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The phase diagram
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Increase chemical potential by lowering the beam energy 

In reality, we add baryons (nucleons) from target and projectile  
to mid-rapidity 
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T
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Lattice QCD: 
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pseudo-critical line up to O(µ2) 
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Is there a critical point?



Cumulants and phase structure  
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What we always see.... What it really means....

“Tc” ~ 160 MeV
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How to measure derivatives
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At µ = 0:

Cumulants of Energy measure the temperature derivatives of the EOS
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energies above 19.6 GeV, the values of v2
3{2} linearly increase with the log(psNN ) for all of the four centralities.

Figure 5 right shows psNN dependence of the v2
3{2} scaled by the charged particle multiplicity per participant pair

nch,PP =
2

Npart
dNch/d⌘ for three centralities. Experimentally, the nch,PP has been measured and monotonically increase

with psNN [23], which can be related to the energy density of the system. The v2
3{2}/nch,PP shows a local minimum

around 20 GeV, which is the consequence of a relatively flat trend for v2
3{2} and monotonically increasing trend for the

nch,PP in the energy range 7.7 <psNN< 20 GeV. Physics wise, the v2
3{2}/nch,PP should reflect the ability of the system

to convert the initial geometry fluctuations to the final state. Thus, the local minimum in v2
3{2}/nch,PP could indicate

an anomalous low pressure inside the matter created in the collisions near psNN=20 GeV, where a minimum is also
observed for the slope of net-proton directed flow. Apparently, these observations can be interpreted by softening of
equation-of-state due to presence of the first order phase transition. However, conclusions only can be made after
carrying out careful theoretical and model studies for the dynamical evolution of the system including the physics of
first order phase transition at finite µB.

2.5. Net-proton number fluctuations
Fluctuations of conserved quantities, such as baryon (B), charge (Q) and strangeness (S) numbers, have been

proposed as a sensitive probe to search for the signature of the QCD critical point in heavy-ion collisions [24]. These
fluctuations are sensitive to the correlation length (⇠) [24] and can be directly connected to the susceptibility of the
system computed in theoretical calculations, such as Lattice QCD [25, 26, 27] and HRG models [28]. The STAR
experiment has measured various order fluctuations of net-proton (Np � Np̄, proxy for net-baryon), net-charge and
net-kaon (proxy for net-strangeness) numbers in the Au+Au collisons at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and
200 GeV [29, 30, 31].
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Figure 6. (Color online) Left: Energy dependence of �2 of net-proton distributions and Middle: S� divided by Skellam (Poisson) expeca-
tions for 0-5%, 5-10% and 70-80% centralities of Au+Au collisions at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV measured by STAR.
The experimental data is compared with Poisson expectations (dashed lines) and the UrQMD transport model calculations (shade bands ). The
statistic and systematic errors are plotted as vertical bar and brackets, respectively. Right: A schematic sketch for theoretically predicted neg-
ative(red)/positive(blue) critical contribution regions for �2 near the QCD critical point and possible chemical freeze-out regions for Au+Au
collisions 14.5 (green), 16.5 (purple) and 19.6 GeV (black).

Figure 6 left shows the e�ciency corrected �2 of net-proton distributions as a function of psNN for 0-5%, 5-10%
and 70-80% centralities of Au+Au collisions measured by STAR [31, 32]. The protons and anti-protons numbers
are measured with transverse momentum 0.4 < pT < 2 GeV/c and at mid-rapidity |y| < 0.5. The �2 shows a clear
non-monotonic variation with psNN for 0-5% centrality with a minimum around 20 GeV. Above 39 GeV, the values of
�2 are close to the unity for both central and peripheral collisions and deviate significantly below unity for the 0-5%
most central collisions at 19.6 and 27 GeV, then become above unity at 0-5% centrality in the energies below 19.6
GeV. Another intriguing structure observed in psNN dependence for the �2 of net-proton distributions in Au+Au
collisons is the so called ”Oscillation”. Namely, the oscillation is a structure that represents two observations, the so
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Latest STAR result on net-proton 
cumulants
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K4

K2

“Baseline”

K4/K2 follows expectation for CP , K3/K2 no so much….. 
URQMD totally fails to get trend for K4/K2 !

X. Luo, NPA 956 (2016) 75
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Skellam

“Baseline”



Further insights: Correlations
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Cumulants
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II. CUMULANTS AND CORRELATIONS FUNCTIONS

VK: VK: need to check if the ”coupling” is expected to increase with order of cumulant at critical
point. I thought so, this is where the scaling with the correlation length comes from. VK: I think
for this paper we should skip this discussion and concentrate on the signs, centrality and rapidity
dependence

Let us start by introducing the correlation functions, beginning with two particles. The two particle density for
particles with momenta p
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general the two particle density and correlation function depend on the momenta of both particles. In the following,
we will restrict ourselves to correlations in rapidity and adopt the following notation
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and similarly for higher order particle densities and correlation functions.
The three particle density depends on the one and two-particle densities as well as the two and three-particle

correlation functions
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and is related to the third order factorial moment F
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where C
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is the integrated genuine three-particle correlation function. Similarly the higher order factorial moment
are given by1
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At the same time, the particle number cumulant, Kn, can be expressed in terms of the factorial moments [6],
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1
See, e.g., Ref. [XXX] for explicit definitions of higher order correlation functions.

C2: Correlation Function



From Cumulants to Correlations 
(no anti-protons)
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Simple Algebra leads to relation between correlations Cn and Kn

Defining integrated correlations function a.k.a factorial cumulants

or vice versa

3

where ”N = N ≠ ÈNÍ. Formulas for the higher order cumulants can be found in Ref. [XXX].
Now we can relate the cumulants in terms of the correlation functions and the mean particle number ÈNÍ = F
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Before we apply the above equations to extract the correlation strength from the STAR data, let us make a few
more remarks concerning these correlation functions.

Frequently in the literature, one refers to correlation function where the trivial dependence on the particle den-
sity/multiplicity is removed
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which we shall refer to as reduced correlation functions or simply couplings. For example in terms of the reduced
correlation functions the two particle density would be given as
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The advantage of the reduced correlation functions is that they are directly sensitive to the dynamics, and should
remain constant if the only change is that of the particle abundances. This will prove helpful when studying for
instance the centrality dependence of the correlations.

Also, the correlation functions Cn are often referred to as “factorial cumulants” [7]
Integrating over rapidity we obtain
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Using above definition we can write
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and analogously for K
5

and K
6

.

Finally we should point out that direct relation between correlation functions and cumulants can not be established
if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix

A. Comments

Before we analyze the existing data several comments are warranted.
(i) First it would be interesting to see how couplings scale with multiplicity if the correlations originate from several

independent sources of correlations. Suppose we have Ns sources of particles, each characterized by the multiplicity
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Significant four particle correlations! 

Four particle correlation dominate K4  
for central collisions at 7.7 GeV 
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energies above 19.6 GeV, the values of v2
3{2} linearly increase with the log(psNN ) for all of the four centralities.

Figure 5 right shows psNN dependence of the v2
3{2} scaled by the charged particle multiplicity per participant pair

nch,PP =
2

Npart
dNch/d⌘ for three centralities. Experimentally, the nch,PP has been measured and monotonically increase

with psNN [23], which can be related to the energy density of the system. The v2
3{2}/nch,PP shows a local minimum

around 20 GeV, which is the consequence of a relatively flat trend for v2
3{2} and monotonically increasing trend for the

nch,PP in the energy range 7.7 <psNN< 20 GeV. Physics wise, the v2
3{2}/nch,PP should reflect the ability of the system

to convert the initial geometry fluctuations to the final state. Thus, the local minimum in v2
3{2}/nch,PP could indicate

an anomalous low pressure inside the matter created in the collisions near psNN=20 GeV, where a minimum is also
observed for the slope of net-proton directed flow. Apparently, these observations can be interpreted by softening of
equation-of-state due to presence of the first order phase transition. However, conclusions only can be made after
carrying out careful theoretical and model studies for the dynamical evolution of the system including the physics of
first order phase transition at finite µB.

2.5. Net-proton number fluctuations
Fluctuations of conserved quantities, such as baryon (B), charge (Q) and strangeness (S) numbers, have been

proposed as a sensitive probe to search for the signature of the QCD critical point in heavy-ion collisions [24]. These
fluctuations are sensitive to the correlation length (⇠) [24] and can be directly connected to the susceptibility of the
system computed in theoretical calculations, such as Lattice QCD [25, 26, 27] and HRG models [28]. The STAR
experiment has measured various order fluctuations of net-proton (Np � Np̄, proxy for net-baryon), net-charge and
net-kaon (proxy for net-strangeness) numbers in the Au+Au collisons at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and
200 GeV [29, 30, 31].
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Figure 6. (Color online) Left: Energy dependence of �2 of net-proton distributions and Middle: S� divided by Skellam (Poisson) expeca-
tions for 0-5%, 5-10% and 70-80% centralities of Au+Au collisions at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV measured by STAR.
The experimental data is compared with Poisson expectations (dashed lines) and the UrQMD transport model calculations (shade bands ). The
statistic and systematic errors are plotted as vertical bar and brackets, respectively. Right: A schematic sketch for theoretically predicted neg-
ative(red)/positive(blue) critical contribution regions for �2 near the QCD critical point and possible chemical freeze-out regions for Au+Au
collisions 14.5 (green), 16.5 (purple) and 19.6 GeV (black).

