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Produce Event Lists

e Reconstruct single “events” (gamma ray or
background), select gamma-ray candidates, provide
Energy and Position information

» or real data

> For simulated data

Produce Instrument Response Functions

e Input is large library of reconstructed event lists

» From Simulations (e.g.

DS |:, Aeﬁ,

Zmig)

» From Real Data (e.g. residual background rate)

Support Development and Verification of Prototype

Telescopes
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Challenge: Data Volume

Southern Hemisphere CTA data size (as powers of 10 only):

‘ ' ' | +100 telescopes (CTA-south)

10,000 array triggers per second O(] 0) PB/yr

10 telescopes on average per trigger

et 0 +10-100 image frames per telescope camera
PP -1,000 to 10,000 pixels per camera

*= 100 lossy and lossless compression

of raw data

Circles:

Monte-Carlo Simulations
(basically continuously, similarly data volume)

Yearly reprocessing of all data with new calibration and
reconstruction (30 year lifetime of CTA...)
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Challenge: Complex Instrument (1)

Camera and optics complexity

e / cameras (for now)

» Hexagonal and square pixels, Pixel gaps

» [Ime-series readouts vs peak times, multiple sampling
frequencies

e 0 telescope optics: 1 and 2-mirror systems, various
mirror geometries

e 4+ raw data formats

CAVEAT: Much of this will simplify before the final construction
phase... but still at least 3 cameras and 3 optics types, and likely
many generations/variations in each.
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Challenge: Complex Instrument (2)

Atmosphere and Observation Condition Complexity:

Instrument’s response changes with:

e Gamma-ray Energy

e Position in Field-of-View

e Zenith Angle (elevation): atmosphere thickness
e Azimuth: Earth magnetic field orientation

e Ground position of shower in the array / Number of telescopes
of each type that trigger / exactly which telescopes trigger!

e Subarray Choice
e Atmosphere Density profile

e Optical Night-Sky-Background light level (Moon, Zodiacal
light, Light pollution)

e Atmosphere Aerosol content profile
e Detector Configuration (high voltage gain, etc)

e Analysis Configuration (reconstruction algorithm, discrimination
strength, ...)
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Challenge: Complex Instrument (2)

Atmosphere and Observation Condition Complexity:

Instrument’s response changes with:

Potentially very high-dimensional

e Gamma-ray Ener Change durin .
/ & & & Instrumental Response Functions!

e Position in Field-of-View an observation
e Zenith Angle (elevation): atmosphere thickness
e Azimuth: Earth magnetic field orientation

e Ground position of shower in the array / Number of telescopes
of each type that trigger / exactly which telescopes trigger!

e Subarray Choice

e Atmosphere Density profile Change between observations

e Optical Night-Sky-Background light level (Moon, Zodiacal
light, Light pollution)

HY'FERCUBE

e Atmosphere Aerosol content profile

e Detector Configuration (high voltage gain, etc)

e Analysis Configuration (reconstruction algorithm, discrimination

strength, ...) Or lots of custom simulations...
K. Kosack, PyGammal9




Challenge: diverse developer needs

What Physicists Want:

e Small learning curve for unexperienced developers

(TTTTTTTTTTTTreToen o

e Ability to quickly implement a new algorithms and cross-check T “, i

e Easy to play with data and explore , interactivity “”

e Simple deterministic loops over events and sequences of
algorithm steps
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Challenge: diverse developer needs

What Physicists Want:

e Small learning curve for unexperienced developers

e Easy to play with data and explore , interactivity ‘ ““ n

e Ability to quickly implement a new algorithms and cross-check I i \,, ,

e Simple deterministic loops over events and sequences of
algorithm steps

What we eventually need:
e High-performance processing or PBs of data
» Big-Data-style Parallelisation (map-reduce, streaming, etc.)

