ALICE results on the production of charged particles in pp, p-Pb, Xe-Xe and Pb-Pb collisions at the LHC

Jacek Otwinowski (IFJ PAN, Krakow)
On behalf of the ALICE Collaboration

XIV Polish Workshop on Relativistic Heavy-Ion Collisions: Interplay between soft and hard probes of heavy-ion collisions

6-7 April 2019

25 years of ALICE Collaboration

A Large Ion Collider Experiment

- Excellent particle identification capabilities in the large p_T range 0.1-20 GeV/c
- Good momentum resolution ~1-5% for $p_T = 0.1-50 \text{ GeV/}c$

ALICE at work since 2009

System	Year	√s _{NN} (TeV)	L_{int}
Pb-Pb	2010-2011	2.76	~75 μb ⁻¹
	2015	5.02	~250 μb⁻¹
	2018	5.02	~0.9 nb ⁻¹
Xe-Xe	2017	5.44	~0.3 µb⁻¹
p-Pb	2013 2016	5.02 5.02, 8.16	~15 nb ⁻¹ ~3 nb ⁻¹ , ~25 nb ⁻¹
рр	2009-2013	0.9, 2.76, 7, 8	~200 μb ⁻¹ , ~100 μb ⁻¹ , ~1.5 pb ⁻¹ , ~2.5 pb ⁻¹
	2015-2018	5.02, 13	~1.3 pb ⁻¹ , ~59 pb ⁻¹

- Energy and system dependence studies of particle production are possible
- Large statistics of pp, p-Pb and Pb-Pb collisions at the same $\sqrt{s_{\rm NN}}$
 - → precise comparison studies

p-Pb

Outline

- Charged-particle multiplicity measurements in pp, p-Pb, Pb-Pb and Xe-Xe
 - → Bulk matter properties
- Transverse momentum spectra and nuclear modification factors in p-Pb, Pb-Pb and Xe-Xe
 Thermodynamic and transport properties of matter
- Outlook

Charged-particle multiplicity in pp, p-Pb, Pb-Pb and Xe-Xe

Phys. Lett. B 790 (2019) 35

- Measurement in broad rapidity range and several centrality intervals
 - Fit assuming Gaussian shape of dN_{ch}/dy
- Vs dependence in Xe-Xe similar to other AA systems and differs from pp and p-Pb
- Total charged-particle multiplicity from extrapolation to $\eta = \pm y_{\text{beam}}$

Charged-particle multiplicity vs N_{part} in pp, p-Pb, Pb-Pb and Xe-Xe

Phys. Lett. B 790 (2019) 35

- Charge-particle multiplicity density and total multiplicity as a function of centrality
 - Deviation from N_{part} scaling (also seen at RHIC)
 - Steeper rise in most central Xe-Xe and Pb-Pb collisions
- Comparison to models shows that collision geometry plays an important role in particle production

Charged-particle p_T spectra in pp, p-Pb, Pb-Pb and Xe-Xe

JHEP 1811 (2018) 013

Phys. Lett. B 788 (2019) 166

- p_T spectra in Pb-Pb and Xe-Xe measured in nine centrality intervals
- p_T reference spectra measured in pp and p-Pb collisions
- All spectra obtained using updated corrections (MC tuned on data)

PP, P-PB AND PB-PB COMPARISON

Ratios of spectra $\sqrt{s_{NN}} = 5.02 / 2.76 \text{ TeV}$

JHEP 1811 (2018) 013

- Spectra get significantly harder with collision energy
- Similar increase with energy in pp and peripheral Pb-Pb collisions
- Gradual reduction of the ratio towards central Pb-Pb collisions

Charged-particle R_{AA} at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV

JHEP 1811 (2018) 013

$$R_{_{AA}} = \frac{1}{\left\langle T_{_{AA}} \right\rangle} \frac{dN_{_{AA}} / dp_{_{T}}}{d\sigma_{_{pp}} / dp_{_{T}}} \equiv \frac{[medium]}{[vacuum]}$$

