
Developing a Python framework for
low-level data processing for CTA

Karl Kosack
CEA Paris-Saclay / CTA Observatory

PyGamma19, Heidelberg

What is the goal of
low-level CTA data

processing?

Generate data that
science users want

to start with!

�2

What is the goal of
low-level CTA data

processing?

Generate data that
science users want

to start with!

Produce Event Lists

•Reconstruct single “events” (gamma ray or
background), select gamma-ray candidates, provide
Energy and Position information

➤ For real data
➤ For simulated data

�2

What is the goal of
low-level CTA data

processing?

Generate data that
science users want

to start with!

Produce Event Lists

•Reconstruct single “events” (gamma ray or
background), select gamma-ray candidates, provide
Energy and Position information

➤ For real data
➤ For simulated data

Produce Instrument Response Functions

• Input is large library of reconstructed event lists

➤ From Simulations (e.g. PSF, Aeff, Emig)
➤ From Real Data (e.g. residual background rate)

�2

What is the goal of
low-level CTA data

processing?

Generate data that
science users want

to start with!

Produce Event Lists

•Reconstruct single “events” (gamma ray or
background), select gamma-ray candidates, provide
Energy and Position information

➤ For real data
➤ For simulated data

Produce Instrument Response Functions

• Input is large library of reconstructed event lists

➤ From Simulations (e.g. PSF, Aeff, Emig)
➤ From Real Data (e.g. residual background rate)

Support Development and Verification of Prototype
Telescopes

�2

K. Kosack, PyGamma19

Electromagnetic Showers

�3

≈10 km

200 m

γ

e
+

e
−

e
+

e
−

e
−

e
+

γ

γ γ

γ

photon
or e-

K. Kosack, PyGamma19

Electromagnetic Showers

�3

≈10 km

200 m

γ

e
+

e
−

e
+

e
−

e
−

e
+

γ

γ γ

γ

photon
or e-

K. Kosack, PyGamma19

Electromagnetic Showers

�3

≈10 km

200 m

γ

e
+

e
−

e
+

e
−

e
−

e
+

γ

γ γ

γ

photon
or e-

K. Kosack, PyGamma19

Electromagnetic Showers

�3

≈10 km

200 m

γ

e
+

e
−

e
+

e
−

e
−

e
+

γ

γ γ

γ

photon
or e-

K. Kosack, PyGamma19

Electromagnetic Showers

�3

≈10 km

200 m

γ

e
+

e
−

e
+

e
−

e
−

e
+

γ

γ γ

γ

photon
or e-

K. Kosack, PyGamma19

Electromagnetic Showers

�4

≈10 km

200 m

γ

e
+

e
−

e
+

e
−

e
−

e
+

γ

γ γ

γ

photon
or e-

effective area ≈ size of light pool (small array)

 ≈ size of array (large array)

K. Kosack, PyGamma19

Electromagnetic Showers

�4

≈10 km

200 m

γ

e
+

e
−

e
+

e
−

e
−

e
+

γ

γ γ

γ

photon
or e-

effective area ≈ size of light pool (small array)

 ≈ size of array (large array)

K. Kosack, PyGamma19

Electromagnetic Showers

�4

≈10 km

200 m

γ

e
+

e
−

e
+

e
−

e
−

e
+

γ

γ γ

γ

ra,dec

photon
or e-

effective area ≈ size of light pool (small array)

 ≈ size of array (large array)