» High-Performance Computing: efficient use of CPU / GPU

e Well-maintainable code (CTA = 30 years!)

e Involvement of computer scientists / engineers
K. Kosack, PyGammal9 10



Lessons Learned...
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Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework Lessons Learned "aw

e Nearly all complained about it.
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algorithms (coordinates, regions, etc)
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Bullding a Framework

Bottom-Up approach Top-Down approach

start
here

start
here

Our approach: start early
with python and high-level
API

Most previous frameworks
did 1t this way

K. Kosack, PyGammal9 13
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How do we get to a final product” (Implementation Choices)

Core library in Python:
a controversial choice at the time!
(a distant 3-4 years ago)

e Existence of AstroPy and early GammaPy
was a major motivation, but both still <1.0
release at the time

e Momentum in astronomy community, but
not well known In our community
(astroparticle physics)

e Bad experiences (reportedly...) in past
with python: (numeric / numarray mess,
slowness, etc)

e Proof of concept was needed.
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How do we get to a final product? (Implementation Choices)

Modern Collaborative Development
Practices!

e GitHub, TravisCl, Codacy,
coverage.io, Slack

e Require 2 code reviews before
merging a PR
(and no commits to master!)

e 35 committers so far
» ~10 with large contributions),

» many just helping write good code
and docs!

Future Path to Higher-Performance!

e HPC re-implementations of FS;e “alk by
algorithms, cross-checked with T/ZOfZan até oy,
“standard” python “Isday

Implementations via automated
tests

» Physicists = write python

» Computer Scientists = Adapt it to

_|

PG orwrap it in

frameworks

Sig-Data

e to fancier parallelization systems:

» Physicists = write algorthms

» E=xperts = VWrap them to run in

1

Sig Data” frameworks

K. Kosack, PyGammal9 15



common “core” package — full prototype

ctapipe will be glue between various components. github.com/cta-observatorv/ctanil?e

Provides common APIs and user interfaces
packaging, etc.

pipeline release &

tools
e deployment

executables)

o
ctapipe
package/framework advanced

pipeline -

applications Package + Virtual

(onlin.e, streaming, Env containing fixed
DAQ interface, ...) versions of all

dependences
(compiler / python
interpreter included)

Eventl O Wrapper Q (',‘f::r‘n"v"r-.".
algorithms File system

I/"

¥ matplotli

(python) algorithms

p (C/C++)

e.g. HPC

ODIRAC

THE INTERWARE

K. Kosack, PyGammal9 16


http://github.com/cta-observatory/ctapipe

Algorithms and
Workflow




Data Processing Pipeline (simplified)
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Reconstruction
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Discrimination

Note: Same technique for Energy reconstruction and Event Type Classification

per-image |
parameter sets gamma-like
(width, length, ...)
per_shower parameters particle class h a d r O n ~ I_I I ( e
parameters .
electron-like

(impact distance,
energy, number of
tels, ...)

machine learning in Python

Note: Also event quality classification, e.g. good PSF, good
spectral resolution, sensitivity to unknown sources, ...

K. Kosack, PyGammal9 22



Output: Science Data

Event-List
T class | type |n.tels Technical Tables (for sub-GTlIs)
5 Temperatur Trigger
TIME  Transparency P g8
e Rate
580234.34 0.8 32 12034
o 580234.35 0.94 32 13023
.| 580234.36 0.70 33 12532
10255 —is 210 _6'3,09,0(01_;:‘/)fl~e\/)0i'5 110 1.5rue2.o Energy Migration (note these are not CTA
20 ; 10 Energy Response 0250 responses, just examples form
y f’ Igz HESS)
7. - d o
L0 -05 00 05 10 15 20 -0 -05 00 05 10 15 20 IO:OOO K. KOSCle, P)/Gammalg 23
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A few framework
features