Figure 6 left shows the e�ciency corrected �2 of net-proton distributions as a function of psNN for 0-5%, 5-10%
and 70-80% centralities of Au+Au collisions measured by STAR [31, 32]. The protons and anti-protons numbers
are measured with transverse momentum 0.4 < pT < 2 GeV/c and at mid-rapidity |y| < 0.5. The �2 shows a clear
non-monotonic variation with psNN for 0-5% centrality with a minimum around 20 GeV. Above 39 GeV, the values of
�2 are close to the unity for both central and peripheral collisions and deviate significantly below unity for the 0-5%
most central collisions at 19.6 and 27 GeV, then become above unity at 0-5% centrality in the energies below 19.6
GeV. Another intriguing structure observed in psNN dependence for the �2 of net-proton distributions in Au+Au
collisons is the so called ”Oscillation”. Namely, the oscillation is a structure that represents two observations, the so
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Rapidity dependence
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short range correlations:

Assume:

Long range correlations:

ck(y1, . . . , yk) � �(y1 � y2) . . . �(yk�1 � yk)

� Kn = Kn (�N�)
Ck(�Y ) � (�Y )k � �N�k



Long range correlations
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, . (16)

Before we apply the above equations to extract the correlation strength from the STAR data, let us make a few
more remarks concerning these correlation functions.

Frequently in the literature, one refers to correlation function where the trivial dependence on the particle den-
sity/multiplicity is removed

cn (y
1

, ..., yn) = Cn (y
1

, ..., yn)
fl

1

(y
1

) · · · fl
1

(yn) , (17)

which we shall refer to as reduced correlation functions or simply couplings. For example in terms of the reduced
correlation functions the two particle density would be given as

fl
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) fl
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2
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1

, y
2

)] . (18)

The advantage of the reduced correlation functions is that they are directly sensitive to the dynamics, and should
remain constant if the only change is that of the particle abundances. This will prove helpful when studying for
instance the centrality dependence of the correlations.

Also, the correlation functions Cn are often referred to as “factorial cumulants” [7]
Integrating over rapidity we obtain

Ck = ÈNÍk
ck (19)

where ÈNÍ =
´

�Y dN/dy depends on the rapidity interval �Y and we denote

ck =
´
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· · · dyk
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Using above definition we can write
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and analogously for K
5

and K
6

.

Finally we should point out that direct relation between correlation functions and cumulants can not be established
if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix

A. Comments

Before we analyze the existing data several comments are warranted.
(i) First it would be interesting to see how couplings scale with multiplicity if the correlations originate from several

independent sources of correlations. Suppose we have Ns sources of particles, each characterized by the multiplicity

ck = const. � Kn = Kn (�N�)
ADAM BZDAK AND VOLKER KOCH PHYSICAL REVIEW C 96, 054905 (2017)

FIG. 1. The cumulant ratio K4/K2 in central 0–5% Au +
Au collisions at

√
s = 7.7 GeV as a function of the number of

measured protons ⟨N⟩ for different acceptance windows in rapidity
and transverse momentum (in units of GeV). For all data points
pt > 0.4 GeV. The black solid line represents a prediction based
on a constant correlation function, see Eq. (17). The shaded band is
driven mostly by the large experimental uncertainty of K4. Based on
the preliminary STAR Collaboration data [42].

the couplings cn do not depend on rapidity and transverse
momentum either as can be seen from Eq. (8),

cn = c0
n. (18)

The multiparticle integrated correlation functions Cn =
⟨N⟩ncn and cumulants Kn, in turn, depend on the acceptance
only through their dependence on the number of protons ⟨N⟩,
see Eqs. (9)–(11). Therefore, in Fig. 1 we plot K4/K2 as
measured by the STAR Collaboration as a function of ⟨N⟩
for different rapidity and transverse momentum intervals.

The black solid line in Fig. 1 represents a prediction
based on a constant correlation function. In this calculation
we have three unknown parameters c0

2, c0
3, and c0

4. Since
these numbers do not depend on acceptance, we determine
them from the preliminary data for |y| < 0.5 (!y = 1) and
0.4 < pt < 2 GeV, that is, from the maximal acceptance
currently available. Here we use Eqs. (9)–(11) and the values
for ⟨N⟩, K2, K3, and K4 shown in Ref. [42].4 To determine
⟨N⟩ at a given acceptance region we assume the single-proton
rapidity distribution to be flat as a function of rapidity, i.e.,
⟨N⟩ = ⟨N!y=1⟩!y, and, for the transverse momentum single-
proton distribution, we take ρ(pt ) ∼ pt exp(−mt/T ) with
T = 0.27 GeV and mt = (m2 + p2

t )1/2 with m = 0.94 GeV.
Both these assumptions are well supported by experimental
data [52,53]. Having c0

n, we can predict the cumulants
or the correlation functions for any acceptance charac-

4We determine c0
n from the proton cumulants but compare to y and

pt dependences of the net-proton cumulants, which are the only data
currently available. Although at 7.7 GeV the number of antiprotons is
practically negligible, it results in a slight disagreement of the black
solid line with the blue star in Fig. 1.

terized by ⟨N⟩ whether in transverse momentum or in
rapidity.5

Interestingly we find that, except for one point at |y| < 0.5
and 0.4 < pt < 1.2 GeV, all the points follow within the
admittedly large experimental error bars one universal curve
consistent with a constant correlation function. The fact that the
rapidity dependence of the cumulant ratio K4/K2 is consistent
with long-range rapidity correlations already has been found
in Ref. [40]. That the transverse momentum dependence is
also consistent with long-range correlations is new. If correct,
it would, for example, imply that the cumulant ratio K4/K2
has roughly the same value (close to unity) for a transverse
momentum range of 0.8 GeV < pt < 2 GeV as the value
for the range of 0.4 GeV < pt < 0.8 GeV since, in both pt

windows, ⟨N⟩ is approximately the same. The result for the
pt range of 0.4 GeV < pt < 0.8 GeV has been published by
the STAR Collaboration in Ref. [5].

Of course, the error bars in the preliminary STAR Col-
laboration data are rather sizable and, therefore, a mild
dependence of the correlation function on rapidity (and
transverse momentum) cannot be ruled out. In addition, as
already mentioned in the Introduction, the preliminary, explicit
measurement of the two-proton correlation function [45,46]
does exhibit an increase with increasing rapidity difference of
a proton pair y1 − y2. To explore this further we next will allow
for some mild rapidity dependence of the correlation function.

B. Rapidity-dependent correlation

In the previous subsection we demonstrated that the STAR
Collaboration data for K4/K2 at 7.7 GeV are consistent with
a constant multiproton correlation function. Here we study
how sensitive the cumulant ratios and correlations are to a
certain (weak) rapidity dependence. To this end we consider
the leading correction to a constant correlation function, which
should be even in yi − yk . Thus we explore the following
Ansätze for the reduced correlation functions,

c2(y1,y2) = c0
2 + γ2(y1 − y2)2,

c3(y1,y2,y3) = c0
3 + γ3

1
3 [(y1 − y2)2 + (y1 − y3)2

+ (y2 − y3)2],

c4(y1,y2,y3,y4) = c0
4 + γ4

1
6 [(y1 − y2)2 + (y1 − y3)2

+ (y1 − y4)2 + (y2 − y3)2

+ (y2 − y4)2 + (y3 − y4)2], (19)

where γn measures the deviation from cn(y1, . . . ,yn) = const.
Note that we have constructed the correlation function such
that positive values of γn result in growing correlations with
rapidity separation between particles. We further note that the
above form for the two-proton reduced correlation function
c2(y1,y2) is supported by the preliminary STAR Collaboration
data [45,46] where γ2 > 0, that is, two protons do not want

5Based on the preliminary STAR Collaboration data for the
cumulants [42] we obtain c0

2 ≈ −1.1 × 10−3, c0
3 ≈ −1.7 × 10−4, and

c0
4 ≈ 7.3 × 10−5.
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Can we understand these 
correlations?

• Two particle correlations can be understood by simple 
Glauber model + Baryon number conservation
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where b = 40 for
p
s = 7.7 GeV. Our conclusions are not sensitive to small variations of b and changing the exponent

from 1.25 to 1. The results are presented in Fig. 3 by the solid curves. The dashed curves correspond to calculations
without volume (N

part

) fluctuations (no VF). The symbols represent the correlations after averaging over bins in
centrality of 5%, i.e. 0 � 5%, 5 � 10% etc. Only the five most central points are shown. For less central collisions,
the centrality averaging does not alter our results and points fall right on the solid lines. Clearly, the contribution
originating from N

part

fluctuations is important for the two particle correlation, C
2

; there is also some but less
significant e↵ect of N

part

fluctuations on the three particle correlation C
3

in central collisions. On the other hand,
when compared to the STAR data, fluctuations of wounded nucleons are all but irrelevant for the four particle
correlation, C

4

. In our model calculation, C
4

is negative for o↵-central collisions and it gets positive for large N
part

.
After averaging over centrality bins, the model predicts around �0.3 for C

4

while the analysis of the preliminary
STAR data gives ⇠ 170. Also, as already mentioned, the strong oscillations exhibited in C

3

and C
4

at large N
part

disappear after averaging over centrality bins. Obviously our model of independent stopping together with baryon
number conservation clearly fails to explain the preliminary STAR data, reported in Ref. [51] (see Fig. 1 therein).