K. Kosack, PyGamma19

Hadronic Showers

�5

≈10 km

200 m

e+

ν µ

eν
ν µν µ

eν
ν µ

p

π0 π−

π+

γ γ
µ−

e+ e−
e+

e−

e−

γ

γ

EM Cascade
EM Cascade

EM Cascade

EM Cascade

Nucleon Cascade

µ+
e−

e+

EM sub-showers

cosmic
ray

cosmic ray

K. Kosack, PyGamma19

Hadronic Showers

�5

≈10 km

200 m

e+

ν µ

eν
ν µν µ

eν
ν µ

p

π0 π−

π+

γ γ
µ−

e+ e−
e+

e−

e−

γ

γ

EM Cascade
EM Cascade

EM Cascade

EM Cascade

Nucleon Cascade

µ+
e−

e+

EM sub-showers

cosmic
ray

cosmic ray

K. Kosack, PyGamma19

Hadronic Showers

�5

≈10 km

200 m

e+

ν µ

eν
ν µν µ

eν
ν µ

p

π0 π−

π+

γ γ
µ−

e+ e−
e+

e−

e−

γ

γ

EM Cascade
EM Cascade

EM Cascade

EM Cascade

Nucleon Cascade

µ+
e−

e+

EM sub-showers

cosmic
ray

cosmic ray

K. Kosack, PyGamma19

Hadronic Showers

�5

≈10 km

200 m

e+

ν µ

eν
ν µν µ

eν
ν µ

p

π0 π−

π+

γ γ
µ−

e+ e−
e+

e−

e−

γ

γ

EM Cascade
EM Cascade

EM Cascade

EM Cascade

Nucleon Cascade

µ+
e−

e+

EM sub-showers

cosmic
ray

cosmic ray

Challenges and
Lessons

�6

K. Kosack, PyGamma19

Challenge: Data Volume

Monte-Carlo Simulations 
(basically continuously, similarly data volume)

Yearly reprocessing of all data with new calibration and
reconstruction (30 year lifetime of CTA…)

�7

CTA data size (as powers of 10 only):
• 100 telescopes (CTA-south)
•10,000 array triggers per second
•10 telescopes on average per trigger
•10-100 image frames per telescope camera
•1,000 to 10,000 pixels per camera
•÷ 100 lossy and lossless compression

O(10) PB/yr  
of raw data

K. Kosack, PyGamma19

Challenge: Complex Instrument (1)

Camera and optics complexity

• 7 cameras (for now)

➤ Hexagonal and square pixels, Pixel gaps
➤ Time-series readouts vs peak times, multiple sampling

frequencies

• 6 telescope optics: 1 and 2-mirror systems, various
mirror geometries

• 4+ raw data formats

CAVEAT: Much of this will simplify before the final construction
phase… but still at least 3 cameras and 3 optics types, and likely
many generations/variations in each.

�8

K. Kosack, PyGamma19

Challenge: Complex Instrument (2)

Instrument’s response changes with:

•Gamma-ray Energy

• Position in Field-of-View

• Zenith Angle (elevation): atmosphere thickness

• Azimuth: Earth magnetic field orientation

•Ground position of shower in the array / Number of telescopes
of each type that trigger / exactly which telescopes trigger!

• Subarray Choice

• Atmosphere Density profile

•Optical Night-Sky-Background light level (Moon, Zodiacal
light, Light pollution)

• Atmosphere Aerosol content profile

• Detector Configuration (high voltage gain, etc)

• Analysis Configuration (reconstruction algorithm, discrimination
strength, …)

�9

Atmosphere and Observation Condition Complexity:

K. Kosack, PyGamma19

Challenge: Complex Instrument (2)

Instrument’s response changes with:

•Gamma-ray Energy

• Position in Field-of-View

• Zenith Angle (elevation): atmosphere thickness

• Azimuth: Earth magnetic field orientation

•Ground position of shower in the array / Number of telescopes
of each type that trigger / exactly which telescopes trigger!

• Subarray Choice

• Atmosphere Density profile

•Optical Night-Sky-Background light level (Moon, Zodiacal
light, Light pollution)

• Atmosphere Aerosol content profile

• Detector Configuration (high voltage gain, etc)

• Analysis Configuration (reconstruction algorithm, discrimination
strength, …)

�9

Change during
an observation

Change between observations

Atmosphere and Observation Condition Complexity:

K. Kosack, PyGamma19

Challenge: Complex Instrument (2)

Instrument’s response changes with:

•Gamma-ray Energy

• Position in Field-of-View

• Zenith Angle (elevation): atmosphere thickness

• Azimuth: Earth magnetic field orientation

•Ground position of shower in the array / Number of telescopes
of each type that trigger / exactly which telescopes trigger!

• Subarray Choice

• Atmosphere Density profile

•Optical Night-Sky-Background light level (Moon, Zodiacal
light, Light pollution)

• Atmosphere Aerosol content profile

• Detector Configuration (high voltage gain, etc)

• Analysis Configuration (reconstruction algorithm, discrimination
strength, …)

�9

Potentially very high-dimensional
Instrumental Response Functions!