Raw (event) Data Access Layer

EventSource.from_url(filename)

experts write these
Factory
SimTelArray File !
pattern used (Cenloformat SimTelEventSource
to choose
implementation AW°
CHEC camera testbench e ot
based on =5 argetlOEventSource a@‘ee
[ J e
Input \ W
Dr;i::(CZaFIInTST:;:r:?’:)C : SSTIMEventSource —» RawDataContainer
don’t care where the
NectarCam Testbench d t f
. Data NectarCamEventSource ala Came 1rom
In the future’ (ZFITS format)
Standard CTA

raw data format
(TBD)

Fake Events Generator ToyModelEventSource

K. Kosack, PyGammal9 25




Simple Event-wise Data Access

Working with data is supposed to be simple:

from ctapipe.io import event_source
source = event_source("gammas.simtel.gz")

for event 1n source:
print(event.trig.tels_with_trigger)
print(event.trig.gps_time.1s0)
print(event.trig.gps_time.mjd)
print(event.mc.energy.to('GeV'))
print(event.r0.tel[4].waveform.mean())

e attempt to keep the framework lightweight for algorithm designers
(lesson learned), while supporting advanced processing technigues

K. Kosack, PyGammal9 26
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Simple Event-wise Data Access

Working with data is supposed to be simple:

from ctapipe.io import event_source

__y source = event_sou rce("gammas.simtel.gz")
an instance of .
EventSource based on for event 1in source:
file contents print(event.trig.tels_with_trigger)

set of hierarchical print(event.trig.gps_time.1s0)

Containers for print(eyept.trig.gps_time.mjd)
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Simple Event-wise Data Access

Working with data is supposed to be simple:

from ctapipe.io import event_source

__y Source = event_source("gammas.simtel.gz")

an instance of .
EventSource based on for event 1n source:

file contents print(event.trig.tels_with_trigger)
set of hierarchical print(event.trig.gps_time.1s0)

. . . . time, units, angles
Containers for/wt .trig.gps_time.mjd) /
T (

various data items event.mc.energy.to('GeV'))
(a[so stores print(event .ro. te].|:4:| .waveform. mean())

“column” metdata
like units and
descriptions)

rich conversions
based on astropy

e attempt to keep the framework lightweight for algorithm designers
(lesson learned), while supporting advanced processing technigues
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Simple Event-wise Data Access

Working with data is supposed to be simple:

from ctapipe.io import event_source

__y Source = event_source("gammas.simtel.gz")

an instance of .
EventSource based on for event 1n source:

file contents print(event.trig.tels_with_trigger)
set of hierarchical print(event.trig.gps_time.1s0)

. . . . time, units, angles
Containers for/wt .trig.gps_time.mjd) /
T (

various data items event.mc.energy.to('GeV"))

rich conversions
based on astropy

(also stores print(event.r0.tel[4].waveform.mean()) All images and
“column” metdata waveform cubes are
like UnitS and NumPy NDArrayS

descriptions)

e attempt to keep the framework lightweight for algorithm designers
(lesson learned), while supporting advanced processing technigues

K. Kosack, PyGammal9 26



Containers (fancy dict-like classes)

Used for data interchabnge between algoriuthms

Works as an object-relational mapper (ORM) for 1/0

class MyContainer(Container):
energy = Field(0.0, "reconstructed energy”, unit=u.TeV)
ra = Field(0.0, "right ascension”, unit=u.deg, ucd='pos.eq.ra'’)

c = MyContainer(energy=12*u.TeV, ra=15.0*u.deq)
c.ra = 17"u.deg
C

MyContainer:
energy: reconstructed energy [TeV]
ra: right ascension [deg]

In [10]: c.as_dict()
Out[10]: {'energy': 12, 'ra': 0.0} K. Kosack, PyGammal9 27



Row-wise Data Output and further processing

[48]: data = utils.get_dataset_path("gamma_test_large.simtel.gz")

source = event_source(data, allowed_tels=[1,2,3,4], max_events=10) # re¢

TableWriter (serialize Containers to Tables,
without keeping whole table in memory):

