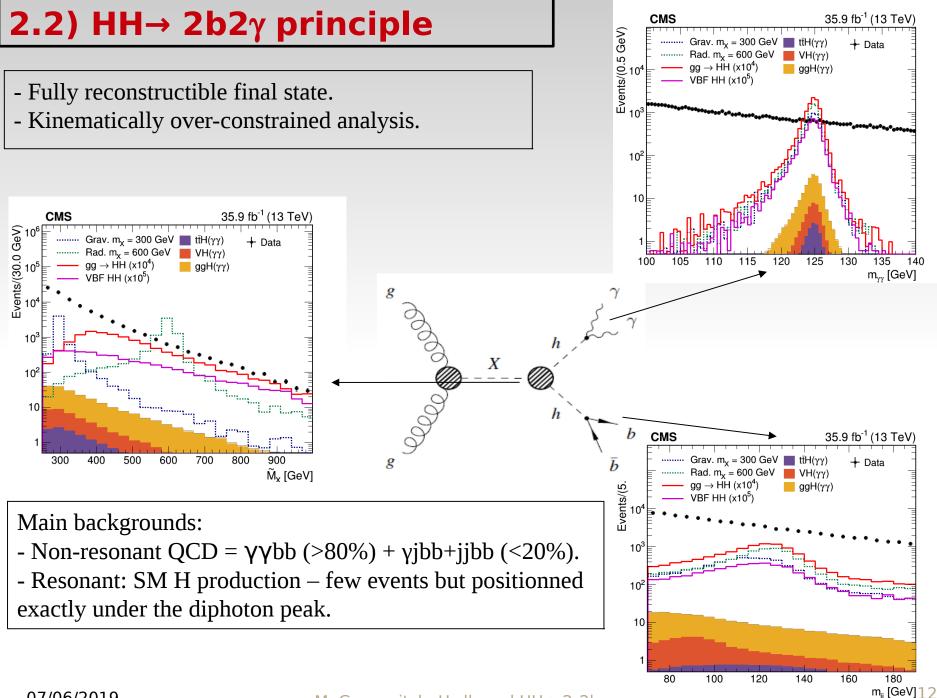
- The HL-LHC projection assuming same systematics predicts ~ 5 par experiment. Statistically dominated. YR - arXiv:1902.00134

HH→ γγbb


2.1) Short introduction

- Shape of the Higgs potential postulated but not taken from first principles.
- Indirectly constrained within SM assuming the shape.

$$\lambda_{\rm hhh} \equiv \eta = \frac{m_H^2}{2v^2} \qquad \frac{v = 2^{-1/4} \cdot G_F^{-1/2} \approx 246 \,\text{GeV}}{\frac{\delta \lambda_{\rm hhh}}{\lambda_{\rm hhh}} \approx 2\frac{\delta m_H}{m_H} \approx 0.4\%}$$

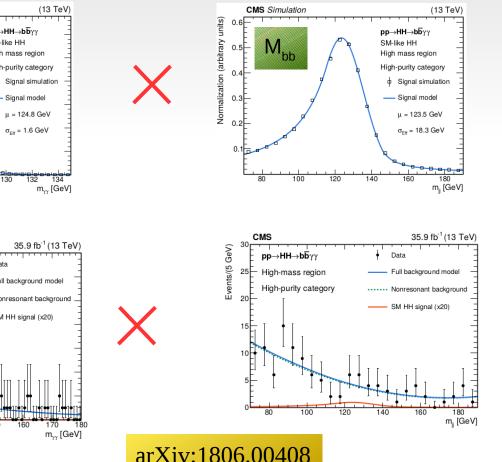

- Direct constraint theoretically possible through HH production:
 - The cross section 1000 times smaller than SM H.
 - Cross section dominated by top box digram, the sensitivity to Higgs self coupling is reduced due to destructive interference:

$$\frac{\sigma_T + \sigma_B}{\sigma_{hh}} \approx 2.5$$

$$\mathscr{L}^{h} = \frac{1}{2}m_{h}^{2}h^{2} + \eta vh^{3} + \frac{\eta}{4}h^{4}$$

