

Workshop on Photon Physics and Simulation at Hadron Colliders

INFN Frascati, June 6-7, 2019

Dark Matter and Supersymmetry with Photons

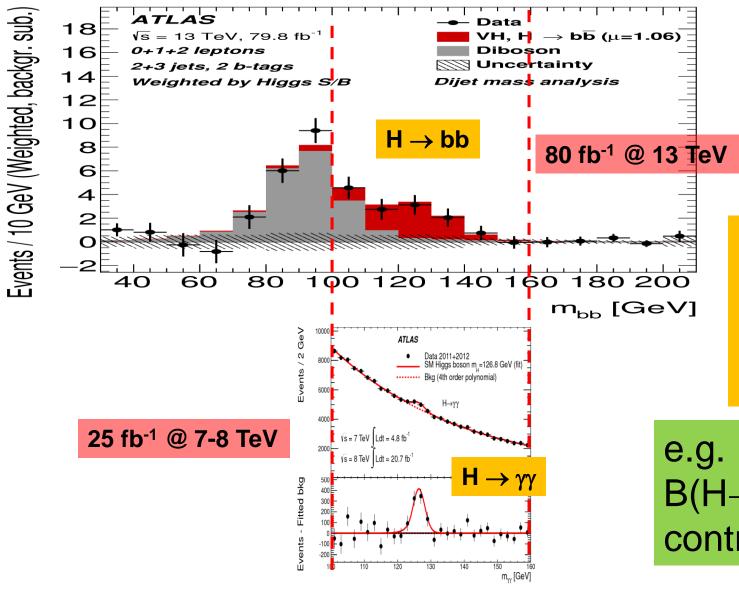
Bruce A. Schumm

Santa Cruz Institute for Particle Physics University of California, Santa Cruz On behalf of the

ATLAS and CMS

Collaborations

Preamble

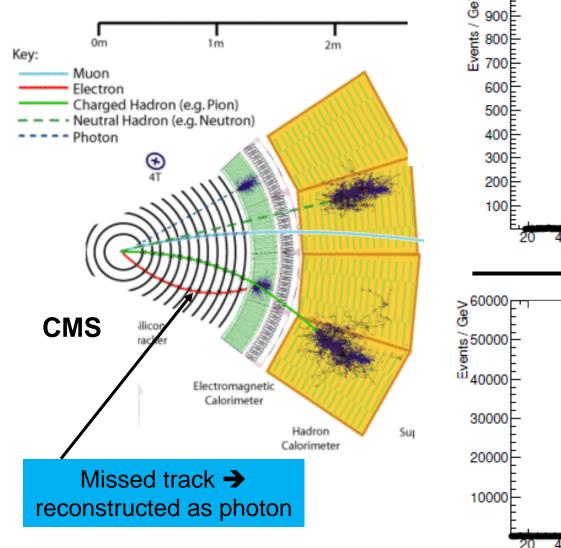


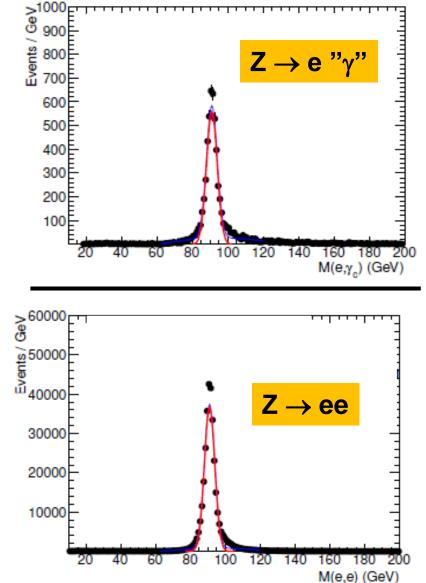
- Many models motivate photonic searches
 - GMSB SUSY
 - \circ Compositeness
 - o Kaluza-Klein towers
 - \circ $\,$ Channels with intermediate Higgs $\,$
 - o Generic dark matter

o ...

- Talk will be organized more by signature than by models
- Although generally we asked that models be motivated by signatures (but finding a signal (!) in a signature motivated by a model won't confirm the model...)
- Will spend a moment on the advantages of photons
- Analyses will be presented in roughly inverse order of "subtlety" of signature (in my estimation)

The Beauty of Photons: Clean and precise




Most signals involve EW couplings in the production/decay chain → isolated photons

Clarity of reconstruction allows for extraction of clear signal, even over large physics backgrounds

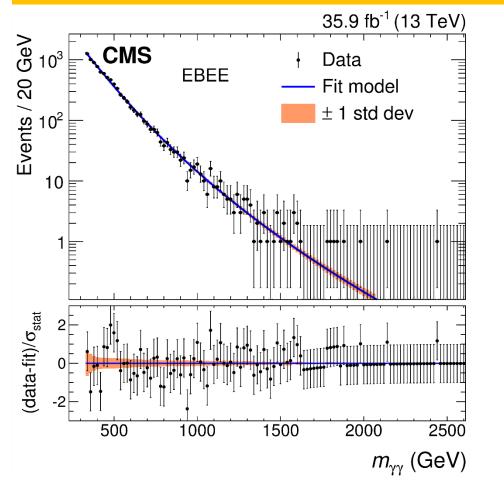
e.g. Higgs discovery B(H $\rightarrow\gamma\gamma$) \cong 2x10⁻³ but primary contribution to discovery