[50]: from ctapipe.io import HDF5TableWriter

e For writing data efficiently when you don’t
have the whole column at once

[51]: with HDF5TableWriter(filename='hillas.h5', group_name='dll', overwrite:
for event in source:
calib.calibrate(event)

e Most Common Usage Pattern
(not planned):

for tel _id, tel_data in event.dll.tel.items():
tel = event.inst.subarray.tel[tel_id]
mask = tailcuts_clean(tel.camera, tel_data.image([@])
params = hillas_parameters(tel.camera[mask], tel_data.imag
writer.write("hillas", params)

ctapipe event loop = HDF5TableWriter — HDFS5 files —
pandas.read_hdf()

[53]: import pandas as pd
> Daﬂdas breaKS 1T aﬂy CO‘ UIMN Nas array da-ta hillas = pd.read_hdf("hillas.h5", key='/dl1/hillas')
hillas
<aSJ[ rO py' tab ‘ e S b p pOrtS th a-t J[IA O u g h> [53]: intensity kurtosis length phi psi r skewness width
0 516.973074 2.002860 0.241504 158.337072 63.038146 1.044776 0.306567 0.047223 -0.970
B :
) and aS teﬂd S -to S-trl p Oﬁ a‘ ‘ usefu‘ metad a-ta L 1 12351.140514 3.896901 0.257008 131.028596 -77.249721 0.832273 1.061792 0.114391 -0.546
. . . 2 104.850078 5.350268 0.321235 46050519 88.237061 0.812167 -2.056825 0.024754 0.563
) Stl ‘ ‘ need a better SO‘ Uthn -I:ha-t USerS ‘ | ke 3 111.341088 2111895 0.050280 69.051947 79.696708 0.960495 0.138985 0.022882 0.343
4 92755466 5135449 0217182 121.504415 80.614031 0.900817 -1.966423 0.021410 -0.470
_ _28.

- A, m_ e s v

-y -_.:/-q_’,,,..

P e



Instrument Description (ctapipe.instrument)

SubarrayDescription
/ \ tel[i]
+ pos_x[i]
+ pos_yli]
+ footprint
TelescopeDescription

Astropy Table conversion: + to_table()

optics camera

+ effective_focal_length + pix_x  [shape: npix]

+ mirror_area + pix_y [shape: npix]

+ mirror_type + pix_id [shape: nP'X]

+ num_mirror_tiles + pix_area [shape: npix]
+ pix_type

+ neighbors (list)
+ neighbor_matrix (shape: npix,npix)

+ to_table
_ 0 K. Kosack, PyGammal9 29



Configuration System: based on traitlets

Component (traitlets.config.Configurable)

e wrapper for complex algorithms that need to have user-
level configuration parameters

e Parameters are defined in class Traitlets subclass

Tool (traitlets.config.Application)
e a Ul, currently command-line application

e handles user configuration (command line or config file
parameters) for a set of Components

e manages the Provenance system
e manages signals, etc.

e set up logging

https://traitlets.readthedocs.10
) K. Kosack, PyGammal9 30


https://traitlets.readthedocs.io

ctapipe-display-dl1 --help-all
Calibrate dl0 data to dl1, and plot the photoelectron images.

Arguments that take values are actually convenience aliases to full
Configurables, whose aliases are listed on the help line. For more information
on full configurables, see '--help-all'.

-D

Display the photoelectron images on-screen as they are produced.
--max_events=<Int> (EventSource.max_events)

Default: None

Maximum number of events that will be read from the file
--extractor=<CaselessStrEnum> (DisplayDL1Calib.extractor_product)

Default: 'NeighbourPeakIntegrator'

Choices: ['Fulllntegrator', 'SimpleIntegrator', 'GlobalPeakIntegrator', 'LocalPeakIntegrator',