Nuclear overlap function <T_{AA}> from Glauber MC

- Different suppression pattern depending on Pb-Pb collision centrality
- Maximum suppression by a factor ~7 $(6 < p_T < 7 \text{ GeV/}c)$ in 0-5% collisions
- No significant evolution with collision energy
- → Indication of larger parton energy loss at $\sqrt{s_{\text{NIN}}} = 5.02 \text{ TeV}$

Charged-particle R_{ppb} and R_{pbpb} at $\sqrt{s_{pn}} = 5.02 \text{ TeV}$

For $p_T > 7 \text{ GeV/c}$

- Strong suppression in central Pb-Pb collisions
- Small suppression in peripheral Pb-Pb collisions (possible due to biased centrality selection)
- No modification in p-Pb collisions (no centrality selection)
 - → Suppression in central Pb-Pb collisions is due to final state effects!

Confirmed also by jet measurements ALICE, Phys. Lett. B749 (2015) 68

JHEP 1811 (2018) 013

Suppression in peripheral Pb-Pb collisions?

ALICE, arXiv:1805.05212

- R_{AA} average over 8 < p_{T} < 20 GeV/c
- R_{AA} never reach unity
- HG-Pythia contains no nuclear effects
- → no need for jet quenching
- → centrality selection is biased by fluctuations in particle production towards smaller #MPIs

HG-Pythia model:

 incoherent superposition of Pythia pp collisions with #MPIs from HIJING-Glauber

A. Morsh & C. Loizides, PLB 773 (2017) 408

Suppression in peripheral Pb-Pb collisions?

HG-Pythia model:

- incoherent superposition of Pythia pp collisions with #MPIs from HIJING-Glauber
 - A. Morsh & C. Loizides, PLB 773 (2017) 408

- R_{AA} average over 8 < p_{T} < 20 GeV/c
- R_{AA} never reach unity
- HG-Pythia contains no nuclear effects
- → no need for jet quenching
- → centrality selection is biased by fluctuations in particle production towards smaller #MPIs

 R_{AA} scaled with high- p_T bias from HG-Pythia \rightarrow Indication that $R_{AA} \sim 1$ for 75-90% central collisions

R_{AA} of D mesons and light hadrons in Pb-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

JHEP10 (2018) 174

- For $p_T > 10$ GeV/c: the same suppression of light-flavor hadrons and D mesons in Pb-Pb collisions \rightarrow similar energy loss of heavy and light partons in the QGP?
- For p_T < 10 GeV/c: smaller suppression of D mesons than light-flavor hadrons (difficult to interpret due to other effects e.g. radial flow, recombination,...)

6/4/2019

15

XE-XE AND PB-PB COMPARISON

Mean p_T spectra in Xe-Xe and Pb-Pb

Phys. Lett. B 788 (2019) 166

Testing system size (A) dependence

- Similar <p_T> as function of centrality in Xe-Xe and Pb-Pb collisions
- $\langle p_T \rangle$ increases with centrality due to radial flow
- Predictions by Giacalone et al. [Phys. Rev. C 97, 034904 (2018)] describes trend in the data
 - Event-by-event simulations: T_RENTo initial condition + viscous hydro

→ Strong constraints on the hydrodynamic evolution of the system

Charged-particle R_{AA} in Pb-Pb and Xe-Xe

Phys. Lett. B 788 (2019) 166

- Similar suppression pattern in Xe-Xe and Pb-Pb
- Larger suppression in Pb-Pb than in Xe-Xe collisions at high $p_{\rm T}$ at the same centrality
- Normalization uncertainty (T_{AA} and pp norm.) are much larger for Xe-Xe
 - less precisely known nuclearcharge-density distribution of deformed ¹²⁹Xe nucleus
- → Result of interplay between geometry and path length dependence of parton energy loss