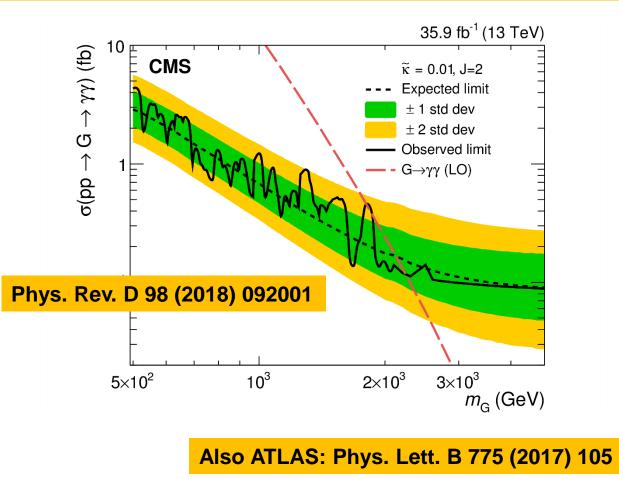
Backgrounds Relatively Easily Modeled

Mis-ID rate 1-5% depending on energy, angle

 $e^- \rightarrow \gamma$ mis-ID rate from ratio

Control sample with signal photon replaced by electron with identical kinematics then establishes background rate


Searches for New Physics with Photons at Hadron Colliders



The Analyses

Basic Photonic Search: High Mass Diphoton Resonance

- Motivations: Higgs Multiplets, Extra dimensions, generic scalar resonances
- Event selection essentially just two energetic photons

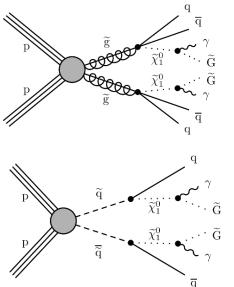
GMSB: Direct Photonic Signatures within SUSY

SUSY is a **broken** symmetry between fermions and bosons...

SUGRA: Local supersymmetry broken by **supergravity** interactions Phenomenology: LSP (usually χ_1^0) carries E_t^{miss} .

GMSB: Explicit couplings to intermediate-scale ($M_{EW} < \Lambda < M_{GUT}$) "messenger" **gauge** interactions **mediate** SUSY breaking.

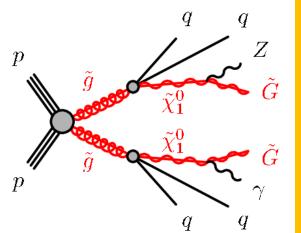
Phenomenology: Gravitino (\tilde{G}) LSP (\mathbf{E}_{t}^{miss}); NLSP is χ_{1}^{0} or slepton $\tilde{\tau}$. χ_{1}^{0} tends to be bino-like \rightarrow photonic signatures.


AMSB: Higher-dimensional SUSY breaking communicated to 3+1 dimensions via "Weyl **anomaly**".

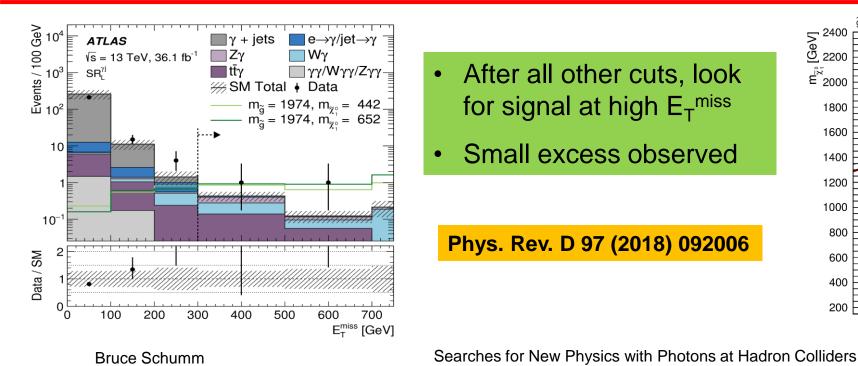
Phenomenology: LSP tends to be \widetilde{W} , with χ_1^+ , χ_1^0 nearly degenerate.

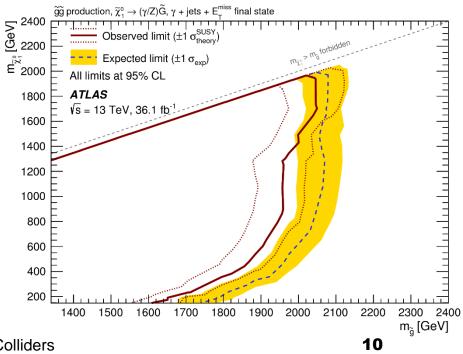
GMSB scenarios supply the inspiration for direct photons signatures **(SUGRA** inspires intermediate-Higgs scenarios)