'NeighbourPeakIntegrator', 'AverageWfPeakIntegrator']
ChargeExtractor to use.
--t0=<Int> (Simplelntegrator.t0)
Default: 0
Define the peak position for all pixels
--window_width=<Int> (WindowIntegrator.window_width)
Default: 7
Define the width of the integration window
--window_shift=<Int> (WindowIntegrator.window_shift)

Default: 3
Define the shift of the integration window from the peakpos (peakpos -
shift)

--sig_amp_cut_HG=<Float> (PeakFindingIntegrator.sig_amp_cut_HG)
Default: None
Define the cut above which a sample is considered as significant for
PeakFinding in the HG channel
--sig_amp_cut_LG=<Float> (PeakFindingIntegrator.sig_amp_cut_LG)
Default: None
Define the cut above which a sample is considered as significant for
PeakFinding in the LG channel
--1wt=<Int> (NeighbourPeakIntegrator.lwt)
Default: 0
Weight of the local pixel (@0: peak from neighbours only, 1: local pixel
counts as much as any neighbour
--clip_amplitude=<Float> (CameraDL1Calibrator.clip_amplitude)
Default: None
Amplitude in p.e. above which the signal is clipped. Set to None for no
clipping.
-T <Int> (DisplayDL1Calib.telescope)
Default: None
Telescope to view. Set to None to display all telescopes.
-0 <Unicode> (ImagePlotter.output_path)
Default: None
Output path for the pdf containing all the images. Set to None for no saved

output.
--log-level=<Enum> (Application.log_level)
Default: 30

Choices: (0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL')
Set the log level by value or name.

--config=<Unicode> (Tool.config_file)
Default: "'
name of a configuration file with parameters to load in addition to command-
line parameters

Class parameters

Parameters are set from command-line arguments of the form:
"—--Class.trait=value . This line is evaluated in Python, so simple expressions
are allowed, e.g.:: --C.a='range(3)'" For setting C.a=[0,1,2].

DisplayDL1Calib options
--DisplayDL1Calib.config_file=<Unicode>
Default: "'
name of a configuration file with parameters to load in addition to command-
line parameters
--DisplayDL1Calib.extractor_product=<CaselessStrEnum>
Default: 'NeighbourPeakIntegrator'
Choices: ['Fulllntegrator', 'SimpleIntegrator', 'GlobalPeakIntegrator', 'LocalPeakIntegrator',
'NeighbourPeakIntegrator', 'AverageWfPeakIntegrator']
ChargeExtractor to use.
--DisplayDL1Calib.log_datefmt=<Unicode>
Default: '%Y-%m-%d %H:%M:%S"'
The date format used by logging formatters for %(asctime)s
--DisplayDL1Calib.log_format=<Unicode>
Default: '[%(name)s]%(highlevel)s %(message)s'
The Logging format template
--DisplayDL1Calib.log_level=<Enum>
Default: 30
Choices: (@, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL')
Set the log level by value or name.
--DisplayDL1Calib. telescope=<Int>
Default: None
Telescope to view. Set to None to display all telescopes.

EventSource options
--EventSource.allowed_tels=<Set>

Default: set()

list of allowed tel_ids, others will be ignored. If left empty, all

telescopes in the input stream will be included
--EventSource. input_url=<Unicode>

Default: "'

Path to the input file containing events.
--EventSource.max_events=<Int>

Default: None

Maximum number of events that will be read from the file

CameraDL1Calibrator options

--CameraDL1Calibrator.clip_amplitude=<Float>



Metadata and Provenance

Requirement that CTA data products are reproducible See talk by Matthieu Servillat

e software version

e configurations wasDerivedFrom

® /nputs P O o

» 1 IRF might have T000s of input files, tables, calibration wasAttributedTo /. Enﬁfy J
coefficients, lab measurements P N wasGeneratedBy

Inside ctapipe “Tools” automatically keep track of at ' e )Ned
least the “local provenance” metadata washssocatedWith N\ N terss | I

e Any file opened (input or output ) is automatically tracked Stamdmr:/ 0 \,fedAmme

e The “activity” details are also recorded (local machine xsd:dateTime | WasIMformedBY ' ysq.dateTime

name, running time, and other info)