07/06/2019

M. Gouzevitch. $H \rightarrow II\gamma$ and $HH -> 2\gamma 2b$

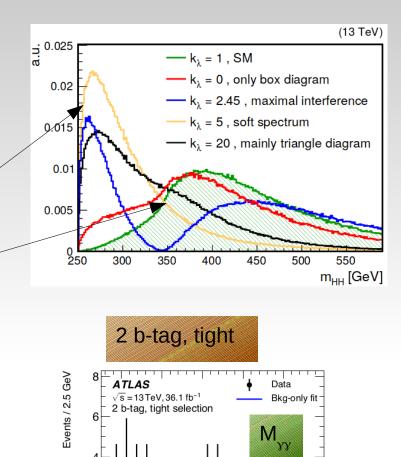

2.3) CMS analysis

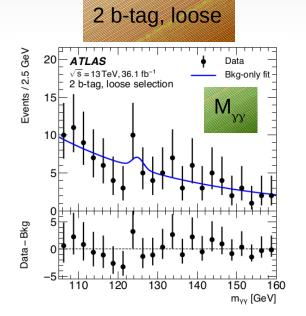
• Use 2D likelihood $M_{vv} \ge M_{bb}$. • Categorize in M_{vybb} (<>350 GeV) and MVA (low / high purity). \rightarrow MVA: event kinematics and b-jet id.

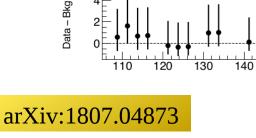
> **CMS** Simulation (13 TeV) **CMS** Simulation Normalization (arbitrary units) Normalization (arbitrary units) 0.6F pp→HH→bb̄γγ 0.6 SM-like HH M_{bb} 0.5 0.5 High mass region $\chi \chi$ High-purity category 0.4F Signal simulation Signal model 0.3 0.3 μ = 124.8 GeV 0 0.2 $\sigma_{\text{Eff}} = 1.6 \text{ GeV}$ 0 118 122 124 126 128 130 100 120 132 m,, [GeV] CMS 35.9 fb⁻¹ (13 TeV) CMS Events/(5 GeV) Events/(1 GeV) $pp \rightarrow HH \rightarrow b\overline{b}\gamma\gamma$ Data High-mass region Full background model High-purity category Ionresonant background 20 SM HH signal (x20) 10 80 100 140 150 m,, [GeV] arXiv:1806.00408

- 2D analysis. It was verified that within stat uncertainties signal and background shapes are uncorrelated. - 2D improves compared to 1D by \sim 10%.

- Keep b-jet $p_{_{T}} = 25 \text{ GeV}$


07/06/2019


M. Gouzevitch. H \rightarrow II γ and HH->2 γ 2b


2.4) ATLAS analysis

- Use 1D likelihood M_{yy} and cut on M_{bb} .
- Categorize in 2 b-tag and 1 b-tag categories.
- Loose selection for self-coupling scan:
 - $\rightarrow p_{_{Tbj1}} > 40 \text{ GeV}, p_{_{Tbj2}} > 25 \text{ GeV}$
- Tight selection for SM production:

$$p_{_{Tbj1}}$$
 > 100 GeV, $p_{_{Tbj2}}$ > 30 GeV

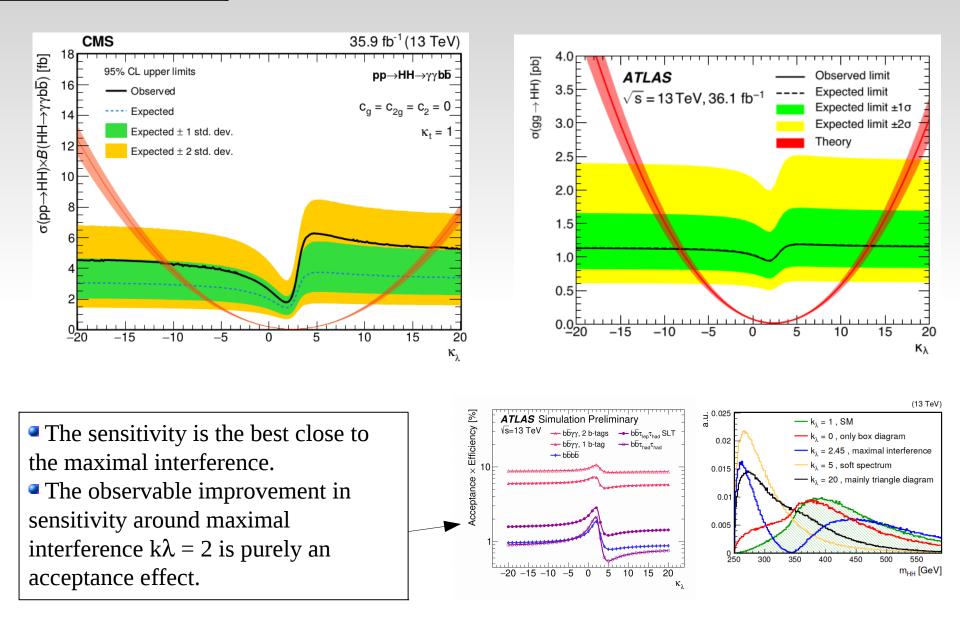
150

m_{vv} [GeV]

160

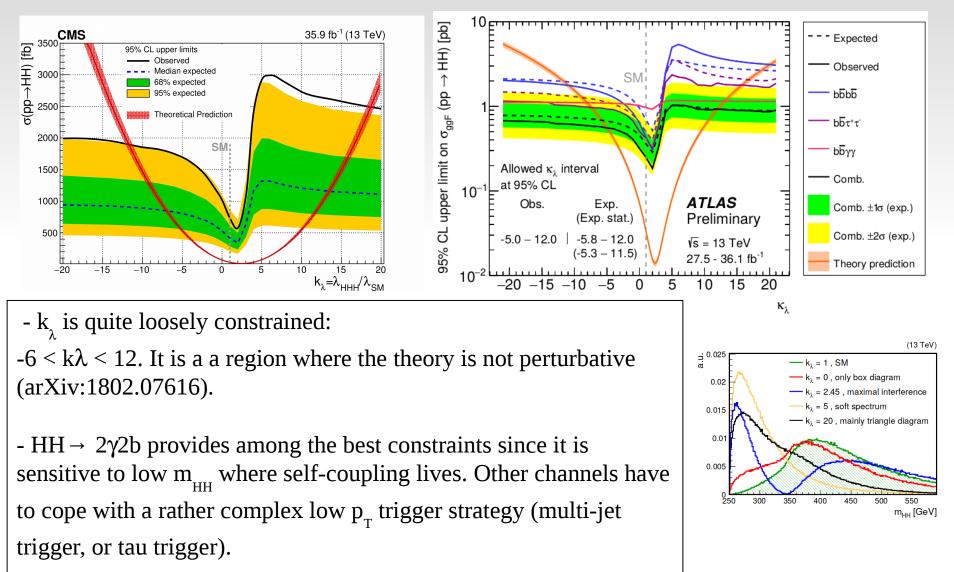
M. Gouzevitch. $H \rightarrow II\gamma$ and $HH -> 2\gamma 2b$

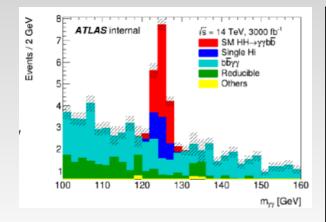
2.5) SM-like results



■ The HH → $\gamma\gamma$ bb analysis is slightly more performant in CMS than in ATLAS possibly dut to the usage of 2D analysis and a different SM signal simulation (LO+PS in CMS and NLO+PS in ATLAS → 10% impact on the acceptance).