				\tilde{g} - \tilde{g} - \tilde{g} production, $\tilde{g} \rightarrow qq (\gamma/Z) \tilde{G}$ (GGM), $\gamma \gamma + E_T^{miss}$ final state $= - 3500 \left[- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - $
$\tilde{g}_{\gamma 0} $ γ	${f S}$ ignal Region	$\mathrm{SR}_{\mathrm{S-L}}^{\gamma\gamma}$	$\mathrm{SR}_{\mathrm{S-H}}^{\gamma\gamma}$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \end{array} $
$\tilde{\chi}_1^0$ \tilde{G} -	Number of photons	≥ 2	≥ 2	
ğ g	$E_{\rm T}^{\gamma} ~[{ m GeV}]$	> 75	> 75	
	Number of jets			
ч	Number of leptons			m_forbidden
^q	$E_{\rm T}^{\rm miss}$ [GeV]	> 150	> 250	2000 $m_{\tilde{\chi}_1^0} > m_{\tilde{g}}^{\text{forbidden}}$
$\tilde{\alpha}$ γ	$H_{\rm T}$ [GeV]	> 2750	> 2000	
$\widetilde{\chi}_1^0$ \widetilde{G}	$m_{\rm eff} [{\rm GeV}]$			
$ \int_{\widetilde{Y}_1^0} \cdots \widetilde{G} $	$R_{ m T}^4$			
$\overline{\tilde{q}}^{-1}$	$\Delta \phi_{\min}(\text{jet}, E_{\mathrm{T}}^{\mathrm{miss}})$	> 0.5	> 0.5	
	$\Delta \phi_{\min}(\gamma, E_{\mathrm{T}}^{\mathrm{miss}}) \ (\Delta \phi(\gamma, E_{\mathrm{T}}^{\mathrm{miss}}))$	$_{\Gamma}^{ m miss})) \qquad$	> 0.5	
<u>q</u> =				
Signal Region	$\mathrm{SR}_{\mathrm{S-L}}^{\gamma\gamma}$	$\mathrm{SR}_{\mathrm{S-H}}^{\gamma\gamma}$		0
$\operatorname{Jet} \to \gamma$	$0.19^{+0.21}_{-0.19}$	$0.19^{+0.21}_{-0.19}$		Phys. Rev. D 97 (2018) 092006
QCD diphoton	$0.00^{+0.17}_{-0.00}$	$0.00^{+0.17}_{-0.00}$		T Hys. Nev. D 37 (2010) 032000
EW background	0.08 ± 0.04	0.06 ± 0.04		$d\sigma$ (1.1 and 1.2 and
$(W \to \ell \nu) \gamma \gamma$	0.22 ± 0.14	0.21 ± 0.13		$\frac{u_0}{m}(M_{\sim} - 2200) \propto M_{\sim}^{-9}$
$(Z \to \nu \nu) \gamma \gamma$	0.01 ± 0.01	0.03 ± 0.02		$\frac{d\sigma}{dM_{\tilde{g}}}(M_{\tilde{g}}=2200) \propto M_{\tilde{g}}^{-9}$
Expected backgroun	nd events $0.50^{+0.30}_{-0.26}$	$0.48^{+0.30}_{-0.25}$		ourig
Observed events	0	0		Also CMS: arXiv:1903.07070; submitted to JHEP
				Also CWS. alxiv. 1905.07070, sublitted to STEL


Searches for New Physics with Photons at Hadron Colliders

	Signal Region	$SR_{W}^{\gamma\gamma}$,	$SR_{W}^{\gamma\gamma}$ II	$= \frac{\tilde{\chi}_{2}^{0} - \tilde{\chi}_{1}^{\pm}}{\tilde{\chi}_{2}^{0} - \tilde{\chi}_{1}^{\pm}} \text{ production, } \tilde{\chi}_{2}^{0} \rightarrow (Z/h)\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow (\gamma/Z)\tilde{G} \text{ (GGM), } \gamma\gamma + E_{T}^{\text{miss}} \text{ final state}$
$p \qquad \qquad$	Signal Region Number of photons $E_{\rm T}^{\gamma}$ [GeV] Number of jets Number of leptons $E_{\rm T}^{\rm miss}$ [GeV] $H_{\rm T}$ [GeV]	$SR_{W-L}^{\gamma\gamma}$ ≥ 2 > 75 \cdots > 150 > 1500	$SR_{W-H}^{\gamma\gamma}$ ≥ 2 > 75 > 250 > 1000	$= \underbrace{\begin{array}{c}2000\\9\\1800\\1800\\1600\\1200\end{array}}^{2} \underbrace{\textbf{ATLAS}}_{V\overline{s}=13 \text{ TeV}, 36.1 \text{ fb}^{-1}} \\ = \underbrace{\begin{array}{c}200\\1800\\1800\\1800\\1800\\1800\\1800\\1800\\1$
γ W/Z/h	$ \begin{array}{l} m_{\rm eff} \ [{\rm GeV}] \\ R_{\rm T}^4 \\ \Delta \phi_{\rm min} ({\rm jet}, E_{\rm T}^{\rm miss}) \\ \Delta \phi_{\rm min} (\gamma, E_{\rm T}^{\rm miss}) \ (\Delta \phi(\gamma, E_{\rm T}^{\rm miss})) \end{array} $	$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$	 > 0.5 > 0.5	
Signal Region	$\mathrm{SR}_{\mathrm{W-L}}^{\gamma\gamma}$	$\mathrm{SR}_{\mathrm{W-H}}^{\gamma\gamma}$		
Jet $\rightarrow \gamma$ QCD diphoton EW background	$\begin{array}{c} 0.93 \pm 0.67 \\ 0.15 \substack{+0.17 \\ -0.15} \\ 0.88 \pm 0.23 \end{array}$	$\begin{array}{c} 0.19\substack{+0.21\\-0.19\\0.00\substack{+0.17\\-0.00\\0.51\pm0.15\end{array}}$		0 200 400 600 800 1000 1200 1400 1600 1800 2000 $m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_2^{0}}$ [GeV]
$(W \to \ell \nu) \gamma \gamma$ $(Z \to \nu \nu) \gamma \gamma$ Expected background of Observed events	1.55 ± 0.78 0.15 ± 0.08	$ \begin{array}{r} 0.31 \pm 0.13 \\ 1.08 \pm 0.56 \\ 0.27 \pm 0.13 \\ \hline 2.05^{+0.65}_{-0.63} \\ \hline 1 \end{array} $	•	Lower production cross section: somewhat more challenging to separate from backgrounds
	0	1	•	Can benefit from increased statistics


