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Abstract

In a number of settings (including models of kinetic theory and strongly 
coupled supersymmetric Yang-Mills theory), the pressure anisotropy of 
boost-invariant flow is known to exhibit attractor behaviour well before local 
equilibration is attained. I will describe some aspects of this phenomenon and 
its possible implications for relativistic hydrodynamics.



Mueller-Israel Stewart hydrodynamics

 
 
 

Perturbations around equilibrium reveal both hydro and non-hydrodynamic modes 

The latter act as a regulator to ensure causal propagation 
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Bjorken flow in MIS hydrodynamics
The symmetries of Bjorken flow imply (assuming conformal symmetry) 

with                                 and                        (effective temperature).  

Dimensionless pressure anisotropy

 

The equations of MIS hydro imply

• a second order ODE which determines  

• a first order ODE which determines 
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Evolution equation for the pressure anisotropy 

 

in terms of dimensionless transport coefficients 

Asymptotic late-time solution: 

 
Universal - no dependence on initial conditions.
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Exponential corrections to the asymptotic gradient solution imply a transseries structure 
 
 
 
 

• The form of the transseries is determined by the non-hydrodynamic sector 

 

• The hydro sector is universal: no memory of initial conditions

• The transseries parameter     contains the integration constant (initial data) 

• The transseries describes the dissipation of initial state information  

• Resurgence: all universal coefficients can be recovered from the hydro ones 
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Similar asymptotic solutions have been found 

• Other hydro models (HJSW, aHYDRO) 

• At the microscopic level 

A. Kinetic theory 

B. N=4 supersymmetric Yang-Mills theory  
 
 
 
 
where     is the vector of black-brane quasinormal modes.  

These transseries solutions imply emergence of universal behaviour at late time, 
which can be approximated by low orders of the gradient expansion.
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Attractor solution in MIS hydro
Evolution equation for the pressure anisotropy 

 
Numerical solutions tend to the asymptotic 
late-time solution 

but already at very early times they show  
characteristic attractor behaviour. 

The decay exponential on a scale set by      .  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Similar attractor behaviour has been found in other hydrodynamic models 
(HJSW, aHYDRO), as well as at the microscopic level 

• Kinetic theory 

• N=4 supersymmetric Yang-Mills theory



Attractor behaviour of the temperature
Time evolution of the temperature: hardly any distinctive pattern at early times. 

 

 
There is however a very clear pattern on constant time slices in phase space.
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Summary
• The emergence of hydrodynamic behaviour is governed by the decay 

of non-hydrodynamic transients rather than local equilibration 

• Late-time asymptotic solutions have the form of transseries and the 
expresses the “dissipation” of initial state information 

• The transseries solutions suggests the existence of attractors which 
can be approximated by low orders of the gradient expansion 

• These features are seen both in hydrodynamic models and at the 
microscopic level 

• Attractor behaviour can be studied in a phase space picture of the 
dynamics



Backup material



Asymptotic behaviour in BRSSS

• Branch point location determined by  

• Cannot integrate over the real line 

• Complex ambiguity 

Singularities of the analytic 
continuation of the Borel  
transform

τπ



Borel summation
• Borel transform  
 

• Borel sum
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Borel sum in HJSW
We adopt HJSW as a testing ground: 

• Use 240 terms of the series 

• The result can be compared to the 
numerically determined attractor 

• The summation breaks down for w < 0.3, 
but gets better for larger values of w

• Could be improved by including  
trans-series sectors (this would require 
determining appropriate values of trans 
series parameters) 

Next: proceed in the same way to sum the 
series for N=4 SYM.

Attractor
Borel



Seeing the transients in SYM plasma
We can look for the leading transseries correction in AdS/CFT numerics at late times. 

The leading transseries correction from our hydro model is of the form 

where 
 
 
 
The approximate solution  
 

can be compared to numerical solutions of time evolution obtained at the 
microscopic level using AdS/CFT.
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Here all the parameters are fixed 
apart from the two amplitudes, 
which reflect the initial conditions and 
differ from one pair of solution to 
another.  

The two amplitudes appearing in the 
formula above can then be fitted to 
the numerical solution. 

To see that the transient, damped oscillations can be resolved with the existing 
numerical methods we can consider pairs of solutions. Because we are looking at a 
universal observable, the hydrodynamic part will cancel:
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