■ It has a similar sensitivity to HH → 4b and HH → $\tau\tau$ bb channels. So all of them contribute to the final limit.


• The HH $\rightarrow \gamma \gamma WW$ suffers from a too low BF.

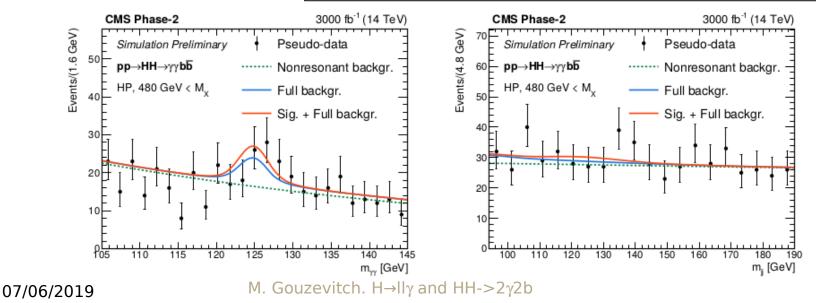

M. Gouzevitch. $H \rightarrow II\gamma$ and $HH -> 2\gamma 2b$

2.6) κ_{λ} scan: combinations

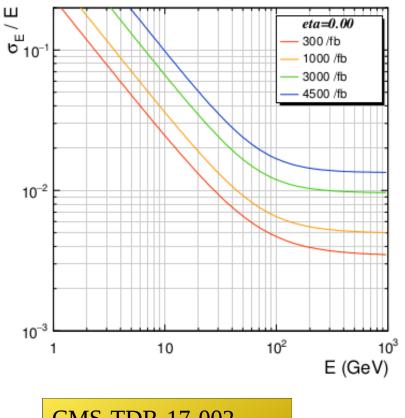
07/06/2019

2.7) HL-LHC projections

YR - arXiv:1902.00134


Analysis approach:

- ATLAS: 1D + MVA classification
- CMS: 2D + MVA x $M_{\mu\mu}$ classification


Samples:

- ATLAS: truth level particles convoluted with the detector resolution extracted from full simulation. Very large samples.
- CMS: Delphes simulation. Limited statistics compared with ATLAS.
- \rightarrow More efficient training done by ATLAS \rightarrow

Higher purity of the best category.

2.8) HL-LHC projections: assumptions

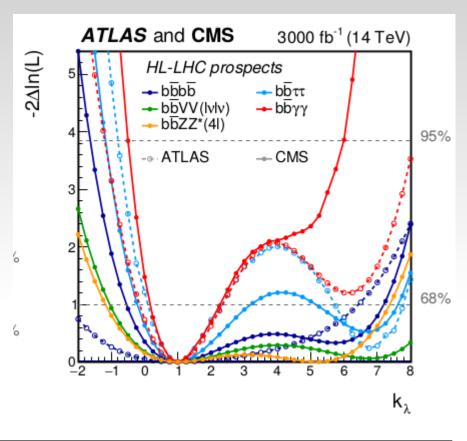
CMS-TDR-17-002 BARREL

Constant term: crystal non uniformity dominates the showers in our energy range.

B-tagging: assumed to improve by ~ 8
% in each experiment due to much better
Phase II trackers.