GMSB: Can you find it with just one photon?

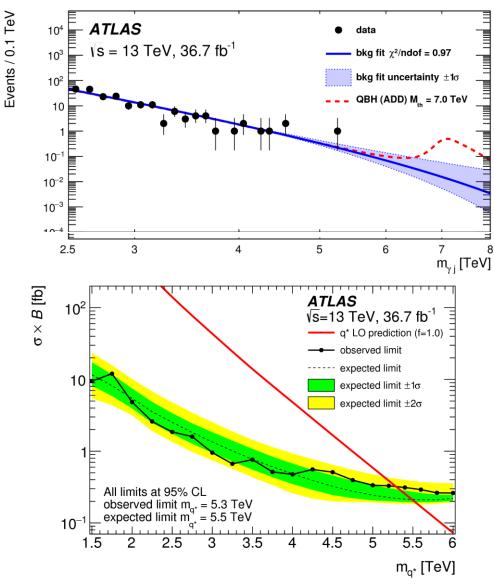


- Mixed NLSP can lead to limited γ production
- High backgrounds in single-photon samples
- Suppress with large MET, extensive jet activity
- Becomes model specific (models provide more discriminators, at cost of generality)
- Possibility of missing signals (ideas needed!)

Signal Region	$\mathrm{SR}_\mathrm{L200}^{\gamma\mathrm{j}}$	$\mathrm{SR}_\mathrm{H}^{\gamma\mathrm{j}}$
Number of photons	≥ 1	≥ 1
$E_{\mathrm{T}}^{\gamma} \; [\mathrm{GeV}]$	> 145	> 400
Number of jets	$\bigcirc \geq 5$	≥ 3
Number of leptons	0	0
$E_{\rm T}^{\rm miss} [{ m GeV}]$	≤ 200	> 400
$H_{\rm T} [{\rm GeV}]$		
$m_{\rm eff} [{ m GeV}]$	> 2000	> 2400
$R_{ m T}^4$	< 0.90	
$\Delta \phi_{\min}(\mathrm{jet}, E_{\mathrm{T}}^{\mathrm{miss}})$	> 0.4	> 0.4
$\Delta \phi_{\min}(\gamma, E_{\mathrm{T}}^{\mathrm{miss}}) \; (\Delta \phi(\gamma, E_{\mathrm{T}}^{\mathrm{miss}}))$	(> 0.4)	(> 0.4)

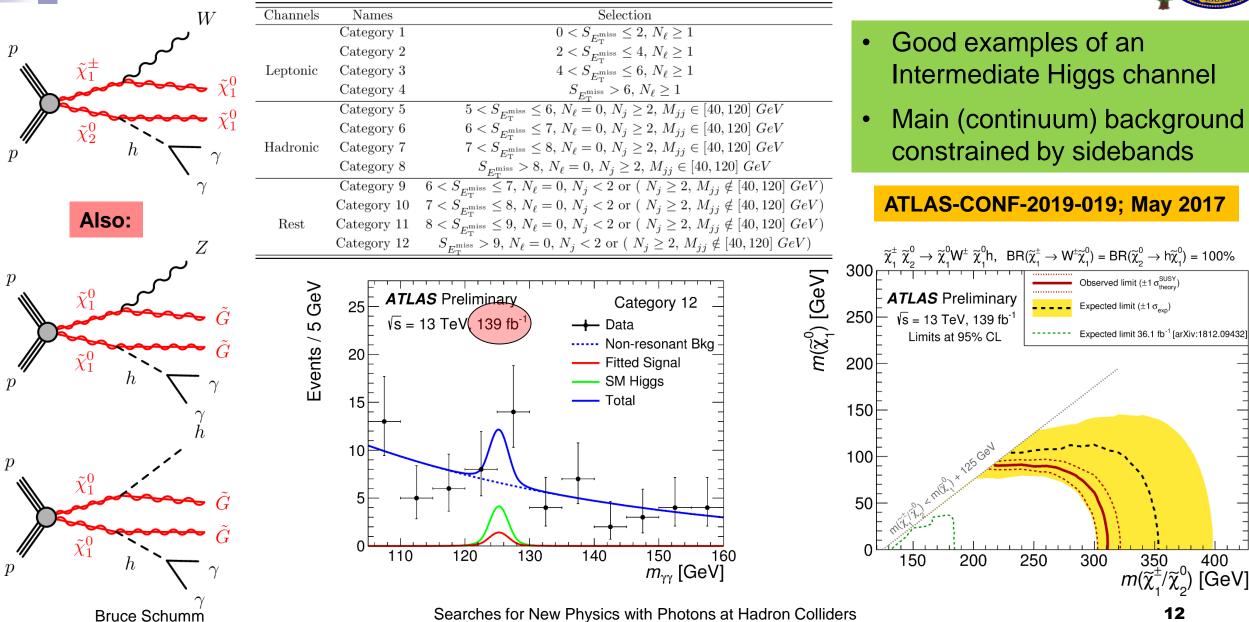
Or: Single Photon, but Paired to Form Exotic Resonance