Or lots of custom simulations…

Change during
an observation

Change between observations

Atmosphere and Observation Condition Complexity:

K. Kosack, PyGamma19

Challenge: diverse developer needs
What Physicists Want:

• Small learning curve for unexperienced developers

• Easy to play with data and explore , interactivity

• Ability to quickly implement a new algorithms and cross-check

• Simple deterministic loops over events and sequences of
algorithm steps

�10

K. Kosack, PyGamma19

Challenge: diverse developer needs
What Physicists Want:

• Small learning curve for unexperienced developers

• Easy to play with data and explore , interactivity

• Ability to quickly implement a new algorithms and cross-check

• Simple deterministic loops over events and sequences of
algorithm steps

What we eventually need:

•High-performance processing or PBs of data

➤ Big-Data-style Parallelisation (map-reduce, streaming, etc.)
➤ High-Performance Computing: efficient use of CPU / GPU

•Well-maintainable code (CTA = 30 years!)

• Involvement of computer scientists / engineers
�10

Lessons Learned…

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, …
Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework Lessons Learned…

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, …
Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework

• Nearly all complained about it.

Lessons Learned…

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, …
Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework

• Nearly all complained about it.

•Much of the code was bookkeeping and custom built astronomy
algorithms (coordinates, regions, etc)

Lessons Learned…

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, …
Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework

• Nearly all complained about it.

•Much of the code was bookkeeping and custom built astronomy
algorithms (coordinates, regions, etc)

Lessons Learned…

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, …
Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework

• Nearly all complained about it.

•Much of the code was bookkeeping and custom built astronomy
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms 

Lessons Learned…

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, …
Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework

• Nearly all complained about it.

•Much of the code was bookkeeping and custom built astronomy
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms 

Too complex / heavy a framework is a burden to developers and users. 

Lessons Learned…

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, …
Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework

• Nearly all complained about it.

•Much of the code was bookkeeping and custom built astronomy
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms 

Too complex / heavy a framework is a burden to developers and users. 

Recommendations:

Lessons Learned…

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, …
Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework

• Nearly all complained about it.

•Much of the code was bookkeeping and custom built astronomy
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms 

Too complex / heavy a framework is a burden to developers and users. 

Recommendations:

• Leverage the Astronomy community! (vs Particle Physics)

Lessons Learned…

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, …
Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework

• Nearly all complained about it.

•Much of the code was bookkeeping and custom built astronomy
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms 

Too complex / heavy a framework is a burden to developers and users. 

Recommendations:

• Leverage the Astronomy community! (vs Particle Physics)

•Make it lightweight

Lessons Learned…

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, …
Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework

• Nearly all complained about it.

•Much of the code was bookkeeping and custom built astronomy
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms 

Too complex / heavy a framework is a burden to developers and users. 

Recommendations:

• Leverage the Astronomy community! (vs Particle Physics)

•Make it lightweight

•Make it friendly : Rich visualisations , tutorials, notebooks, easy to
discover and explore

Lessons Learned…

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, …
Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework

• Nearly all complained about it.

•Much of the code was bookkeeping and custom built astronomy
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms 

Too complex / heavy a framework is a burden to developers and users. 

Recommendations:

• Leverage the Astronomy community! (vs Particle Physics)

•Make it lightweight

•Make it friendly : Rich visualisations , tutorials, notebooks, easy to
discover and explore

• Use standards and open tools (minimize custom code)

Lessons Learned…

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, …
Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework

• Nearly all complained about it.

•Much of the code was bookkeeping and custom built astronomy
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms 

Too complex / heavy a framework is a burden to developers and users. 

Recommendations:

• Leverage the Astronomy community! (vs Particle Physics)

•Make it lightweight

•Make it friendly : Rich visualisations , tutorials, notebooks, easy to
discover and explore

• Use standards and open tools (minimize custom code)

• Don’t be too clever with how algorithms are chained together: can be
confusing to users, difficult to debug, and you can achieve the same
thing later by wrapping in a big-data framework (spark, celery, etc)

Lessons Learned…

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, …
Greater astronomical
community

Implementation

�12

K. Kosack, PyGamma19

Building a Framework

 Bottom-Up approach Top-Down approach

�13

Python

C/C++

Python

C/C++

Numba,
Cython

Most previous frameworks
did it this way

Our approach: start early
with python and high-level

API

start
here

start
here

K. Kosack, PyGamma19

How do we get to a final product? (Implementation Choices)

�14

K. Kosack, PyGamma19

How do we get to a final product? (Implementation Choices)

Core library in Python:  
a controversial choice at the time! 
(a distant 3-4 years ago)

• Existence of AstroPy and early GammaPy
was a major motivation, but both still <1.0
release at the time

•Momentum in astronomy community, but
not well known in our community
(astroparticle physics)

•Bad experiences (reportedly…) in past
with python: (numeric / numarray mess,
slowness, etc)

• Proof of concept was needed.