Charged-particle R_{AA} in Xe-Xe and Pb-Pb

Phys. Lett. B 788 (2019) 166

- Similar R_{AA} in central Xe-Xe and Pb-Pb collisions at similar multiplicity
- Different R_{AA} in more peripheral collisions
- → Result of interplay between geometry and path length dependence of parton energy loss

Charged-particle R_{AA} vs $dN_{ch}/d\eta$ in Xe-Xe and Pb-Pb

Phys. Lett. B 788 (2019) 166

- A remarkable similarity is found for all p_T ranges for $\langle dN_{ch}/d\eta \rangle > 400$
- Dashed lines are fits to the spectra
- → Result of interplay between geometry and path length dependence of parton energy loss

Outlook

- Bulk matter properties
 - Deviation from N_{part} scaling at the LHC
 - The collision geometry plays an important role in particle production
 - The underlying mechanism to describe the increase of N_{ch} as function of N_{part} and \sqrt{s} is still unknown
- p_T spectra and nuclear modification factors
 - Indication of larger energy loss at higher collision energy
 - Suppression in central Pb-Pb collisions is due to final state effects
 - Onset of suppression in peripheral Pb-Pb collisions is due to biases in centrality selection
 - Similar suppression is observed in central Pb-Pb and Xe-Xe at the same multiplicity, but smaller in Xe-Xe for more peripheral events
 - No mass dependence of parton energy loss at high p_T ?

Backup

Parton energy loss and jet quenching

Radiative and collisional parton energy loss:

$$\Delta E = \Delta E_{\text{coll}} + \Delta E_{\text{rad}}$$
, ΔE (E, m, C_{R} ; ρ_{g} , α_{s} , T, L)
D. d'Enterria, arXiv:0902.2011

Radiative energy loss dominate at high- p_{T} :

- Color charge dependence C_R : $\overline{C_{R,g}} > \overline{C_{R,q,Q}}$ $\rightarrow \Delta E_g > \Delta E_{q,Q}$
- Mass dependence "dead cone": gluon radiation suppression at $\Theta < m_Q/E$ $\rightarrow \Delta E_Q > \Delta E_Q$

L. Dokshitzer & D.E. Kharzeev, PLB 519 (2001) 199

- In static medium: $\Delta E_{\text{coll}} \sim L$, $\Delta E_{\text{rad}} \sim L^2$
- Characterize medium transport properties via parton energy loss

$$\hat{q} \equiv \frac{m_{\rm D}^2}{\lambda} = m_{\rm D}^2 \rho \, \sigma$$

Event Centrality Selection

ALICE-PUBLIC-2018-011

- Correlate particle multiplicity with collision geometry i.e. impact parameter, volume and shape (A. Białas et al. APPB 8 (1977) 389)
- N_{coll} , N_{part} and $T_{\text{AA}} = N_{\text{coll}}$ / $\sigma^{\text{NN}}_{\text{INEL}}$ values determined by fitting NBD-Glauber coupled to two parameter model

Relative Particle Abundance

ALICE, arXiv:1802.09145

Relative particle abundance is not properly calculated in MC generators

Influences corrections to the spectra

6/4/2019 25

Improvements to the p_T spectra analysis

ALICE, arXiv:1802.09145

- Improved efficiency and contamination corrections based on measured particle species
 - → Reduced systematic uncertainties by a factor of 2 as compared to previous analyses

Charged-particle multiplicity vs models in Xe-Xe

Phys. Lett. B 790 (2019) 35

- Models do not describe charged-particle production in the whole rapidity range
- N_{part} dependence is best described by rcBK-MC: CGC saturation model based on Balitsky-Kovchegov gluon evolution equation

Charged-particle R_{AA} vs models in Pb-Pb and Xe-Xe

JHEP 1811 (2018) 013

Phys. Lett. B 788 (2019) 166

Models:

- All models include radiative energy loss
- CUJET3.0 and Magdalena Djordjevic models also include elastic energy loss
- Calculations are performed in dynamically expanding medium except that of Vitev et al.