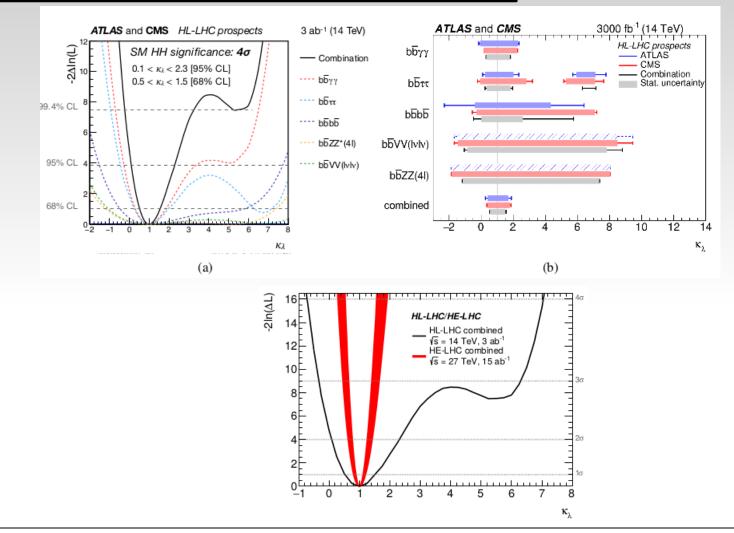
- $\mathbf{M}_{\gamma\gamma}$ resolution in the barrel:
 - is nearly unchanged for LAr calorimeter of ATLAS (no major aging) around **1.6 GeV.**
 - Is slowly degradating for Crystal calorimeter of CMS with ageing.
 We use the resolution of 1ab⁻¹ as average estimate: 2.4 GeV.
- $\mathbf{M}_{\gamma\gamma}$ resolution in the endcap:
 - In CMS we would have HGCAL that would keep the resolution stable over time (minor effect for the analysis).

07/06/2019


2.8) Self-coupling measurement

	Statistical-only		Statistical + Systematic	
	ATLAS	CMS	ATLAS	CMS
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95
$HH \rightarrow b\bar{b}\tau\tau$	2.5	1.6	2.1	1.4
$HH ightarrow b \bar{b} \gamma \gamma$	2.1	1.8	2.0	1.8
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56
$HH \rightarrow b\bar{b}ZZ(4l)$	-	0.37	-	0.37
combined	3.5	2.8	3.0	2.6
	Combined 4.5		Combined 4.0	

• $HH \rightarrow 2b2\gamma$ provides one of the best sensitivity among the channels. ATLAS projection is slightly better:


- Background MC statistics allows for a more refined training.
- ECAL barre resolution is slowly degradating for CMS not for ATLAS ECAL.

07/06/2019

HH → 2b2γ is the most sensitive channel for scan.
 The usage of multiple MHH categories help to disqualify the second minimum around kλ = 6 and improve the measurement precision.

2.9) Self-coupling measurement

Extremely challenging In 2035 we expect a 30-50% precision.
Need to wait FCC-hh (2050?) for more precision.

Conclusions

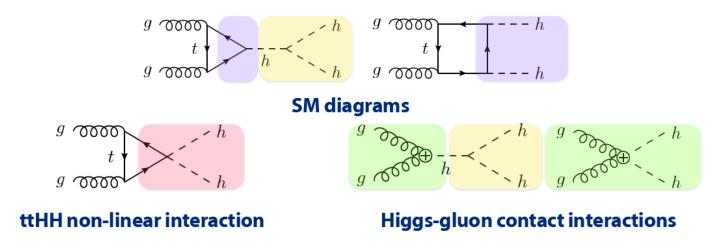
• We presented few critical topics at the edge of the LHC sensitivity that have to be explored to understand the Higgs sector of the SM:

- $-H \rightarrow cc coupling$
- $H \rightarrow Z\gamma/\gamma^*\gamma$ coupling
- Higgs potential measurement and double Higgs production.
- In all those topics the photons plays a unique and unavoidable role.

This discussion clearly shows that the photon reconstruction at HL-LHC remains one of the priorities and full attention shall be payed to the future ECAL and tracker during next years.