�14

K. Kosack, PyGamma19

How do we get to a final product? (Implementation Choices)

Core library in Python:  
a controversial choice at the time! 
(a distant 3-4 years ago)

• Existence of AstroPy and early GammaPy
was a major motivation, but both still <1.0
release at the time

•Momentum in astronomy community, but
not well known in our community
(astroparticle physics)

•Bad experiences (reportedly…) in past
with python: (numeric / numarray mess,
slowness, etc)

• Proof of concept was needed.

Open Source!

•Builds trust! (and better code if you worry
about others seeing it…)

• Unforeseen science cases

➤ low-level data will be accessible upon

proposal to GOs (expect very few, but
who knows?)

•Cross-over with other instruments (HESS,
MAGIC, VERITAS in particular)

�14

K. Kosack, PyGamma19

How do we get to a final product? (Implementation Choices)

Core library in Python:  
a controversial choice at the time! 
(a distant 3-4 years ago)

• Existence of AstroPy and early GammaPy
was a major motivation, but both still <1.0
release at the time

•Momentum in astronomy community, but
not well known in our community
(astroparticle physics)

•Bad experiences (reportedly…) in past
with python: (numeric / numarray mess,
slowness, etc)

• Proof of concept was needed.

Open Source!

•Builds trust! (and better code if you worry
about others seeing it…)

• Unforeseen science cases

➤ low-level data will be accessible upon

proposal to GOs (expect very few, but
who knows?)

•Cross-over with other instruments (HESS,
MAGIC, VERITAS in particular)

�14

K. Kosack, PyGamma19

How do we get to a final product? (Implementation Choices)

Modern Collaborative Development
Practices!

•GitHub, TravisCI, Codacy,
coverage.io, Slack

• Require 2 code reviews before
merging a PR  
(and no commits to master!)

• 35 committers so far

➤ ≈10 with large contributions),
➤ many just helping write good code

and docs!

Future Path to Higher-Performance!

•HPC re-implementations of
algorithms, cross-checked with
“standard” python
implementations via automated
tests

➤ Physicists → write python
➤ Computer Scientists → Adapt it to

HPC or wrap it in Big-Data
frameworks

• to fancier parallelization systems:

➤ Physicists → write algorithms
➤ Experts → Wrap them to run in

“Big Data” frameworks
�15

See talk by Florian Gaté on Thursday

K. Kosack, PyGamma19

common “core” package → full prototype

�16

EventIO

ctapipe
package/framework

algorithms
(python)

pipeline
tools
(batch

executables)

advanced
pipeline

applications
(online, streaming,
DAQ interface, …)

wrapper

algorithms
(C/C++)

ctapipe will be glue between various components.
Provides common APIs and user interfaces

packaging, etc.

Conda
Package + Virtual

Env containing fixed
versions of all
dependences

(compiler / python
interpreter included)

release &
deployment

Workflows and  
Large-scale processing

e.g. HPC

github.com/cta-observatory/ctapipe

http://github.com/cta-observatory/ctapipe

Algorithms and
Workflow

�17

K. Kosack, PyGamma19

Data Processing Pipeline (simplified)

�18

Stage 1

Calibration
& Time

Integration

Image
Processing

Merge  
Tels

Stage 2

Reconstruction
direction + energy

Calculation of
discrimination

parameters

Array Calibration

Stage 3

Progenitor
Classification

Event Type
Classification

Cross Calibration

Stage 4-5

Residual
Background
Estimation

Imaging, Spectra,
Lightcurve
generation

Source detection

Stage 1

Calibration
& Time

Integration

Image
Processing

Stage 1

Calibration
& Time

Integration

Image
Processing

…

for each
telescope,

for each
trigger

for each shower for each shower

for each set of
observation blocks
(region of interest)

Merge  
Obs

“DL3”  
Event lists

IRFs

Stage 6

Catalog 
Generation

Diffuse Model

Merge  
ROIs

Instrumental
Response Function

Generation

Science
Performance
Monitoring

low level

K. Kosack, PyGamma19

Data Processing Pipeline (simplified)