FIG. 3. Multi-particle correlations Cn in Au+Au collisions at
p
s = 7.7 GeV. The leading terms, where fluctuations of the

number of wounded nucleons are not present, are denoted by “no VF”. Also shown as circles, triangles and squares are the
results for the five most central bins with a width of 5% of centrality.

Before we close this section, let us make a few more remarks. First, the results without the number of wounded
nucleon fluctuations presented in this section can be verified analytically. At a fixed N

part

, Eq. (9) reduces to

H(z;N
part

) = (1� p+ pz)Npart , (20)

and using Eq. (3) we obtain

C
2

= �p2N
part

, C
3

= 2p3N
part

, C
4

= �6p4N
part

. (21)

Since p < 1 this explains the relative magnitude of the correlation functions. Next, in our analysis we assumed that
each nucleon is stopped in �y with the same probability p. This is rather unphysical since nucleons that collide
once are expected to have significantly smaller p than nucleon from the centers which collide several times. However,
as long as we have independent stopping of the nucleons, individual stopping probabilities do not really change
our conclusions. Suppose that each nucleon is characterized by its own stopping probability, p

(i), i = 1, ..., N
part

.
Neglecting N

part

fluctuations we obtain at a given N
part

5

H(z;N
part

) =
YNpart

i=1

(1� p
(i) + p

(i)z), (22)

which obviously reduces to Eq. (20) if pi = p. Calculating Ck we observe that it is enough to replace N
part

pn !
P

i p
n
(i)

in Eq. (21) and thus the signs of Ck do not change. We conclude that this e↵ect cannot lead to a large and positive
C

4

as seen in the STAR data.
The corollary of this section is the following. The two-particle correlations obtained in our model of independent

nucleon stopping together with baryon-number conservation and fast isospin equilibration are of the same magnitude

5 The generating function of independent sources is given by a product of its generating functions.

Model

Four particle correlations are orders of magnitudes larger in the data 
Also seen in URQMD calculations by He et al. PLB774 (2017) 623

STAR: 
7C2 ~ -20 
6C3 ~ -60 
  C4 ~ 170
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energies above 19.6 GeV, the values of v2
3{2} linearly increase with the log(psNN ) for all of the four centralities.

Figure 5 right shows psNN dependence of the v2
3{2} scaled by the charged particle multiplicity per participant pair

nch,PP =
2

Npart
dNch/d⌘ for three centralities. Experimentally, the nch,PP has been measured and monotonically increase

with psNN [23], which can be related to the energy density of the system. The v2
3{2}/nch,PP shows a local minimum

around 20 GeV, which is the consequence of a relatively flat trend for v2
3{2} and monotonically increasing trend for the

nch,PP in the energy range 7.7 <psNN< 20 GeV. Physics wise, the v2
3{2}/nch,PP should reflect the ability of the system

to convert the initial geometry fluctuations to the final state. Thus, the local minimum in v2
3{2}/nch,PP could indicate

an anomalous low pressure inside the matter created in the collisions near psNN=20 GeV, where a minimum is also
observed for the slope of net-proton directed flow. Apparently, these observations can be interpreted by softening of
equation-of-state due to presence of the first order phase transition. However, conclusions only can be made after
carrying out careful theoretical and model studies for the dynamical evolution of the system including the physics of
first order phase transition at finite µB.

2.5. Net-proton number fluctuations
Fluctuations of conserved quantities, such as baryon (B), charge (Q) and strangeness (S) numbers, have been

proposed as a sensitive probe to search for the signature of the QCD critical point in heavy-ion collisions [24]. These
fluctuations are sensitive to the correlation length (⇠) [24] and can be directly connected to the susceptibility of the
system computed in theoretical calculations, such as Lattice QCD [25, 26, 27] and HRG models [28]. The STAR
experiment has measured various order fluctuations of net-proton (Np � Np̄, proxy for net-baryon), net-charge and
net-kaon (proxy for net-strangeness) numbers in the Au+Au collisons at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and
200 GeV [29, 30, 31].
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Figure 6. (Color online) Left: Energy dependence of �2 of net-proton distributions and Middle: S� divided by Skellam (Poisson) expeca-
tions for 0-5%, 5-10% and 70-80% centralities of Au+Au collisions at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV measured by STAR.
The experimental data is compared with Poisson expectations (dashed lines) and the UrQMD transport model calculations (shade bands ). The
statistic and systematic errors are plotted as vertical bar and brackets, respectively. Right: A schematic sketch for theoretically predicted neg-
ative(red)/positive(blue) critical contribution regions for �2 near the QCD critical point and possible chemical freeze-out regions for Au+Au
collisions 14.5 (green), 16.5 (purple) and 19.6 GeV (black).

Figure 6 left shows the e�ciency corrected �2 of net-proton distributions as a function of psNN for 0-5%, 5-10%
and 70-80% centralities of Au+Au collisions measured by STAR [31, 32]. The protons and anti-protons numbers
are measured with transverse momentum 0.4 < pT < 2 GeV/c and at mid-rapidity |y| < 0.5. The �2 shows a clear
non-monotonic variation with psNN for 0-5% centrality with a minimum around 20 GeV. Above 39 GeV, the values of
�2 are close to the unity for both central and peripheral collisions and deviate significantly below unity for the 0-5%
most central collisions at 19.6 and 27 GeV, then become above unity at 0-5% centrality in the energies below 19.6
GeV. Another intriguing structure observed in psNN dependence for the �2 of net-proton distributions in Au+Au
collisons is the so called ”Oscillation”. Namely, the oscillation is a structure that represents two observations, the so
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Simple two component model
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Weight of small component: ~0.3%

6

FIG. 1. The multiplicity distribution P (N) at
p
s = 7.7 GeV in the two component model given by Eq. 1

constructed with (a) e�ciency unfolded values for hNi, C3 and C4 and (b) with imposed e�ciency of 0.65.

and the cumulant5 ratios read (CHECK PLEASE) (VK: I get for the
Cumulants {K1 . . .K6 = {40., 36.15, 18.45, 123.05,�1212.75, 11295.7} So I get K5/K2 ⇡ �34
K6/K2 ⇡ �312. I am happy to round this but then we should do this also in the
footnote where we explore the error ranger. Coe�cients in footnote are correct )

K5/K2 ⇡ �30,

K6/K2 ⇡ 300. (15)

It is worth noting that C6/C5 ⇡ C5/C4 ⇡ C4/C3 in agreement with the discussion presented in the
previous Section. We note that the resulting C2 ⇡ �3.85 is slightly more negative than the data.
However, as pointed out, e.g., in [45], the second order factorial cumulant receives sizable positive
contribution from participant fluctuations �C2 ' 2 � 3 whereas the correction to C3 and C4 are
small. In view of the sizable errors in the preliminary STAR data we consider the present fit as
satisfactory.

The resulting probability distribution, P (N), Eq. (1), is shown in the left panel of Fig. 1. Even
though the component centered at N ⇠ 25 has a very small probability ↵ ⇠ 0.3% it gives rise
to a shoulder at low N which should be visible in the multiplicity distribution. However, this
would require an unfolding of the measured distribution [27] in order to remove the e↵ect of a
finite detection e�ciency. Assuming a binomial model for the e�ciency with a constant detection
probability of ✏ = 0.65, which roughly corresponds to that of the STAR measurement, the observed
multiplicity distribution of the two component model is shown in the right panel of Fig. 1. In this
case the small component ⇠ ↵ is barely visible. This observation is consistent with the fact that
the e�ciency uncorrected cumulants measured by STAR are more or less consistent with a Poisson
(or binomial to be more precise) expectation.

(VK: why not the centrality dependence? ) I think we should add a few
sentences about centrality but we need to be careful about this
sudden jump of C3 in 5-10%. The STAR data is not really good
for a quantitative discussion... (VK: Maybe we can just mumble about the
fact that C3 is already very small at larger centrality and thus the whole approach is
questionable...? )

5 K2 = hNi + C2, K5 = hNi + 15C2 + 25C3 + 10C4 + C5 and K6 = hNi +
31C2 + 90C3 + 65C4 + 15C5 + C6.



Two component model is 
Statistics “friendly” 
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Based on 144393 events (same as STAR 0-5% at 7.7 GEV)

Model prediction:

3

FIG. 2. The relative error, �Cn/Cn, of factorial cumulant
for various proton multiplicity distributions based on 144393
events, as present in the most central Au + Au collisions
at RHIC. The presented here binomial and negative bino-
mial distributions are statistically very demanding, whereas
the distribution given by. Eq. (5) (Binomial+Poisson) with
hNi = 40, allows to successfully measure higher order facto-
rial cumulants with a relatively small number of events. This
feature is also present for the e�ciency uncorrected distribu-
tion (Binomial+Poisson+e�) where hNi = 40⇥ 0.65.

away from the tails. This is exactly the case of our su-
perposition model [29]. To be a bit more precise the
factorial cumulants of Eq. (5), assuming ↵ ⌧ 1 are given
by

Cn ⇡ C(a)
n + (�1)n↵Nn, (6)

where C(a)
n is a factorial cumulant characterizing P(a)(N)

and N = hN(a)i � hN(b)i. For C(a)
n being a Poisson or

binomial the values of Cn are completely dominated by
a term ↵Nn, which results in very large factorial cumu-
lants. The error, �Cn, on the other hand, is of the same

magnitude as that of the first term, �C(a)
n (in practice

�C(a)
n /�Cn ranges from ⇠ 0.95 for n = 2 to ⇠ 0.2 for

n = 9). Thus we have a situation, where the error of
the factorial cumulant is of the same magnitude as that
of a binomial distribution, but the factorial cumulant is
orders of magnitude larger. Consequently, and not sur-
prisingly, the relative error is much smaller for the two-
component distribution than for the binomial distribu-
tion.