- De-excitation of exited strong states can be reconstructed as relatively narrow states ("γ-jet resonance")
- Excited composite quarks $(q^* \rightarrow q\gamma)$
- Kaluza-Klein de-excitation
- Set limits on compositeness scale Λ or size of extra dimensions


Particle-level selection for fiducial region

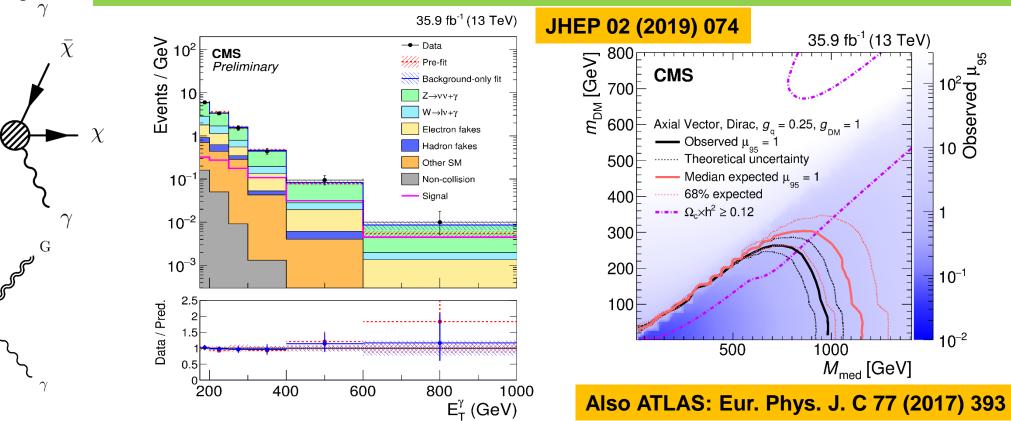
 $\begin{array}{l} \mbox{Photon}: \, E_{\rm T}^{\gamma} > 150 \ {\rm GeV}, \, |\eta^{\gamma}| < 1.37 \\ \mbox{Jet}: \, p_{\rm T}^{\rm jet} > 60 \ {\rm GeV}, \, |\eta^{\rm jet}| < 4.5 \\ \mbox{Photon-Jet} \ \eta \ {\rm separation}: \ |\Delta \eta_{\gamma j}| < 1.6 \\ \mbox{No jet with} \ p_{\rm T}^{\rm jet} > 30 \ {\rm GeV} \ {\rm within} \ \Delta R < 0.8 \ {\rm around} \ {\rm the photon} \end{array}$

Detector-level selection for selection efficiency


Tight photon identification Photon isolation Jet identification including quality and pile-up rejection requirements

Eur. Phys. J. C (2018) 102

SUSY: $\chi_2^0\chi_1^{\pm}$ production; $\chi_1^{\pm} \rightarrow W\chi_1^0$ and $\chi_2^0 \rightarrow h\chi_1^0$; $h \rightarrow \gamma_2^0$

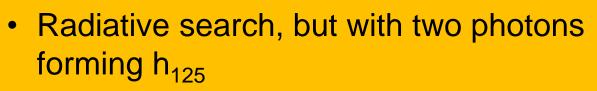


Monophoton: Generic Production of Invisible States

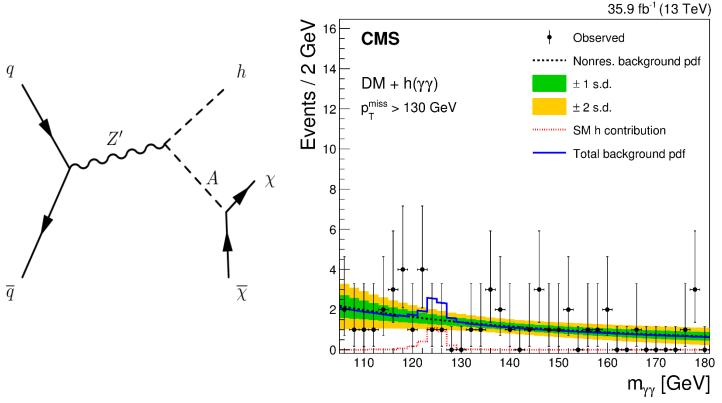
- Produced state is invisible; can only be detected in recoil against SM parton (photon, jet)
 - Photons produced via ISR, or in effective contact interaction
- Recoil produces significant E^{miss}
- $E_T^{miss} > 170$, $E_T^{\gamma} > 175$, and $E_T^{\gamma} / E_T^{miss} < 1.4$ to protect against mis-measurement