�19

Stage 1

Image
Processing

Merge  
Tels

Stage 2

Reconstruction
direction + energy

Calculation of
discrimination

parameters

Array Calibration

Stage 3

Progenitor
Classification

Event Type
Classification

Cross Calibration

Stage 4-5

Residual
Background
Estimation

Imaging, Spectra,
Lightcurve
generation

Source detection

Stage 1

Image
Processing

Stage 1

Image
Processing

…

for each
telescope,

for each
trigger

for each shower for each shower

for each set of
observation blocks
(region of interest)

Merge  
Obs

“DL3”  
Event lists

IRFs

Stage 6

Catalog 
Generation

Diffuse Model

Merge  
ROIs

Instrumental
Response Function

Generation

Physics
Performance

Benchmarking

K. Kosack, PyGamma19

Stage 1: Per-telescope image processing

�20

…
calib + time integration de-noising parametrization

Readout

2nd CTA	Pipeline	Developer’s	Workshop
11th October	2016 9J.J.	Watson

examples/display_integrator.py
p examples/display_integrator.py -f {file.gz} -O hessio -t 1 --integrator 4

K. Kosack, PyGamma19

Stage 1: Per-telescope image processing

�20

…
calib + time integration de-noising parametrization

Readout

2nd CTA	Pipeline	Developer’s	Workshop
11th October	2016 9J.J.	Watson

examples/display_integrator.py
p examples/display_integrator.py -f {file.gz} -O hessio -t 1 --integrator 4

K. Kosack, PyGamma19

Stage 2: Reconstruction

�21

x

yz
Tel 1 Tel 2

Tel 3

Tino Michael (CEA Saclay) Shower Reco October 11, 2016 3 / 5

(All tels overlaid) Outputs are: Point-of-Origin on
sky and ground+ Energy +
Classification parameters

Sky Ground

K. Kosack, PyGamma19

Stage 2: Reconstruction

�21

x

yz
Tel 1 Tel 2

Tel 3

Tino Michael (CEA Saclay) Shower Reco October 11, 2016 3 / 5

(All tels overlaid) Outputs are: Point-of-Origin on
sky and ground+ Energy +
Classification parameters

Sky Ground

K. Kosack, PyGamma19

Stage 2: Reconstruction

�21

x

yz
Tel 1 Tel 2

Tel 3

Tino Michael (CEA Saclay) Shower Reco October 11, 2016 3 / 5

(All tels overlaid) Outputs are: Point-of-Origin on
sky and ground+ Energy +
Classification parametersNote:

More advanced techniques exist and are being implemented
(generally with higher CPU requirements and data needs)

Sky Ground

K. Kosack, PyGamma19

Stage 2: Reconstruction

�21

x

yz
Tel 1 Tel 2

Tel 3

Tino Michael (CEA Saclay) Shower Reco October 11, 2016 3 / 5

(All tels overlaid) Outputs are: Point-of-Origin on
sky and ground+ Energy +
Classification parametersNote:

More advanced techniques exist and are being implemented
(generally with higher CPU requirements and data needs)

Sky Ground

Note:

Reconstruction coordinate

transforms implemented as

custom astropy.coordinates

Frames

K. Kosack, PyGamma19

Stage 3: Discrimination

�22

parameters particle class

gamma-like

hadron-like

electron-like

per-image
parameter sets

(width, length, …)
per-shower
parameters

(impact distance,
energy, number of

tels, …)

Note: Also event quality classification, e.g. good PSF, good
spectral resolution, sensitivity to unknown sources, …

Note: Same technique for Energy reconstruction and Event Type Classification

K. Kosack, PyGamma19

Output: Science Data

�23

event_id RA DEC E class type n_tels …
1 23,3 -40,1 0,01 5

2 24,6 -40,5 20,0 34

3 23,5 -41,12 0,45 3

4 21,3 -38,2 1,03 4

Event-List

Instrumental Responses:

Effective Area

Energy Migration

PSF

(note these are not CTA
responses, just examples form

HESS)

TIME Transparency
Temperatur

e
Trigger

Rate

580234.34 0.8 32 12034

580234.35 0.94 32 13023

580234.36 0.70 33 12532

Technical Tables (for sub-GTIs)

A few framework
features

�24

K. Kosack, PyGamma19

EventSource.from_url(filename)

Raw (event) Data Access Layer

�25

SimTelArray File
(EvenIO format)

CHEC camera testbench
file

DragonCam Testbench
Data (ZFITS format)

NectarCam Testbench
Data 

(ZFITS format)

