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•Reconstruct single “events” (gamma ray or 
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Produce Instrument Response Functions 

• Input is large library of reconstructed event lists

➤ From Simulations (e.g. PSF, Aeff, Emig) 
➤ From Real Data (e.g. residual background rate) 

Support Development and Verification of Prototype 
Telescopes
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Challenges and 
Lessons
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Challenge: Data Volume

Monte-Carlo Simulations 
(basically continuously, similarly data volume) 

Yearly reprocessing of all data with new calibration and 
reconstruction (30 year lifetime of CTA…)
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CTA data size (as powers of 10 only): 
• 100 telescopes (CTA-south) 
•10,000 array triggers per second 
•10 telescopes on average per trigger  
•10-100 image frames per telescope camera 
•1,000 to 10,000 pixels per camera 
•÷ 100 lossy and lossless compression

O(10) PB/yr  
of raw data
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Challenge: Complex Instrument (1)

Camera and optics complexity 

• 7 cameras (for now)

➤ Hexagonal and square pixels, Pixel gaps 
➤ Time-series readouts vs peak times, multiple sampling 

frequencies 

• 6 telescope optics: 1 and 2-mirror systems, various 
mirror geometries


• 4+ raw data formats


CAVEAT: Much of this will simplify before the final construction 
phase… but still at least 3 cameras and 3 optics types, and likely 
many generations/variations in each. 
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Challenge: Complex Instrument (2)

Instrument’s response changes with: 

•Gamma-ray Energy


• Position in Field-of-View


• Zenith Angle (elevation): atmosphere thickness


• Azimuth: Earth magnetic field orientation


•Ground position of shower in the array / Number of telescopes 
of each type that trigger / exactly which telescopes trigger!


• Subarray Choice 

• Atmosphere Density profile 


•Optical Night-Sky-Background light level (Moon, Zodiacal 
light, Light pollution)


• Atmosphere Aerosol content profile


• Detector Configuration (high voltage gain, etc)


• Analysis Configuration (reconstruction algorithm, discrimination 
strength,  …)
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Atmosphere and Observation Condition Complexity:



K. Kosack, PyGamma19

Challenge: Complex Instrument (2)

Instrument’s response changes with: 

•Gamma-ray Energy


• Position in Field-of-View


• Zenith Angle (elevation): atmosphere thickness


• Azimuth: Earth magnetic field orientation


•Ground position of shower in the array / Number of telescopes 
of each type that trigger / exactly which telescopes trigger!


• Subarray Choice 

• Atmosphere Density profile 


•Optical Night-Sky-Background light level (Moon, Zodiacal 
light, Light pollution)


• Atmosphere Aerosol content profile


• Detector Configuration (high voltage gain, etc)


• Analysis Configuration (reconstruction algorithm, discrimination 
strength,  …)

�9

Change during 
an observation

Change between observations

Atmosphere and Observation Condition Complexity:



K. Kosack, PyGamma19

Challenge: Complex Instrument (2)

Instrument’s response changes with: 

•Gamma-ray Energy


• Position in Field-of-View


• Zenith Angle (elevation): atmosphere thickness


• Azimuth: Earth magnetic field orientation


•Ground position of shower in the array / Number of telescopes 
of each type that trigger / exactly which telescopes trigger!


• Subarray Choice 

• Atmosphere Density profile 


•Optical Night-Sky-Background light level (Moon, Zodiacal 
light, Light pollution)


• Atmosphere Aerosol content profile


• Detector Configuration (high voltage gain, etc)


• Analysis Configuration (reconstruction algorithm, discrimination 
strength,  …)

�9

Potentially very high-dimensional 
Instrumental Response Functions! 

Or lots of custom simulations…

Change during 
an observation

Change between observations

Atmosphere and Observation Condition Complexity:
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Challenge: diverse developer needs
What Physicists Want: 

• Small learning curve for unexperienced developers 


• Easy to play with data and explore , interactivity


• Ability to quickly implement a new algorithms and cross-check


• Simple deterministic loops over events and sequences of 
algorithm steps
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Challenge: diverse developer needs
What Physicists Want: 

• Small learning curve for unexperienced developers 


• Easy to play with data and explore , interactivity


• Ability to quickly implement a new algorithms and cross-check


• Simple deterministic loops over events and sequences of 
algorithm steps


What we eventually need: 

•High-performance processing or PBs of data

➤ Big-Data-style Parallelisation (map-reduce, streaming, etc.) 
➤ High-Performance Computing: efficient use of CPU / GPU 

•Well-maintainable code (CTA = 30 years!)