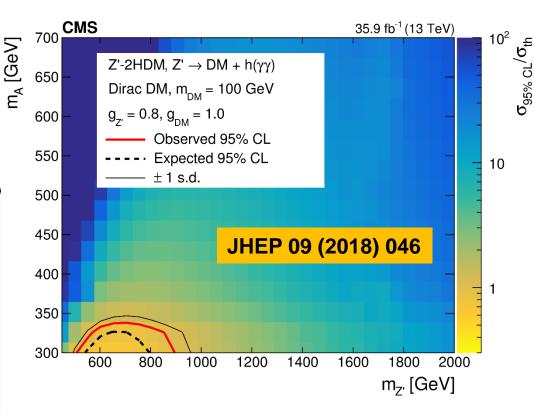
ā

q

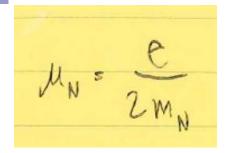

Q

q


Searches for New Physics with Photons at Hadron Colliders


Higgstrahlung: Another Use of Photons in DM Searches

- Very low backgrounds
- Pay price of branching rate (~2x10⁻³)



Most sensitive analysis for low-mass Z[/] propagator

Searches for New Physics with Photons at Hadron Colliders

Anomalous Couplings (First, $Q^2 = 0$; proton moment μ_p)

Nuclear magneton μ_N arises for point-like states (pre-1950s proton) in the Dirac theory, but:

$$\frac{1}{10} > = \frac{1}{12} \left[(8_{n_{1}}, 2m_{s}) + (8_{m_{A}}, 2m_{A}) \right]$$

$$= \frac{1}{12} \left[2u_{1}u_{1}d_{1} + 2d_{1}u_{1}u_{1} + 2u_{1}d_{1}u_{1} \right]$$

$$= \frac{1}{18} \left[2u_{1}u_{1}d_{1} + 2d_{1}u_{1}u_{1} + 2u_{1}d_{1}u_{1} \right]$$

$$= \frac{1}{18} \left[\frac{1}{10} - \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right]$$

$$= \frac{1}{10} \left[\frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right]$$

$$= \frac{1}{10} \left[\frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right]$$

$$= \frac{1}{10} \left[\frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right]$$

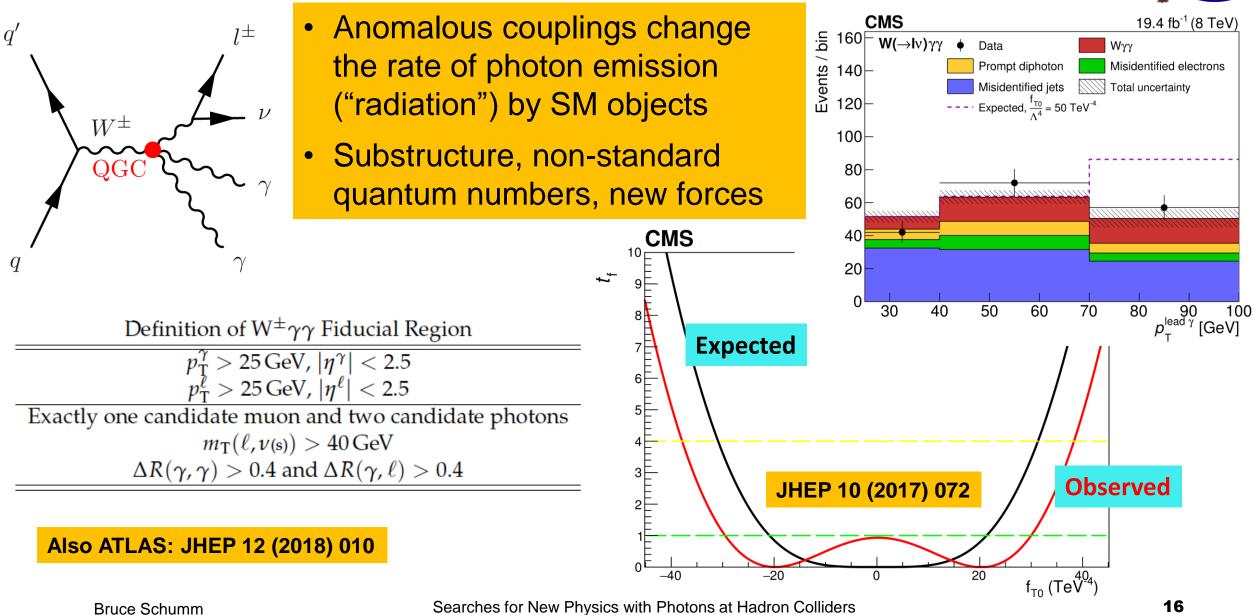
$$= \frac{1}{10} \left[\frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right]$$

$$= \frac{1}{10} \left[\frac{1}{10} + \frac{1}{10} \right]$$

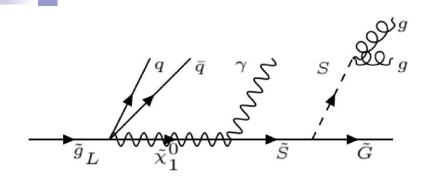
$$= \frac{1}{10} \left[\frac{1}{10} + \frac{1$$