Fake Events Generator

SimTelEventSource

TargetIOEventSource

SST1MEventSource

NectarCamEventSource

ToyModelEventSource

RawDataContainer Algorithms

experts write these

we agree on this

don’t care where the
data came from

…
In the future:

Standard CTA
raw data format
(TBD)

Factory 
pattern used

to choose
implementation

based on
input

K. Kosack, PyGamma19

Simple Event-wise Data Access

Working with data is supposed to be simple:

• attempt to keep the framework lightweight for algorithm designers
(lesson learned), while supporting advanced processing techniques

�26

from ctapipe.io import event_source

source = event_source("gammas.simtel.gz")

for event in source:
 print(event.trig.tels_with_trigger)
 print(event.trig.gps_time.iso)
 print(event.trig.gps_time.mjd)
 print(event.mc.energy.to('GeV'))
 print(event.r0.tel[4].waveform.mean())

K. Kosack, PyGamma19

Simple Event-wise Data Access

Working with data is supposed to be simple:

• attempt to keep the framework lightweight for algorithm designers
(lesson learned), while supporting advanced processing techniques

�26

from ctapipe.io import event_source

source = event_source("gammas.simtel.gz")

for event in source:
 print(event.trig.tels_with_trigger)
 print(event.trig.gps_time.iso)
 print(event.trig.gps_time.mjd)
 print(event.mc.energy.to('GeV'))
 print(event.r0.tel[4].waveform.mean())

an instance of
EventSource based on

file contents

K. Kosack, PyGamma19

Simple Event-wise Data Access

Working with data is supposed to be simple:

• attempt to keep the framework lightweight for algorithm designers
(lesson learned), while supporting advanced processing techniques

�26

from ctapipe.io import event_source

source = event_source("gammas.simtel.gz")

for event in source:
 print(event.trig.tels_with_trigger)
 print(event.trig.gps_time.iso)
 print(event.trig.gps_time.mjd)
 print(event.mc.energy.to('GeV'))
 print(event.r0.tel[4].waveform.mean())

set of hierarchical
Containers for

various data items
(also stores

“column” metdata
like units and
descriptions)

an instance of
EventSource based on

file contents

K. Kosack, PyGamma19

Simple Event-wise Data Access

Working with data is supposed to be simple:

• attempt to keep the framework lightweight for algorithm designers
(lesson learned), while supporting advanced processing techniques

�26

from ctapipe.io import event_source

source = event_source("gammas.simtel.gz")

for event in source:
 print(event.trig.tels_with_trigger)
 print(event.trig.gps_time.iso)
 print(event.trig.gps_time.mjd)
 print(event.mc.energy.to('GeV'))
 print(event.r0.tel[4].waveform.mean())

set of hierarchical
Containers for

various data items
(also stores

“column” metdata
like units and
descriptions)

rich conversions
based on astropy
time, units, angles

an instance of
EventSource based on

file contents

K. Kosack, PyGamma19

Simple Event-wise Data Access

Working with data is supposed to be simple:

• attempt to keep the framework lightweight for algorithm designers
(lesson learned), while supporting advanced processing techniques

�26

from ctapipe.io import event_source

source = event_source("gammas.simtel.gz")

for event in source:
 print(event.trig.tels_with_trigger)
 print(event.trig.gps_time.iso)
 print(event.trig.gps_time.mjd)
 print(event.mc.energy.to('GeV'))
 print(event.r0.tel[4].waveform.mean())

set of hierarchical
Containers for

various data items
(also stores

“column” metdata
like units and
descriptions)

rich conversions
based on astropy
time, units, angles

an instance of
EventSource based on

file contents

All images and
waveform cubes are
NumPy NDArrays

K. Kosack, PyGamma19

Containers (fancy dict-like classes)
Used for data interchabnge between algoriuthms

Works as an object-relational mapper (ORM) for I/O

�27

class MyContainer(Container):
 energy = Field(0.0, "reconstructed energy", unit=u.TeV)
 ra = Field(0.0, "right ascension", unit=u.deg, ucd='pos.eq.ra')

c = MyContainer(energy=12*u.TeV, ra=15.0*u.deg)
c.ra = 17*u.deg
c
MyContainer:
 energy: reconstructed energy [TeV]
 ra: right ascension [deg]