BACKUP

M. Gouzevitch. HH \rightarrow 2b2g at CMS


4.1) Non-resonant HH production: EFT and BSM

The relevant lagrangian terms of gg→HH production in D=6 EFT

$$\mathcal{L}_{hh} = -\frac{m_h^2}{2v} \left(1 - \frac{3}{2}c_H + c_6 \right) h^3 + \frac{\alpha_s c_g}{4\pi} \left(\frac{h}{v} + \frac{h^2}{2v^2} \right) G^a_{\mu\nu} G^{\mu\nu}_a$$
$$- \left[\frac{m_t}{v} \left(1 - \frac{c_H}{2} + c_t \right) \bar{t}_L t_R h + \text{h.c.} \right] - \left[\frac{m_t}{v^2} \left(\frac{3c_t}{2} - \frac{c_H}{2} \right) \bar{t}_L t_R h^2 + \text{h.c.} \right]$$

arXiv:1410.3471

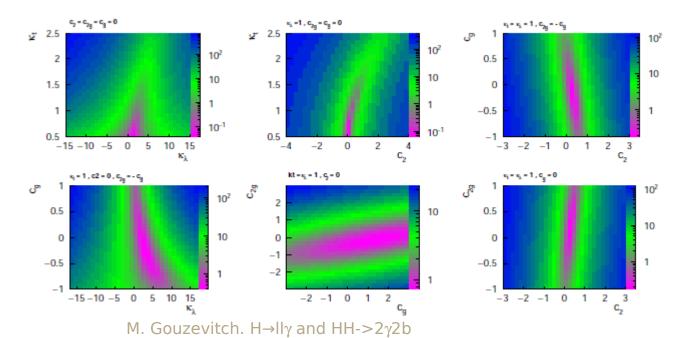
Non SM Yukawa coupling is not considered

Five D6 operators for HH sector.

4.1) Non-resonant HH production: EFT and BSM

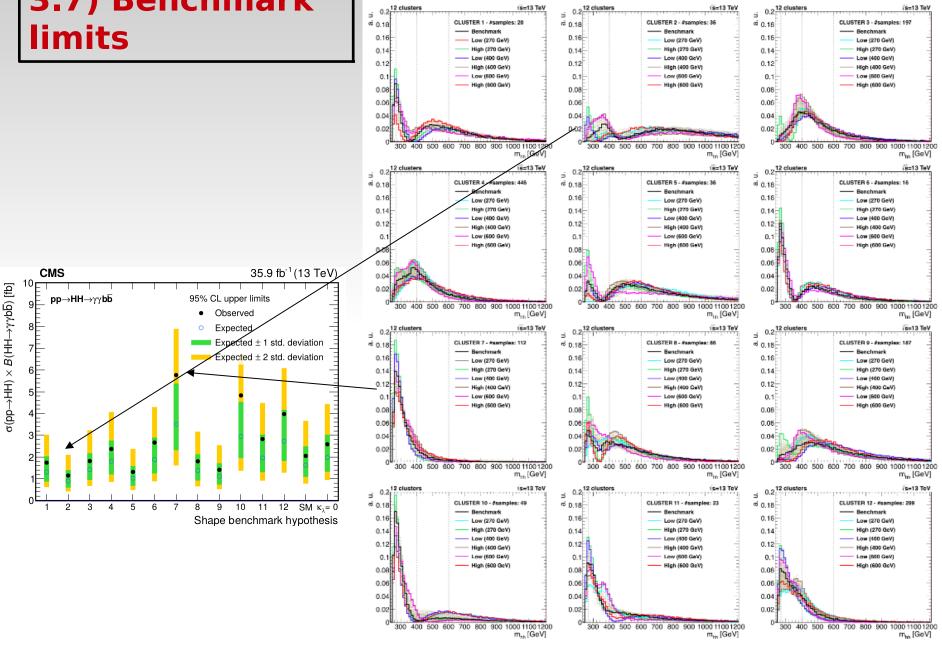
07/06/2019

M. Gouzevitch. $HH \rightarrow 2b2g$ at CMS


4.2) We need: predicted cross section

• Within some approximation (top loop predominant contribution) k = NNLO+NNLL/LO is expected to be similar within 5% to the one of SM.