Finally, we note that in the case of Eq. (5), the regular
cumulnats are less statistics friendly. This is presented in
Fig. 3. The reason for this is the same as just stated. The
absolute errors for both cumulants and factorial cumu-
lants are of the same magnitude, �Kn ⇠ �Cn. On the
other hand, for the two-component model, the factorial
cumulants are very large while the regular cumulants are
only modestly larger than that of a simple binomial dis-
tribution. This is a result of the alternating signs of the
factorial cumulants. For example, the sixth order cumu-
lant, K6, is given in terms of the factorial cumulants as

FIG. 3. The relative errors of the factorial cumulants,
�Cn/Cn, and the regular cumulants, �Kn/Kn, based on
144393 events sampled from a distribution given by Eq. (5).

K6 = hNi+31C2+90C3+65C4+15C5+C6 (see e.g., Ref.
[20]). And for our example of ”binomial+Poisson+e�”,
where we see a rapid increase in the relative error, we
have C6 ⇡ 3080, 15C5 ⇡ �4600 and 65C4 ⇡ 1970. As
a result, K6 ⇡ 180 ⌧ C6, and consequently the relative
error is much larger for K6 as compared to C6.
In summary, we demonstrated that for the multiplic-

ity distribution given by Eq. (5), which is relevant in
the context of searching for structures in the QCD phase
diagram, factorial cumulants of high orders can be deter-
mined with relatively small number of events. This is in
contrast to various statistics hungry distributions (Pois-
son, binomial, NBD, etc.), for which the error increases
nearly exponentially with increasing order. As shown in
Ref. [20], the distribution, Eq. (5), describes the prelim-
inary STAR data for proton cumulants (up to the forth
order) in central Au+Au collisions at

p
s = 7.7GeV.

Since this distribution is statistics friendly, it can be fur-
ther tested by evaluating the higher order factorial cu-
mulants even with the presently available STAR data set
of 144393 events for the most central collisions. We also
pointed out that factorial cumualnts are more statistics
friendly when compared to regular cumulants, which, in
the case of Eq. (5), results from a delicate cancellation of
large factorial cumulants. Assuming that C4 = 170 (as
extracted from a preliminary STAR data) we predict:

C5 = �307 (1± 0.31), C6 = 3085 (1± 0.41),

C7 = �30155 (1± 0.61), C8 = 271492 (1± 1.06),

for e�ciency uncorrected data and

C5 = �2645 (1± 0.14), C6 = 40900 (1± 0.18),

C7 = �615135 (1± 0.26), C8 = 8520220 (1± 0.42),

for hNi = 40, corresponding to the e�ciency corrected
data [30]. We note, that in the next phase of the RHIC
beam energy scan the statistics is expected to increase by
roughly a factor of ⇠ 25 [31] reducing the above errors
by about a factor of 5.

Efficiency  
corrected
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FIG. 3. Probability distribution at various points close to the co-existence line for the van der Waals model
for system at fixed volume: (T/Tc, µ/µc) = (1.02, 0.99) (a), (1.02, 1.004) (b), (0.98, 1.004) (c), (0.98, 1.0015)
(d), (0.95, 1.0062) (e). The model and parameters are described in the Appendix B.

factorial cumulants should increase leading to a probability distribution which should exhibit
a clear second event class which might even be visible without unfolding the data.

• The present STAR dataset for
p
s = 7.7 GeV contains 3 million events so that the most

central 5% correspond to 150k events [38]. Given ↵ ⇡ 0.0033 there are roughly 500 events
for N < 20 and it maybe worthwhile to inspect these events individually to see if there are
some systematic deviations or common experimental issues.

• It is noteworthy that two event classes distribution looks very similar to that of a system
close to a first order phase transition in a finite system. To illustrate this, we have used the
van der Waals model in a finite volume to calculate the multiplicity distributions for various
points near the co-existence line for a system of fixed volume (details are in the Appendix B).
This is shown in Fig. 3. The multiplicity distribution extracted from the STAR cumulants,
Fig. 1, looks qualitatively similar to the distribution to the right of the phase-coexistence
line in Fig. 3. In this case the “bump” at small N corresponds to events where the system
would be in the “dilute” phase whereas the large maximum at large N corresponds to the
events where the system is in the “dense” phase, which dominates the distribution. If we

6

FIG. 1. The multiplicity distribution P (N) at
p
s = 7.7 GeV in the two component model given by Eq. 1

constructed with (a) e�ciency unfolded values for hNi, C3 and C4 and (b) with imposed e�ciency of 0.65.

and the cumulant5 ratios read (CHECK PLEASE) (VK: I get for the
Cumulants {K1 . . .K6 = {40., 36.15, 18.45, 123.05,�1212.75, 11295.7} So I get K5/K2 ⇡ �34
K6/K2 ⇡ �312. I am happy to round this but then we should do this also in the
footnote where we explore the error ranger. Coe�cients in footnote are correct )

K5/K2 ⇡ �30,

K6/K2 ⇡ 300. (15)

It is worth noting that C6/C5 ⇡ C5/C4 ⇡ C4/C3 in agreement with the discussion presented in the
previous Section. We note that the resulting C2 ⇡ �3.85 is slightly more negative than the data.
However, as pointed out, e.g., in [45], the second order factorial cumulant receives sizable positive
contribution from participant fluctuations �C2 ' 2 � 3 whereas the correction to C3 and C4 are
small. In view of the sizable errors in the preliminary STAR data we consider the present fit as
satisfactory.

The resulting probability distribution, P (N), Eq. (1), is shown in the left panel of Fig. 1. Even
though the component centered at N ⇠ 25 has a very small probability ↵ ⇠ 0.3% it gives rise
to a shoulder at low N which should be visible in the multiplicity distribution. However, this
would require an unfolding of the measured distribution [27] in order to remove the e↵ect of a
finite detection e�ciency. Assuming a binomial model for the e�ciency with a constant detection
probability of ✏ = 0.65, which roughly corresponds to that of the STAR measurement, the observed
multiplicity distribution of the two component model is shown in the right panel of Fig. 1. In this
case the small component ⇠ ↵ is barely visible. This observation is consistent with the fact that
the e�ciency uncorrected cumulants measured by STAR are more or less consistent with a Poisson
(or binomial to be more precise) expectation.

(VK: why not the centrality dependence? ) I think we should add a few
sentences about centrality but we need to be careful about this
sudden jump of C3 in 5-10%. The STAR data is not really good
for a quantitative discussion... (VK: Maybe we can just mumble about the
fact that C3 is already very small at larger centrality and thus the whole approach is
questionable...? )

5 K2 = hNi + C2, K5 = hNi + 15C2 + 25C3 + 10C4 + C5 and K6 = hNi +
31C2 + 90C3 + 65C4 + 15C5 + C6.

To be checked by STAR:  
experiment picks up 
“wrong” events



Baryon Stopping

!22

Question: Where in CONFIGURATION space are the stopped protons

Basic observation:  
It takes some distance in space  
to come to a full stop!

z
z~-3fm z=0 z~+3fm

Example: 
Ecm = 20 GeV 
σ = 3 GeV/fm
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FIG. 3. Time integrated source function for stopped protons as a function of z for (a)
p
s = 20GeV and (b)p

s = 14GeV. The black dashed lines represent the result of our model calculation while the blue solid lines
are obtained by doubling the value of width of the collision point distribution, �c. The source functions
shown are normalized to unity.

restriction is not important, as the longitudinal and transverse degrees of freedom factorise.
To increase statistics, one may thus integrate over transverse momenta. Since the Lund
model is best justified at small transverse velocities, and since the Gaussian form is only
an approximation, it seems reasonable, however, to restrict measurements to protons with
transverse momenta not exceeding, say, 1 GeV.

(iv) It turns out that the corrections due to the Coulomb and strong interactions do not change
qualitatively the possibility of observation of the expected oscillations of the correlation func-
tion.

(v) Our calculation ignored entirely possible correlations between the outgoing protons due to
quark mixing at very short distances [18]. Introducing such correlations may result in the
correlation function being positive in some region of �qz. As shown in [18], however, this
effect is small and should not modify our conclusions.

(vi) Finally, let us add that our results rely strongly on the idea that the longitudinal distribution
of nucleons inside moving nucleus are Lorentz-contracted and that this contraction survives
during the collision. The proposed measurement should thus provide an interesting test of
this commonly used assumption (for the recent discussion of the measurements of Lorentz
contraction, see [19]).
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FIG. 1. Femtoscopy correlation function for (a)
p
s = 20GeV and (b)

p
s = 14GeV. The black dashed lines

represent the result of our model calculation while the solid blue lines are obtained by doubling the value of
width of the collision point distribution, �c.