In [10]: c.as_dict()
Out[10]: {'energy': 12, 'ra': 0.0}

K. Kosack, PyGamma19

Row-wise Data Output and further processing

TableWriter (serialize Containers to Tables,
without keeping whole table in memory):

• For writing data efficiently when you don’t
have the whole column at once

•Most Common Usage Pattern  
(not planned):

ctapipe event loop → HDF5TableWriter → HDF5 files →
pandas.read_hdf()

➤ Pandas breaks if any column has array data
(astropy.table supports that though)

➤ Pandas tends to strip off all useful metadata…
➤ Still need a better solution that users like

�28

K. Kosack, PyGamma19

Instrument Description (ctapipe.instrument)

�29

SubarrayDescription

TelescopeDescription
TelescopeDescription

TelescopeDescription

+ pos_x[i]
+ pos_y[i]
+ footprint

+ to_table()

OpticsDescription CameraGeometry

tel[i]

cameraoptics

+ effective_focal_length
+ mirror_area
+ mirror_type
+ num_mirror_tiles

+ pix_x [shape: npix]
+ pix_y [shape: npix]
+ pix_id [shape: npix]
+ pix_area [shape: npix]
+ pix_type
+ neighbors (list)
+ neighbor_matrix (shape: npix,npix)

+ to_table()

str() → "MST:FlashCam"
 → "SST-ASTRI:ASTRICam"

str() → "FlashCam"
 → "ASTRICam

str() → "MST"
 → "SST-ASTRI"

Astropy Table conversion:

K. Kosack, PyGamma19

Configuration System: based on traitlets
Component (traitlets.config.Configurable)

•wrapper for complex algorithms that need to have user-
level configuration parameters

• Parameters are defined in class Traitlets subclass

Tool (traitlets.config.Application)

• a UI, currently command-line application

• handles user configuration (command line or config file
parameters) for a set of Components

•manages the Provenance system

•manages signals, etc.

• set up logging

�30

Based on Traitlets library

https://traitlets.readthedocs.io

https://traitlets.readthedocs.io

ctapipe-display-dl1 --help-all
Calibrate dl0 data to dl1, and plot the photoelectron images.

Options

Arguments that take values are actually convenience aliases to full
Configurables, whose aliases are listed on the help line. For more information
on full configurables, see '--help-all'.

-D
 Display the photoelectron images on-screen as they are produced.
--max_events=<Int> (EventSource.max_events)
 Default: None
 Maximum number of events that will be read from the file
--extractor=<CaselessStrEnum> (DisplayDL1Calib.extractor_product)
 Default: 'NeighbourPeakIntegrator'
 Choices: ['FullIntegrator', 'SimpleIntegrator', 'GlobalPeakIntegrator', 'LocalPeakIntegrator',
'NeighbourPeakIntegrator', 'AverageWfPeakIntegrator']
 ChargeExtractor to use.
--t0=<Int> (SimpleIntegrator.t0)
 Default: 0
 Define the peak position for all pixels
--window_width=<Int> (WindowIntegrator.window_width)
 Default: 7
 Define the width of the integration window
--window_shift=<Int> (WindowIntegrator.window_shift)
 Default: 3
 Define the shift of the integration window from the peakpos (peakpos -
 shift)
--sig_amp_cut_HG=<Float> (PeakFindingIntegrator.sig_amp_cut_HG)
 Default: None
 Define the cut above which a sample is considered as significant for
 PeakFinding in the HG channel
--sig_amp_cut_LG=<Float> (PeakFindingIntegrator.sig_amp_cut_LG)
 Default: None
 Define the cut above which a sample is considered as significant for
 PeakFinding in the LG channel
--lwt=<Int> (NeighbourPeakIntegrator.lwt)
 Default: 0
 Weight of the local pixel (0: peak from neighbours only, 1: local pixel
 counts as much as any neighbour
--clip_amplitude=<Float> (CameraDL1Calibrator.clip_amplitude)
 Default: None
 Amplitude in p.e. above which the signal is clipped. Set to None for no
 clipping.
-T <Int> (DisplayDL1Calib.telescope)
 Default: None
 Telescope to view. Set to None to display all telescopes.
-O <Unicode> (ImagePlotter.output_path)
 Default: None
 Output path for the pdf containing all the images. Set to None for no saved
 output.
--log-level=<Enum> (Application.log_level)
 Default: 30

 Choices: (0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL')
 Set the log level by value or name.
--config=<Unicode> (Tool.config_file)
 Default: ''
 name of a configuration file with parameters to load in addition to command-
 line parameters

Class parameters

Parameters are set from command-line arguments of the form:
`--Class.trait=value`. This line is evaluated in Python, so simple expressions
are allowed, e.g.:: `--C.a='range(3)'` For setting C.a=[0,1,2].