$$\sigma_{\rm HH} = \sigma_{\rm HH, NNLO+NNLL}^{\rm SM} \cdot R_{\rm HH}$$


$$\begin{split} R_{\rm HH} &\equiv \frac{\sigma_{\rm HH}}{\sigma_{\rm HH}^{\rm SM}} \stackrel{LO}{=} A_1 \, \kappa_t^4 + A_2 \, c_2^2 + (A_3 \, \kappa_t^2 + A_4 \, c_g^2) \, \kappa_\lambda^2 + A_5 \, c_{2g}^2 \\ &+ (A_6 \, c_2 + A_7 \, \kappa_t \kappa_\lambda) \kappa_t^2 + (A_8 \, \kappa_t \kappa_\lambda + A_9 \, c_g \kappa_\lambda) c_2 \\ &+ A_{10} \, c_2 c_{2g} + (A_{11} \, c_g \kappa_\lambda + A_{12} \, c_{2g}) \, \kappa_t^2 \\ &+ (A_{13} \, \kappa_\lambda c_g + A_{14} \, c_{2g}) \, \kappa_t \kappa_\lambda + A_{15} \, c_g c_{2g} \kappa_\lambda \,. \end{split}$$

YR4 arXiv:1608.06578

07/06/2019

3.7) Benchmark limits

3.3) Why is it important?

 $V(T,H) \ = \ \lambda (H^2 - v^2)^2 + b \, T^2 H^2 + a \; T H^3$

Example: Electroweak phase transition in early universe:

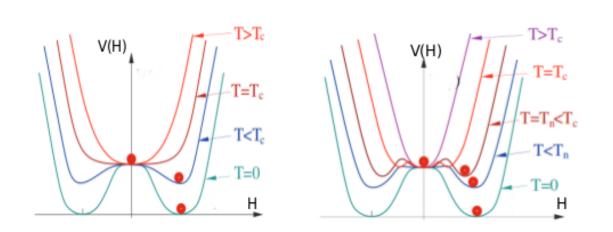
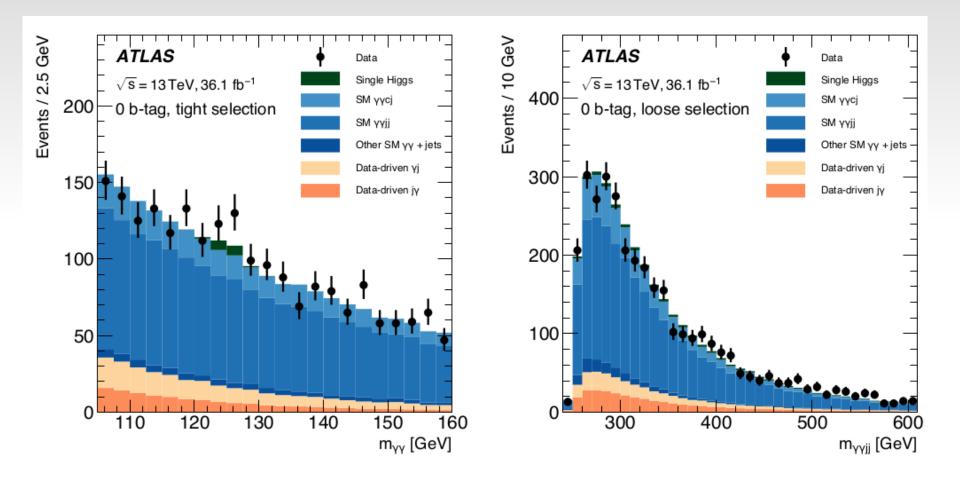



Figure 2: Left: Crossover or second order phase transition 1. Right: First order phase transition 1.

In some models the « boiling » universe can generate naturally particle/anti-particle asymmetry.

07/06/2019

M. Gouzevitch. HH \rightarrow 2b2g at CMS