FIG. 2. Same as Fig. 1 but with strong and Coulomb interaction effects included.

Some remarks are in order.

(i) The observation of the suggested extra oscillations will not only confirm the idea that the
nucleons do not stop immediately after collision. It should also allow to measure the effective
distance at which the energy is deposited in the produced particles. Indeed, as seen from Eq.
(16), �F (and thus also CF ) explicitly depends on �Z, the average distance required to stop
a proton.

(ii) Even if the oscillations are not seen, the measurement will determine the (longitudinal) size of
the volume from which the protons at ycm ⇡ 0 are emitted. This should allow to estimate the
actual density of protons in configuration space, the quantity essential for the studies of this
system. One also obtains the upper limit on the distance the nucleons travel before attaining
the rapidity y ⇡ 0, thus improving our understanding of the process of the energy loss by the
leading particles in a high energy collision.

(iii) The definition of the longitudinal correlation function requires that the vector �~q points in
the z-direction, i.e. �q? = 0. In our approximation of the nuclear densities as Gaussians this

Femtoscopy correlation function

Details: (AB)2VK arXiv:1608.07041,1711.09440
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FIG. 1. Femtoscopy correlation function for (a)
p
s = 20GeV and (b)

p
s = 14GeV. The black dashed lines

represent the result of our model calculation while the solid blue lines are obtained by doubling the value of
width of the collision point distribution, �c.

FIG. 2. Same as Fig. 1 but with strong and Coulomb interaction effects included.
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nucleons do not stop immediately after collision. It should also allow to measure the effective
distance at which the energy is deposited in the produced particles. Indeed, as seen from Eq.
(16), �F (and thus also CF ) explicitly depends on �Z, the average distance required to stop
a proton.

(ii) Even if the oscillations are not seen, the measurement will determine the (longitudinal) size of
the volume from which the protons at ycm ⇡ 0 are emitted. This should allow to estimate the
actual density of protons in configuration space, the quantity essential for the studies of this
system. One also obtains the upper limit on the distance the nucleons travel before attaining
the rapidity y ⇡ 0, thus improving our understanding of the process of the energy loss by the
leading particles in a high energy collision.

(iii) The definition of the longitudinal correlation function requires that the vector �~q points in
the z-direction, i.e. �q? = 0. In our approximation of the nuclear densities as Gaussians this

Including strong interaction
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p
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nucleons do not stop immediately after collision. It should also allow to measure the effective
distance at which the energy is deposited in the produced particles. Indeed, as seen from Eq.
(16), �F (and thus also CF ) explicitly depends on �Z, the average distance required to stop
a proton.

(ii) Even if the oscillations are not seen, the measurement will determine the (longitudinal) size of
the volume from which the protons at ycm ⇡ 0 are emitted. This should allow to estimate the
actual density of protons in configuration space, the quantity essential for the studies of this
system. One also obtains the upper limit on the distance the nucleons travel before attaining
the rapidity y ⇡ 0, thus improving our understanding of the process of the energy loss by the
leading particles in a high energy collision.

(iii) The definition of the longitudinal correlation function requires that the vector �~q points in
the z-direction, i.e. �q? = 0. In our approximation of the nuclear densities as Gaussians this



Summary
• Fluctuations sensitive to phase structure:  

- measure “derivatives” of EOS 
• Cumulants contain information about correlations 
• Preliminary STAR data: 

- Significant four particle correlations at 7.7 and 11.5 GeV 
• Fluctuations of Npart, stopping, and baryon conservation: 

- May explain 2-particle correlations 
- Fail to reproduce the magnitude of 3- and 4- particle correlations 
- 3 and 4 particle correlations are HUGE! 

• “Bi-Modal” distribution works 
- Can be tested RIGHT NOW by STAR. 

• Stopped protons do NOT sit a z=0! 
- Can be checked with femtoscopy 
- If correct: back to the drawing board
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after 10-20 fm/c). These features a↵ect possible signals of a phase transition. For example, there
may not be su�cient time for the correlation length to grow significantly near the critical point or
for nucleation, which is also a comparatively slow process, to occur. On the other hand phenom-
ena like spinodal decomposition, i.e., the rapid phase separation due to instabilities at the phase
transition, can occur leading to an increase in density fluctuations. Further complications arise
from the fact that the system is relatively small and therefore e↵ects of the global conservation
of the various conserved charges cannot be neglected. In addition, as the system rapidly drops
out of equilibrium, other e↵ects like resonance decays, thermal smearing as well as experimental
acceptance and e�ciency corrections may blur the signal [26–38].

Published data on the net-proton number fluctuations (which, with reasonable model assump-
tions, can be related to the net-baryon fluctuations [39, 40]) only exist from the STAR collaboration
[38] and for a limited acceptance. The published data (|y| < 0.5 and 0.4 < pt < 0.8 GeV) are
consistent with uncorrelated proton production and the trivial correlations from global baron con-
servation [31]. On the other hand preliminary data from the STAR collaborations with a larger
acceptance (0.4 < pt < 2 GeV) [41, 42] show a significant deviation from uncorrelated proton pro-
duction for collision energies

p
s  11GeV. The preliminary data consistently show an increase of

the fourth order cumulant and a decrease of the third order cumulant with respect to uncorrelated
production. The experiments provide the measured cumulants of the net-proton number distribu-
tions and not the actual multi-particle correlation functions. However, the integrated n-particle
correlation functions (factorial cumulants) can be extracted from the measured cumulants [43]
and they indeed show an interesting beam energy dependence. In particular, the integrated four
particle correlations at the lowest beam energy accessible to STAR,

p
s = 7.7GeV are very large,

about three orders of magnitude larger than a basic Glauber model (incorporating the number
of wounded nucleons [44] fluctuations) combined with baryon number conservation would predict
[45]. The challenge now is to unambiguously connect the measured correlations to physical e↵ects
from a critical point or first order phase transition.

In this paper we will investigate how one can construct the underlying proton multiplicity
distribution functions only from the measured cumulants and discuss possible physics implications
from our findings. Especially we will explore whether one can construct a multiplicity distribution
with large factorial cumulants (as measured by STAR) or integrated correlation functions from the
superposition of two multiplicity distributions characterized by small factorial cumulants.

We will assume that the multiplicity distribution is obtained as a result of up to two independent
distributions where only one distribution contributes, with a certain probability, to the proton
multiplicity of a single event. Then we will discuss the measured factorial cumulants from the STAR
experiment in the context of our constructed multiplicity distributions. Possible interpretations
in terms of phase transition physics and ’non-physics’ background will be given. Furthermore
we will propose further experimental studies which will help to better understand the origin of
experimentally measured large correlations.

II. TWO EVENTS CLASSES

Let us consider the situation where we have two di↵erent types (or classes) of events, denoted
by (a) and (b). Let us denote the probability that an event belongs to class (a) by (1� ↵) and to
class (b) by ↵ with ↵  1. In this case the probability to find N particles or protons is given by

P (N) = (1� ↵)P(a)(N) + ↵P(b)(N), (1)

where P(a)(N) and P(b)(N) are multiplicity distributions governing the event classes (a) and (b)
respectively. As we shall show, the combined distribution, Eq. (1), can exhibit very large factorial
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cumulants (integrated correlation functions) even if neither P(a) nor P(b) exhibit any correlations,
as would be the case if they were Poissonian. Such a situation can arise for example if in a heavy
ion experiment the centrality selection, for whatever reasons includes, not only central events but
also very peripheral events. It may also occur in case of a first order phase transition for a small
system as we shall discuss in the last section (VK: Still not entirely sure if this is the case...
)

In order to calculate the factorial cumulants it is best to start with the generating function:

H(z) =
X

P (N)zN

= (1� ↵)H(a)(z) + ↵H(b)(z). (2)

where H(a),(b) is the generating function for P(a),(b). The factorial cumulant generating function is
then given by

G(z) = ln [H(z)]

= ln[(1� ↵)H(a)(z) + ↵H(b)(z)]

= ln
h
(1� ↵)eln[H(a)(z)] + ↵eln[H(b)(z)]

i

= ln
h
(1� ↵)eG(a)(z) + ↵eG(b)(z)

i
, (3)

so that the factorial cumulants read

Ck =
dk

dzk
G(z)

����
z=1

, (4)

and analogously for C(a)
k = dk

dzk
G(a)(z)|z=1 and C

(b)
k = dk

dzk
G(b)(z)|z=1.