DisplayDL1Calib options

--DisplayDL1Calib.config_file=<Unicode>
 Default: ''
 name of a configuration file with parameters to load in addition to command-
 line parameters
--DisplayDL1Calib.extractor_product=<CaselessStrEnum>
 Default: 'NeighbourPeakIntegrator'
 Choices: ['FullIntegrator', 'SimpleIntegrator', 'GlobalPeakIntegrator', 'LocalPeakIntegrator',
'NeighbourPeakIntegrator', 'AverageWfPeakIntegrator']
 ChargeExtractor to use.
--DisplayDL1Calib.log_datefmt=<Unicode>
 Default: '%Y-%m-%d %H:%M:%S'
 The date format used by logging formatters for %(asctime)s
--DisplayDL1Calib.log_format=<Unicode>
 Default: '[%(name)s]%(highlevel)s %(message)s'
 The Logging format template
--DisplayDL1Calib.log_level=<Enum>
 Default: 30
 Choices: (0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL')
 Set the log level by value or name.
--DisplayDL1Calib.telescope=<Int>
 Default: None
 Telescope to view. Set to None to display all telescopes.

EventSource options

--EventSource.allowed_tels=<Set>
 Default: set()
 list of allowed tel_ids, others will be ignored. If left empty, all
 telescopes in the input stream will be included
--EventSource.input_url=<Unicode>
 Default: ''
 Path to the input file containing events.
--EventSource.max_events=<Int>
 Default: None
 Maximum number of events that will be read from the file

CameraDL1Calibrator options

--CameraDL1Calibrator.clip_amplitude=<Float>

K. Kosack, PyGamma19

Metadata and Provenance
Requirement that CTA data products are reproducible

• software version

• configurations

• inputs
➤ 1 IRF might have 1000s of input files, tables, calibration

coefficients, lab measurements
Inside ctapipe “Tools” automatically keep track of at
least the “local provenance” metadata

•Any file opened (input or output) is automatically tracked

• The “activity” details are also recorded (local machine
name, running time, and other info)

Local provenance can be put into a database to derive
the full chain of processing history for any output file

�32

See talk by Matthieu Servillat

14

Provenance DM from W3C

● 3 core classes:

– Activity

– Entity

– Agent

● core relations:

– used

– wasGeneratedBy

– wasDerivedFrom

– wasAttributedTo

– wasAssociatedWith

● + many more classes and relations

http://www.w3.org/TR/prov-dm/, published 2013

K. Kosack, PyGamma19

Code Example

�33

 def estimate_core_position(self, hillas_dict, telescope_pointing):
 psi = u.Quantity([h.psi for h in hillas_dict.values()])
 z = np.zeros(len(psi))
 uvw_vectors = np.column_stack([np.cos(psi).value, np.sin(psi).value, z])

 tilted_frame = TiltedGroundFrame(pointing_direction=telescope_pointing)
 ground_frame = GroundFrame()

 positions = [
 (
 SkyCoord(*plane.pos, frame=ground_frame)
 .transform_to(tilted_frame)
 .cartesian.xyz
)
 for plane in self.hillas_planes.values()
]
 core_position = line_line_intersection_3d(uvw_vectors, positions)

 core_pos_tilted = SkyCoord(
 x=core_position[0] * u.m,
 y=core_position[1] * u.m,
 frame=tilted_frame
)

 core_pos = project_to_ground(core_pos_tilted)

 return core_pos.x, core_pos.y

ctapipe.reco.HillasReconstructor

Tutorials and
examples in
documentation
using nbsphinx
plugin

K. Kosack, PyGamma19

Benchmarking

Current plan (partially realized):

•Collection of Jupyter notebooks

➤ data preparation
➤ low-level benchmarks
➤ high-level summaries

• Papermill:

➤ parameterization of notebooks
➤ notebook output data access

�35

Open Questions Can we use ctapipe python algorithms in our RTA?

• preliminary studies say maybe

• tests using dask, spark and others found some
bottlenecks (not related to algorithms themselves),
but more work to do

What should the output data format be?

• so far we like HDF5, but some problems

• FITS for DL3…. still some things to define

•

�36