Wavefunction

But there's more going on... **new physics** leads to **anomalous photonic couplings** that provide essential clues to the deeper under-standing of nature (e.g. SU(3) quark model)

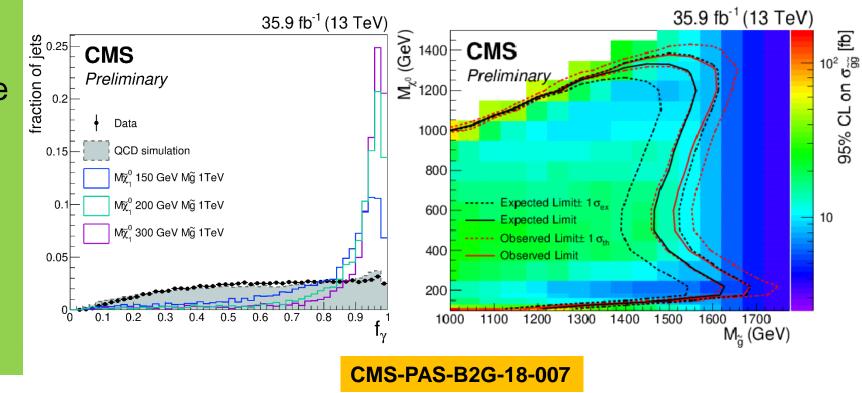

REMARKANIS

Bruce Schumm


Searches for New Physics with Photons at Hadron Colliders

Radiative Behavior (Anomalous Couplings at Q^2 > 0)

"Stealth" SUSY with Non-Isolated Photons



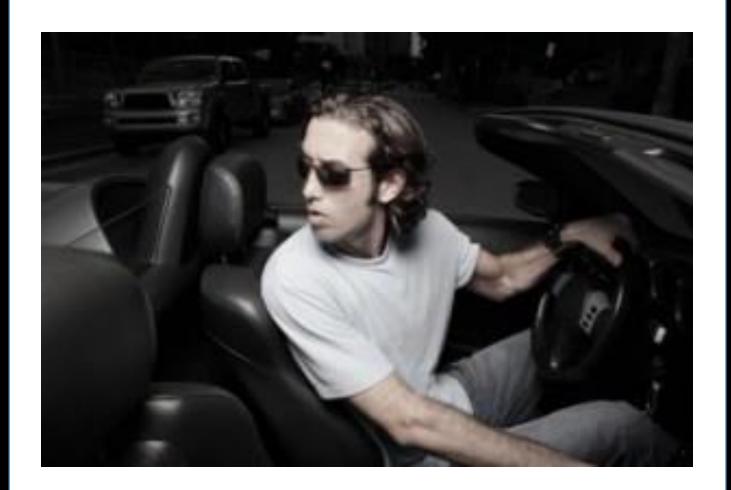
Photon buried in jet → challenging, requires sophisticated jet substructure tools

- 3+ jets
- One subjet with high photon energy fraction f_v
- Large total visible energy (H_T ~ 2 TeV)

S, \tilde{S} are lightly-couple, degenerate hidden sector bosons

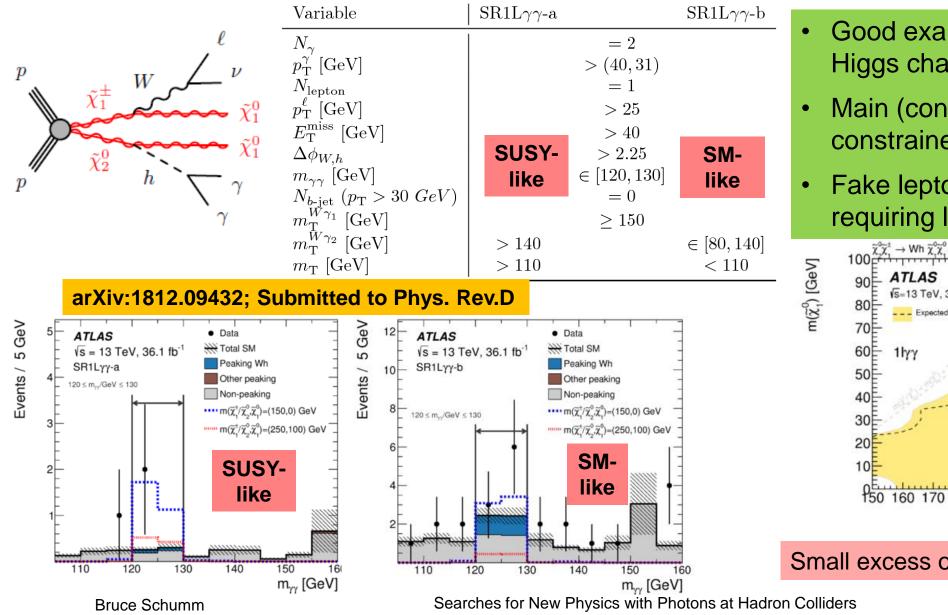
 \rightarrow \tilde{G} produced with little momentum, so event has limited missing energy

PHOTONS offer a clean, powerful and often low-background approach to searching for new physics

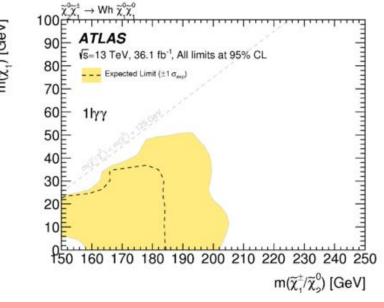

Their **unique**, **relatively strong coupling** to SM fermions and bosons allow for the development of many promising signatures, motivated by some of the most promising BSM hypothesis (especially SUSY)

The **intermediate Higgs channels**, while suffering a bit from the low $H \rightarrow \gamma \gamma$ branching fraction, offer a clean approach with excellent control of backgrounds that competes well with and complements other approaches.