Given the distribution Eq. (1), the mean number of protons is

hNi = (1� ↵)
⌦
N(a)

↵
+ ↵

⌦
N(b)

↵
, (5)

with
⌦
N(a),(b)

↵
=
P

N NP(a),(b)(N) is the average particle numbers for distributions P(a)(N) and
P(b)(N), respectively. To simplify the notation we further introduce

N =
⌦
N(a)

↵
�
⌦
N(b)

↵
,

Cn = C(a)
n � C(b)

n , (6)

and performing straightforward calculations we obtain1

C2 =C
(a)
2 � ↵

�
C2 � (1� ↵)N2

 

C3 =C
(a)
3 � ↵

�
C3 + (1� ↵)

⇥
(1� 2↵)N3 � 3NC2

⇤ 

C4 =C
(a)
4 � ↵

�
C4 � (1� ↵)

⇥�
1� 6↵+ 6↵2

�
N4 � 6(1� 2↵)N2C2 + 4NC3 + 3(C2)

2
⇤ 

(7)

Our goal is to obtain large factorial cumulants Cn from ordinary multiplicity distributions

characterized by small factorial cumulants, namely C
(a)
n ⌧ Cn and C

(b)
n ⌧ Cn. This is motivated

by a surprisingly large three- and four-proton factorial cumulants, C3 and C4, measured in central
Au+Au collisions at

p
s = 7.7 GeV, which are much larger than simple expectations from baryon

conservation or Npart fluctuation. The ultimate case where this holds is when the two classes are

1 The formulas for higher orders are given in the Appendix A.
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n � C(b)

n , (6)

and performing straightforward calculations we obtain1

C2 =C
(a)
2 � ↵

�
C2 � (1� ↵)N2

 

C3 =C
(a)
3 � ↵

�
C3 + (1� ↵)

⇥
(1� 2↵)N3 � 3NC2

⇤ 

C4 =C
(a)
4 � ↵

�
C4 � (1� ↵)

⇥�
1� 6↵+ 6↵2

�
N4 � 6(1� 2↵)N2C2 + 4NC3 + 3(C2)

2
⇤ 

(7)

Our goal is to obtain large factorial cumulants Cn from ordinary multiplicity distributions

characterized by small factorial cumulants, namely C
(a)
n ⌧ Cn and C

(b)
n ⌧ Cn. This is motivated

by a surprisingly large three- and four-proton factorial cumulants, C3 and C4, measured in central
Au+Au collisions at

p
s = 7.7 GeV, which are much larger than simple expectations from baryon

conservation or Npart fluctuation. The ultimate case where this holds is when the two classes are

1 The formulas for higher orders are given in the Appendix A.

For Poisson, C(a), C(b)=0

Fit to STAR data: 
�
N(a)

�
� 40,

�
N(b)

�
� 25, � � 0.003
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after 10-20 fm/c). These features a↵ect possible signals of a phase transition. For example, there
may not be su�cient time for the correlation length to grow significantly near the critical point or
for nucleation, which is also a comparatively slow process, to occur. On the other hand phenom-
ena like spinodal decomposition, i.e., the rapid phase separation due to instabilities at the phase
transition, can occur leading to an increase in density fluctuations. Further complications arise
from the fact that the system is relatively small and therefore e↵ects of the global conservation
of the various conserved charges cannot be neglected. In addition, as the system rapidly drops
out of equilibrium, other e↵ects like resonance decays, thermal smearing as well as experimental
acceptance and e�ciency corrections may blur the signal [26–38].

Published data on the net-proton number fluctuations (which, with reasonable model assump-
tions, can be related to the net-baryon fluctuations [39, 40]) only exist from the STAR collaboration
[38] and for a limited acceptance. The published data (|y| < 0.5 and 0.4 < pt < 0.8 GeV) are
consistent with uncorrelated proton production and the trivial correlations from global baron con-
servation [31]. On the other hand preliminary data from the STAR collaborations with a larger
acceptance (0.4 < pt < 2 GeV) [41, 42] show a significant deviation from uncorrelated proton pro-
duction for collision energies

p
s  11GeV. The preliminary data consistently show an increase of

the fourth order cumulant and a decrease of the third order cumulant with respect to uncorrelated
production. The experiments provide the measured cumulants of the net-proton number distribu-
tions and not the actual multi-particle correlation functions. However, the integrated n-particle
correlation functions (factorial cumulants) can be extracted from the measured cumulants [43]
and they indeed show an interesting beam energy dependence. In particular, the integrated four
particle correlations at the lowest beam energy accessible to STAR,

p
s = 7.7GeV are very large,

about three orders of magnitude larger than a basic Glauber model (incorporating the number
of wounded nucleons [44] fluctuations) combined with baryon number conservation would predict
[45]. The challenge now is to unambiguously connect the measured correlations to physical e↵ects
from a critical point or first order phase transition.

In this paper we will investigate how one can construct the underlying proton multiplicity
distribution functions only from the measured cumulants and discuss possible physics implications
from our findings. Especially we will explore whether one can construct a multiplicity distribution
with large factorial cumulants (as measured by STAR) or integrated correlation functions from the
superposition of two multiplicity distributions characterized by small factorial cumulants.

We will assume that the multiplicity distribution is obtained as a result of up to two independent
distributions where only one distribution contributes, with a certain probability, to the proton
multiplicity of a single event. Then we will discuss the measured factorial cumulants from the STAR
experiment in the context of our constructed multiplicity distributions. Possible interpretations
in terms of phase transition physics and ’non-physics’ background will be given. Furthermore
we will propose further experimental studies which will help to better understand the origin of
experimentally measured large correlations.

II. TWO EVENTS CLASSES

Let us consider the situation where we have two di↵erent types (or classes) of events, denoted
by (a) and (b). Let us denote the probability that an event belongs to class (a) by (1� ↵) and to
class (b) by ↵ with ↵  1. In this case the probability to find N particles or protons is given by

P (N) = (1� ↵)P(a)(N) + ↵P(b)(N), (1)

where P(a)(N) and P(b)(N) are multiplicity distributions governing the event classes (a) and (b)
respectively. As we shall show, the combined distribution, Eq. (1), can exhibit very large factorial

as seen by STAR ( i.e. “infinite” correlation length)

Clear and falsifiable prediction: 

C4

C3
=

C5

C4
=

Cn+1

Cn
= �N̄
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For P(a), P(b) Poisson, or (to good approximation) Binomial

Cn = (�1)nKB
n N̄n n � 2

KB
n : Cumulant of Bernoulli distribution

� � 1, KB
n = � � Cn � �(�1)nN̄n
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N̄ =
�
N(a)

�
�

�
N(b)

�
> 0
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predict: N̄ � 15
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FIG. 2. The relative error, �Cn/Cn, of factorial cumulant
for various proton multiplicity distributions based on 144393
events, as present in the most central Au + Au collisions
at RHIC. The presented here binomial and negative bino-
mial distributions are statistically very demanding, whereas
the distribution given by. Eq. (5) (Binomial+Poisson) with
hNi = 40, allows to successfully measure higher order facto-
rial cumulants with a relatively small number of events. This
feature is also present for the e�ciency uncorrected distribu-
tion (Binomial+Poisson+e�) where hNi = 40⇥ 0.65.

away from the tails. This is exactly the case of our su-
perposition model [29]. To be a bit more precise the
factorial cumulants of Eq. (5), assuming ↵ ⌧ 1 are given
by

Cn ⇡ C(a)
n + (�1)n↵Nn, (6)

where C(a)
n is a factorial cumulant characterizing P(a)(N)

and N = hN(a)i � hN(b)i. For C(a)
n being a Poisson or

binomial the values of Cn are completely dominated by
a term ↵Nn, which results in very large factorial cumu-
lants. The error, �Cn, on the other hand, is of the same

magnitude as that of the first term, �C(a)
n (in practice

�C(a)
n /�Cn ranges from ⇠ 0.95 for n = 2 to ⇠ 0.2 for

n = 9). Thus we have a situation, where the error of
the factorial cumulant is of the same magnitude as that
of a binomial distribution, but the factorial cumulant is
orders of magnitude larger. Consequently, and not sur-
prisingly, the relative error is much smaller for the two-
component distribution than for the binomial distribu-
tion.

Finally, we note that in the case of Eq. (5), the regular
cumulnats are less statistics friendly. This is presented in
Fig. 3. The reason for this is the same as just stated. The
absolute errors for both cumulants and factorial cumu-
lants are of the same magnitude, �Kn ⇠ �Cn. On the
other hand, for the two-component model, the factorial
cumulants are very large while the regular cumulants are
only modestly larger than that of a simple binomial dis-
tribution. This is a result of the alternating signs of the
factorial cumulants. For example, the sixth order cumu-
lant, K6, is given in terms of the factorial cumulants as

FIG. 3. The relative errors of the factorial cumulants,
�Cn/Cn, and the regular cumulants, �Kn/Kn, based on
144393 events sampled from a distribution given by Eq. (5).

K6 = hNi+31C2+90C3+65C4+15C5+C6 (see e.g., Ref.
[20]). And for our example of ”binomial+Poisson+e�”,
where we see a rapid increase in the relative error, we
have C6 ⇡ 3080, 15C5 ⇡ �4600 and 65C4 ⇡ 1970. As
a result, K6 ⇡ 180 ⌧ C6, and consequently the relative
error is much larger for K6 as compared to C6.
In summary, we demonstrated that for the multiplic-

ity distribution given by Eq. (5), which is relevant in
the context of searching for structures in the QCD phase
diagram, factorial cumulants of high orders can be deter-
mined with relatively small number of events. This is in
contrast to various statistics hungry distributions (Pois-
son, binomial, NBD, etc.), for which the error increases
nearly exponentially with increasing order. As shown in
Ref. [20], the distribution, Eq. (5), describes the prelim-
inary STAR data for proton cumulants (up to the forth
order) in central Au+Au collisions at

p
s = 7.7GeV.