Local provenance can be put into a database to derive
the full chain of processing history for any output file

K. Kosack, PyGammal9 32



Code Example

ctapipe.reco.HillasReconstructor

def estimate_core_position(self, hillas_dict, telescope_pointing):
psi = u.Quantity([h.psi for h in hillas_dict.values()])
z = np.zeros(len(psi))
uvw_vectors = np.column_stack([np.cos(psi).value, np.sin(psi).value, z])

tilted_frame = TiltedGroundFrame(pointing_direction=telescope_pointing)
ground_frame = GroundFrame()

positions = [

(
SkyCoord(*plane.pos, frame=ground_frame)
.transform_to(tilted_frame)
.cartesian.xyz

)

for plane in self.hillas_planes.values()

]

core_position = line_line_intersection_3d(uvw_vectors, positions)

core_pos_tilted = SkyCoord(
x=core_position[0] * u.m,
y=core_position[1] * u.m,
frame=tilted_frame

)

core_pos = project_to_ground(core_pos_tilted)

return core_pos.x, core_pos.y K. Kosack, PyGammal9 33



irch docs

ing Started For Developers

elopment Guidelines
orials
etting Started with ctapipe

Part 1: load and loop over data

Part 2: Explore the instrument
description

Part 3: Apply some calibration
and trace integration

Part 4: Let’s put it all together:

xploring Raw Data
xplore Calibrated Data

Aake a theta-square plot

018 LST Bootcamp walkthrough

imples

quently Asked Questions

Docs » Tutorials » Getting Started with ctapipe

Getting Started with ctapipe

This hands-on was presented at the Paris CTA Consoritum meeting (K

Part 1: load and loop over data

[1]:

[2]:

[3]:

(4] :
(4] :

from ctapipe.io import event_source
from ctapipe import utils

from matplotlib import pyplot as plt
smatplotlib inline

path = utils.get_dataset_path('"gamma_test_large.simtel.gz")
source = event_source(path, max_events=4)

for event in source:
print(event.count, event.r@.event_id, event.mc.energy)

0 23703 90.5707105398178101 TeV
1 31007 1.8637498617172241 TeV
2 319010 1.8637498617172241 TeV
3 31012 1.8637498617172241 TeV

event

ctapipe.io.containers.DataContainer:
event_type: Event type
ro.x: Raw Data
rl.x: R1 Calibrated Data
dl@9.x: DL@® Data Volume Reduced Data
dll.x: DL1 Calibrated image
dl2.x: Reconstructed Shower Informat
mc.*: Monte-Carlo data

— el bl | — — 2 = N el - ”™ o Y — . e ] | — - i - —

Tutorials and
examples in
documentation
using nbsphinx
plugin



Benchmarking

———————————————————————————————

Benchmark Cl System ! ! CTA Computing Grid
|
(T Developer's Machine + Dev Cl system | | [ Benchmark | | ‘2
| o Production —P : g Full Production
- ! N ‘ . approval N\ ! i ﬁo REEERS
Q_;_> Development [¢——<> : i : ,} N Performance New Pipeline p
! failure v N : Validation Release X
! :
Existing Pipeline CodeAcceptance  aionapipeline | | C—
v'gsioze LL (unit test, review) Version — K

Current plan (partially realized):
e Collection of Jupyter notebooks
» data preparation
> |low-level benchmarks
» Nhigh-level summaries
e Papermill:

> parameterization of NoteooKS m prerm ill

» notebook output data access
K. Kosack, PyGammal9 35



Open Questions

Can we use ctapipe python algorithms in our RTA?
e preliminary studies say maybe

e tests using dask, spark and others found some
bottlenecks (not related to algorithms themselves),
but more work to do

What should the output data format be?
e so far we like HDF5, but some problems
e FITS for DL3.... still some things to define
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