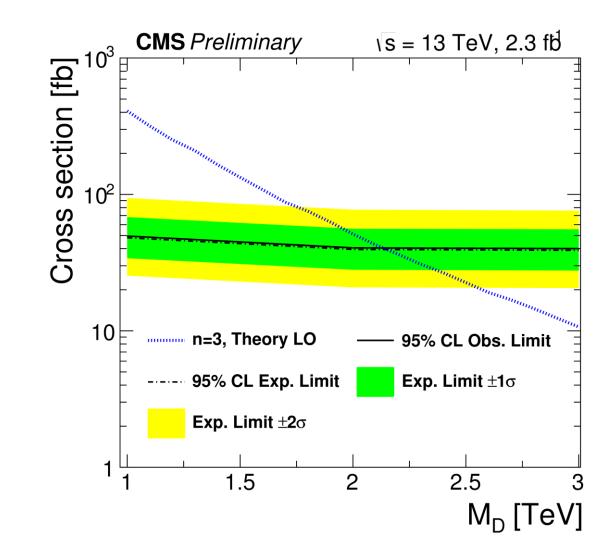
Some of the highest-mass limits are established with photonic searches (M_{~g}>2200 GeV in bino-like NLSP scenario)


Subtle signatures that might hold the key to breakthrough discoveries (e.g. Stealth SUSY) **remain under development**!

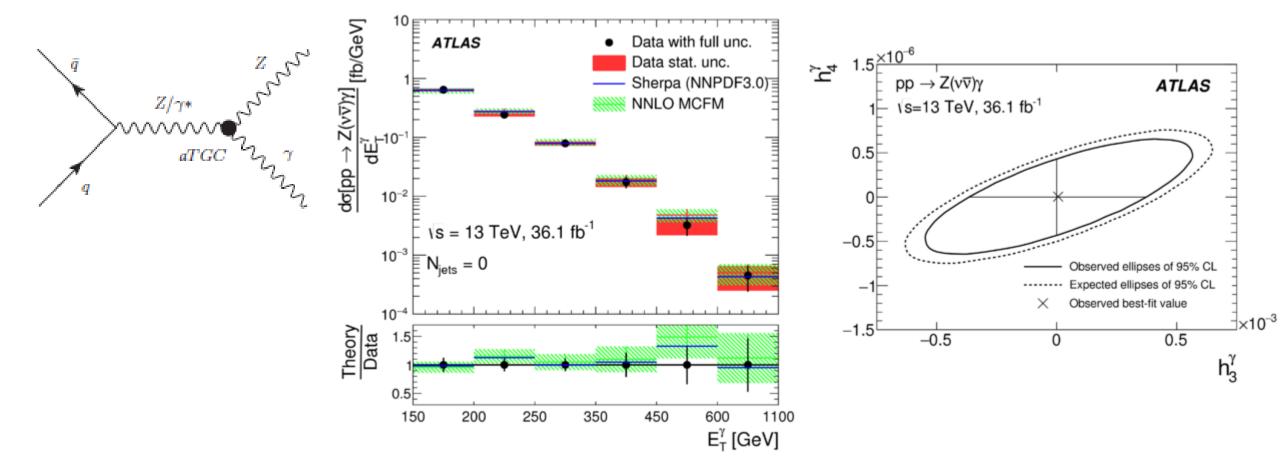
BACKUP



SUSY: $\chi_2^0\chi_1^{\pm}$ production; $\chi_1^{\pm} \rightarrow W\chi_1^0$ and $\chi_2^0 \rightarrow h\chi_1^0$; $h \rightarrow \gamma\gamma$



- Good examples of an Intermediate Higgs channel
- Main (continuum) background constrained by sidebands
- Fake lepton background removed by requiring l-γγ vertex consistency



Small excess observed; update soon!

Radiative Behavior (Anomalous Couplings at Q² > 0)

CMS SUSY:

http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS/index.html And then just click on the link for final states with photons

CMS mainstream photon Moriond result: arXiv:1903.07070

CMS Exotica http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html 11 results with "photon" in title

ATLAS: Just see https://twiki.cern.ch/twiki/bin/view/AtlasPublic And search for "photon" results. Note there's no SUSY selector (?!) so just search for all photon results.

Pseuso-Goldstini analysis (Dodsworth): Nov 12 Photons+X meeting (no ref for model though; but I dug up <u>https://arxiv.org/abs/1312.1698</u>

Higgs decays to neutralinos (Khilesh): see Nov 22 2017 meeting in OLD groupings of meetings. References on signal model page.