Since this distribution is statistics friendly, it can be fur-
ther tested by evaluating the higher order factorial cu-
mulants even with the presently available STAR data set
of 144393 events for the most central collisions. We also
pointed out that factorial cumualnts are more statistics
friendly when compared to regular cumulants, which, in
the case of Eq. (5), results from a delicate cancellation of
large factorial cumulants. Assuming that C4 = 170 (as
extracted from a preliminary STAR data) we predict:

C5 = �307 (1± 0.31), C6 = 3085 (1± 0.41),

C7 = �30155 (1± 0.61), C8 = 271492 (1± 1.06),

for e�ciency uncorrected data and

C5 = �2645 (1± 0.14), C6 = 40900 (1± 0.18),

C7 = �615135 (1± 0.26), C8 = 8520220 (1± 0.42),

for hNi = 40, corresponding to the e�ciency corrected
data [30]. We note, that in the next phase of the RHIC
beam energy scan the statistics is expected to increase by
roughly a factor of ⇠ 25 [31] reducing the above errors
by about a factor of 5.

Model prediction:
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K6 = hNi+31C2+90C3+65C4+15C5+C6 (see e.g., Ref.
[20]). And for our example of ”binomial+Poisson+e�”,
where we see a rapid increase in the relative error, we
have C6 ⇡ 3080, 15C5 ⇡ �4600 and 65C4 ⇡ 1970. As
a result, K6 ⇡ 180 ⌧ C6, and consequently the relative
error is much larger for K6 as compared to C6.
In summary, we demonstrated that for the multiplic-

ity distribution given by Eq. (5), which is relevant in
the context of searching for structures in the QCD phase
diagram, factorial cumulants of high orders can be deter-
mined with relatively small number of events. This is in
contrast to various statistics hungry distributions (Pois-
son, binomial, NBD, etc.), for which the error increases
nearly exponentially with increasing order. As shown in
Ref. [20], the distribution, Eq. (5), describes the prelim-
inary STAR data for proton cumulants (up to the forth
order) in central Au+Au collisions at

p
s = 7.7GeV.

Since this distribution is statistics friendly, it can be fur-
ther tested by evaluating the higher order factorial cu-
mulants even with the presently available STAR data set
of 144393 events for the most central collisions. We also
pointed out that factorial cumualnts are more statistics
friendly when compared to regular cumulants, which, in
the case of Eq. (5), results from a delicate cancellation of
large factorial cumulants. Assuming that C4 = 170 (as
extracted from a preliminary STAR data) we predict:

C5 = �307 (1± 0.31), C6 = 3085 (1± 0.41),
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roughly a factor of ⇠ 25 [31] reducing the above errors
by about a factor of 5.

Efficiency  
corrected

Efficiency  
UN-corrected



Simple two component model

!32

Difficult to see in the real data with efficiency ε=0.65
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FIG. 1. The multiplicity distribution P (N) at
p
s = 7.7 GeV in the two component model given by Eq. 1

constructed with (a) e�ciency unfolded values for hNi, C3 and C4 and (b) with imposed e�ciency of 0.65.

and the cumulant5 ratios read (CHECK PLEASE) (VK: I get for the
Cumulants {K1 . . .K6 = {40., 36.15, 18.45, 123.05,�1212.75, 11295.7} So I get K5/K2 ⇡ �34
K6/K2 ⇡ �312. I am happy to round this but then we should do this also in the
footnote where we explore the error ranger. Coe�cients in footnote are correct )

K5/K2 ⇡ �30,

K6/K2 ⇡ 300. (15)

It is worth noting that C6/C5 ⇡ C5/C4 ⇡ C4/C3 in agreement with the discussion presented in the
previous Section. We note that the resulting C2 ⇡ �3.85 is slightly more negative than the data.
However, as pointed out, e.g., in [45], the second order factorial cumulant receives sizable positive
contribution from participant fluctuations �C2 ' 2 � 3 whereas the correction to C3 and C4 are
small. In view of the sizable errors in the preliminary STAR data we consider the present fit as
satisfactory.

The resulting probability distribution, P (N), Eq. (1), is shown in the left panel of Fig. 1. Even
though the component centered at N ⇠ 25 has a very small probability ↵ ⇠ 0.3% it gives rise
to a shoulder at low N which should be visible in the multiplicity distribution. However, this
would require an unfolding of the measured distribution [27] in order to remove the e↵ect of a
finite detection e�ciency. Assuming a binomial model for the e�ciency with a constant detection
probability of ✏ = 0.65, which roughly corresponds to that of the STAR measurement, the observed
multiplicity distribution of the two component model is shown in the right panel of Fig. 1. In this
case the small component ⇠ ↵ is barely visible. This observation is consistent with the fact that
the e�ciency uncorrected cumulants measured by STAR are more or less consistent with a Poisson
(or binomial to be more precise) expectation.

(VK: why not the centrality dependence? ) I think we should add a few
sentences about centrality but we need to be careful about this
sudden jump of C3 in 5-10%. The STAR data is not really good
for a quantitative discussion... (VK: Maybe we can just mumble about the
fact that C3 is already very small at larger centrality and thus the whole approach is
questionable...? )

5 K2 = hNi + C2, K5 = hNi + 15C2 + 25C3 + 10C4 + C5 and K6 = hNi +
31C2 + 90C3 + 65C4 + 15C5 + C6.
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FIG. 2. P (N) for 7 GeV and twice the rapidity coverage as the present preliminary STAR data. See text
for details.

For the next phase of the RHIC beam energy scan, it is expected that STAR may be able to
increase its rapidity coverage. If it could be doubled, and the observed scaling Cn ⇠ hNin persists,
the resulting probability distribution would look like Fig. 2. In this case, even with an e�ciency
of ✏ ' 0.65 the two component should be visible in the e�ciency un-corrected data.

III. DISCUSSION AND CONCLUSIONS

Several comments are in order:

• We found that the factorial cumulants (integrated genuine correlation functions) based on
the present STAR data in central

p
s = 7.7 GeV collisions are consistent with the assumption

of two distinct event classes. This model not only reproduces the factorial cumulants but
also naturally explains the long correlation length observed in the STAR data.

• Provided that the measured factorial cumulants Cn are much larger than expectations from
an ordinary background (baryon conservation etc.) we predict that the factorial cumulants
satisfy a simple relation given in Eq. (10), that is, Cn+1/Cn does not depend on n. Hopefully,
this can be tested in experiment by comparing C4/C3 with C5/C4 and C6/C5.

• In the STAR experiment events are selected in centrality classes by the number of charged
particles (other than protons and anti-protons) within the STAR acceptance [38, 41]. There-
fore, in order to have two distinct event classes one of two things need to happen: Either
there is a mechanism which removes protons from a central event which has many charged
particles. Or, for some reason there are peripheral events, where naturally only few protons
are stopped and brought to mid rapidity, but at the same time lots of pions are produced
(and the event is classified as a central one). The latter situation is hard to fathom while
for the former, one could imagine that the lack of protons is compensated by an abundance
of deuterons or other light nuclei. If true, this would result in a significant anti-correlation
between the proton and deuteron number.

• If indeed two event classes are at play, we predict that the 5th and 6th order factorial
cumulants are very large. In addition, with the increasing acceptance of the STAR detector
to be expected in the next phase of the RHIC beam energy scan, the third and forth order
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• If indeed two event classes are at play, we predict that the 5th and 6th order factorial
cumulants are very large. In addition, with the increasing acceptance of the STAR detector
to be expected in the next phase of the RHIC beam energy scan, the third and forth order

Should be visible in raw (unfolded) data 
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FIG. 1. The multiplicity distribution P (N) at
p
s = 7.7 GeV in the two component model given by Eq. 1

constructed with (a) e�ciency unfolded values for hNi, C3 and C4 and (b) with imposed e�ciency of 0.65.

and the cumulant5 ratios read (CHECK PLEASE) (VK: I get for the
Cumulants {K1 . . .K6 = {40., 36.15, 18.45, 123.05,�1212.75, 11295.7} So I get K5/K2 ⇡ �34
K6/K2 ⇡ �312. I am happy to round this but then we should do this also in the
footnote where we explore the error ranger. Coe�cients in footnote are correct )

K5/K2 ⇡ �30,

K6/K2 ⇡ 300. (15)

It is worth noting that C6/C5 ⇡ C5/C4 ⇡ C4/C3 in agreement with the discussion presented in the
previous Section. We note that the resulting C2 ⇡ �3.85 is slightly more negative than the data.
However, as pointed out, e.g., in [45], the second order factorial cumulant receives sizable positive
contribution from participant fluctuations �C2 ' 2 � 3 whereas the correction to C3 and C4 are
small. In view of the sizable errors in the preliminary STAR data we consider the present fit as
satisfactory.

The resulting probability distribution, P (N), Eq. (1), is shown in the left panel of Fig. 1. Even
though the component centered at N ⇠ 25 has a very small probability ↵ ⇠ 0.3% it gives rise
to a shoulder at low N which should be visible in the multiplicity distribution. However, this
would require an unfolding of the measured distribution [27] in order to remove the e↵ect of a
finite detection e�ciency. Assuming a binomial model for the e�ciency with a constant detection
probability of ✏ = 0.65, which roughly corresponds to that of the STAR measurement, the observed
multiplicity distribution of the two component model is shown in the right panel of Fig. 1. In this
case the small component ⇠ ↵ is barely visible. This observation is consistent with the fact that
the e�ciency uncorrected cumulants measured by STAR are more or less consistent with a Poisson
(or binomial to be more precise) expectation.

(VK: why not the centrality dependence? ) I think we should add a few
sentences about centrality but we need to be careful about this
sudden jump of C3 in 5-10%. The STAR data is not really good
for a quantitative discussion... (VK: Maybe we can just mumble about the
fact that C3 is already very small at larger centrality and thus the whole approach is
questionable...? )

5 K2 = hNi + C2, K5 = hNi + 15C2 + 25C3 + 10C4 + C5 and K6 = hNi +
31C2 + 90C3 + 65C4 + 15C5 + C6.

Simple two component model

!34

Analyse data for Np <20 
• Is flow etc different? 
• “Inspect by eye (<1% of all events) 



URQMD
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Fig. 7. The same as Fig. 6 and just replace the X-axis with the corresponding mean proton number (⟨Np⟩).

Fig. 8. Energy dependence of proton (baryon) cumulants and correlation functions in 0–5% most central Au+Au collisions at √sNN = 7.7 to 200 GeV from UrQMD model 
(black circles) and STAR preliminary data (red stars) [15,37,56]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

To understand the contributions to the cumulants from differ-
ent physics effects, we decompose the various order cumulants 
into multi-particle correlation functions based on the equations (2)
and (3). It means that each cumulant in the first column is just 
equal to the sum of the results in the second and the third 
columns. It is easily noticed that the strong suppression observed 

in various order proton (baryon) cumulants from UrQMD at low 
energies are mainly caused by the negative two-proton correlation 
functions (c2), which is due to the anti-correlation between pro-
ton (baryon) caused by the BNC effects. The results for the three 
and four-particle correlation functions for protons (baryons) in the 
UrQMD model show a flat energy dependence and close to zero. 

He, Luo PLB774 (2017) 623



Cumulants of (Baryon) Number
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Kn =
�n

�(µ/T )n
ln Z =

�n�1

�(µ/T )n�1
�N�

Kn � VCumulants scale with volume (extensive):

Volume not well controlled in heavy ion collisions 

Cumulant Ratios: K2

�N� ,
K3

K2
,

K4

K2

K1 = �N� , K2 = �N � �N��2 , K3 = �N � �N��3



Simple model
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Correlations near the critical point
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M. Stephanov, 0809.3450, PRL 102

Scaling of Cumulants Kn with correlation length 

Cumulants from Correlations

Consequently:

Correlations Cn pick up the most divergent pieces of cumulants Kn!



Reduced correlation function
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where ”N = N ≠ ÈNÍ. Formulas for the higher order cumulants can be found in Ref. [XXX].
Now we can relate the cumulants in terms of the correlation functions and the mean particle number ÈNÍ = F
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Before we apply the above equations to extract the correlation strength from the STAR data, let us make a few
more remarks concerning these correlation functions.

Frequently in the literature, one refers to correlation function where the trivial dependence on the particle den-
sity/multiplicity is removed
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which we shall refer to as reduced correlation functions or simply couplings. For example in terms of the reduced
correlation functions the two particle density would be given as
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The advantage of the reduced correlation functions is that they are directly sensitive to the dynamics, and should
remain constant if the only change is that of the particle abundances. This will prove helpful when studying for
instance the centrality dependence of the correlations.

Also, the correlation functions Cn are often referred to as “factorial cumulants” [7]
Integrating over rapidity we obtain

Ck = ÈNÍk
ck (19)

where ÈNÍ =
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�Y dN/dy depends on the rapidity interval �Y and we denote
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Using above definition we can write
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and analogously for K
5

and K
6

.

Finally we should point out that direct relation between correlation functions and cumulants can not be established
if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix

A. Comments

Before we analyze the existing data several comments are warranted.
(i) First it would be interesting to see how couplings scale with multiplicity if the correlations originate from several

independent sources of correlations. Suppose we have Ns sources of particles, each characterized by the multiplicity
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For example two particle correlations:

Independent sources such as resonances, cluster, p+p:



Preliminary Star data are consistent 
with “long range” correlations
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7.7 GeV 
central

STAR preliminary

19.6 GeV 
central

STAR preliminary

Also true for transverse momentum correlations



Femtoscopy
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C. Fermi motion

In case of a nucleus-nucleus collision, the nucleons inside the target and projectile nuclei expe-
rience Fermi motion. Consequently, the initial momentum of the colliding nucleons is distributed
around the nominal (mean) value of the nucleus-nucleus collision. This broadens the emission source
in the longitudinal spatial direction, and thus affects the femtoscopy signal. We have

WF (z, t, Pi, Pf ) =

ˆ
dPiGF (Pi � hPii)W (z, t;Pi, Pf ), (10)

where GF (Pi � hPii) is the distribution of the actual initial momentum Pi of the nucleon around
the average hPii. We shall take it in the form

GF (Pi � hPii) ⇠ e�[Pi�hPii]2/�2
F
; �F = �

r
2

5

kF ' � 165MeV, (11)

where kF is the Fermi momentum.2 Note that due to the Lorentz boost the width of the distribu-
tion, �F scales with the Lorentz factor �, �F ⇠ �. This increases substantially the width of this
distribution in the energy region of interest.

III. THE HBT CORRELATION FUNCTION

The femtoscopic longitudinal correlation function we are seeking for is given by [10, 15]

C(�qz; �q0)� 1 = �1

2

|�(�qz; �q0)|2

|�(�qz = 0; �q0 = 0)|2 , (12)

where �qz is the difference of the longitudinal momenta of the two protons, �q0 is the difference of
their energies and

�(�qz, �q0;Pi, Pf ) =

ˆ 1

�1
dzeiz�qz

ˆ 1

�t
dte�it�q0W (z, t;Pi, Pf ) (13)

is the Fourier transform of the density.
Since we are working with Gaussians, the Fourier transforms are straightforward. We have

�(�qz, �q0;Pi, Pf ) ⇠ cos[�qz�z]e�(�qz�c)2/4e�i�q0(�t+⇣0/V )e�(�q0�c)2/(4V 2), (14)

where for the Fourier transform in t it was essential to use the condition ⇣0 � R/� which allowed
to integrate over time from �1.

Thus the final result for the correlation function, including Fermi motion, is

CF (�qz; �q0)� 1 = �1

2

|�F (�qz; �q0)|2

|�F (�qz = 0; �q0 = 0)|2 , (15)

where
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,(16)

2
The value of �F follows from the demand that the distribution GF exhibits the same variance as the Fermi gas

with the Fermi momentum kF . Also, we ignore the small effect of the binding energy of the nucleons and instead

assume that we can treat the nucleons as free particles.
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FIG. 3. Time integrated source function for stopped protons as a function of z for (a)
p
s = 20GeV and (b)p

s = 14GeV. The black dashed lines represent the result of our model calculation while the blue solid lines
are obtained by doubling the value of width of the collision point distribution, �c. The source functions
shown are normalized to unity.

restriction is not important, as the longitudinal and transverse degrees of freedom factorise.
To increase statistics, one may thus integrate over transverse momenta. Since the Lund
model is best justified at small transverse velocities, and since the Gaussian form is only
an approximation, it seems reasonable, however, to restrict measurements to protons with
transverse momenta not exceeding, say, 1 GeV.

(iv) It turns out that the corrections due to the Coulomb and strong interactions do not change
qualitatively the possibility of observation of the expected oscillations of the correlation func-
tion.

(v) Our calculation ignored entirely possible correlations between the outgoing protons due to
quark mixing at very short distances [18]. Introducing such correlations may result in the
correlation function being positive in some region of �qz. As shown in [18], however, this
effect is small and should not modify our conclusions.

(vi) Finally, let us add that our results rely strongly on the idea that the longitudinal distribution
of nucleons inside moving nucleus are Lorentz-contracted and that this contraction survives
during the collision. The proposed measurement should thus provide an interesting test of
this commonly used assumption (for the recent discussion of the measurements of Lorentz
contraction, see [19]).
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FIG. 1. Femtoscopy correlation function for (a)
p
s = 20GeV and (b)

p
s = 14GeV. The black dashed lines

represent the result of our model calculation while the solid blue lines are obtained by doubling the value of
width of the collision point distribution, �c.

FIG. 2. Same as Fig. 1 but with strong and Coulomb interaction effects included.

Some remarks are in order.

(i) The observation of the suggested extra oscillations will not only confirm the idea that the
nucleons do not stop immediately after collision. It should also allow to measure the effective
distance at which the energy is deposited in the produced particles. Indeed, as seen from Eq.
(16), �F (and thus also CF ) explicitly depends on �Z, the average distance required to stop
a proton.

(ii) Even if the oscillations are not seen, the measurement will determine the (longitudinal) size of
the volume from which the protons at ycm ⇡ 0 are emitted. This should allow to estimate the
actual density of protons in configuration space, the quantity essential for the studies of this
system. One also obtains the upper limit on the distance the nucleons travel before attaining
the rapidity y ⇡ 0, thus improving our understanding of the process of the energy loss by the
leading particles in a high energy collision.

(iii) The definition of the longitudinal correlation function requires that the vector �~q points in
the z-direction, i.e. �q? = 0. In our approximation of the nuclear densities as Gaussians this

Source Femtoscopy