• Involvement of computer scientists / engineers
�10



Lessons Learned…

From Whipple 10m, HESS, 
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, … 
Greater astronomical 
community
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Recommendations:

• Leverage the Astronomy community! (vs Particle Physics)

•Make it lightweight

•Make it friendly : Rich visualisations , tutorials, notebooks, easy to 
discover and explore

• Use standards and open tools (minimize custom code)

• Don’t be too clever with how algorithms are chained together: can be 
confusing to users, difficult to debug, and you can achieve the same 
thing later by wrapping in a big-data framework (spark, celery, etc)
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Building a Framework

        Bottom-Up approach             Top-Down approach
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Python

C/C++

Python

C/C++

Numba, 
Cython

Most previous frameworks 
did it this way

Our approach: start early 
with python and high-level 

API

start 
here

start 
here
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How do we get to a final product? (Implementation Choices)

Core library in Python:  
a controversial choice at the time! 
(a distant 3-4 years ago)


• Existence of AstroPy and early GammaPy 
was a major motivation, but both still <1.0 
release at the time


•Momentum in astronomy community, but 
not well known in our community 
(astroparticle physics)


•Bad experiences (reportedly…) in past 
with python:  (numeric / numarray mess, 
slowness, etc)


• Proof of concept was needed.
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How do we get to a final product? (Implementation Choices)

Modern Collaborative Development 
Practices! 

•GitHub, TravisCI, Codacy, 
coverage.io, Slack


• Require 2 code reviews before 
merging a PR  
(and no commits to master!) 


• 35 committers so far 

➤ ≈10 with large contributions),  
➤ many just helping write good code 

and docs! 

Future Path to Higher-Performance!   

•HPC re-implementations of 
algorithms, cross-checked with 
“standard” python 
implementations via automated 
tests 

➤ Physicists → write python 
➤ Computer Scientists → Adapt it to 

HPC or wrap it in Big-Data 
frameworks 

• to fancier parallelization systems:

➤ Physicists → write algorithms 
➤ Experts → Wrap them to run in 

“Big Data” frameworks
�15

See talk by Florian Gaté on Thursday
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common “core” package → full prototype
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EventIO

ctapipe 
package/framework

algorithms 
(python)

pipeline  
tools 
(batch 

executables)

advanced 
pipeline 

applications 
(online, streaming, 
DAQ interface, …) 

wrapper

algorithms 
(C/C++)

ctapipe will be glue between various components. 
Provides common APIs and user interfaces 

packaging, etc. 

Conda  
Package + Virtual 

Env containing fixed 
versions of all 
dependences 

(compiler / python 
interpreter included)

release & 
deployment

Workflows and  
Large-scale processing

e.g. HPC

github.com/cta-observatory/ctapipe

http://github.com/cta-observatory/ctapipe


Algorithms and 
Workflow
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Data Processing Pipeline (simplified)
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Stage 1

Calibration 
& Time  

Integration

Image  
Processing

Merge  
Tels

Stage 2

Reconstruction 
direction + energy

Calculation of 
discrimination 

parameters

Array Calibration

Stage 3

Progenitor 
Classification

Event Type 
Classification

Cross Calibration

Stage 4-5

Residual 
Background 
Estimation

Imaging, Spectra, 
Lightcurve 
generation

Source detection

Stage 1

Calibration 
& Time  

Integration

Image  
Processing

Stage 1

Calibration 
& Time  

Integration

Image  
Processing

…

for each 
telescope, 

for each 
trigger

for each shower for each shower

for each set of 
observation blocks 
(region of interest)

Merge  
Obs

“DL3”  
Event lists

IRFs

Stage 6

Catalog 
Generation

Diffuse Model

Merge  
ROIs

Instrumental 
Response Function 

Generation

Science 
Performance 
Monitoring

low level
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Data Processing Pipeline (simplified)
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Stage 1

Image  
Processing

Merge  
Tels

Stage 2

Reconstruction 
direction + energy

Calculation of 
discrimination 

parameters

Array Calibration

Stage 3

Progenitor 
Classification

Event Type 
Classification

Cross Calibration

Stage 4-5

Residual 
Background 
Estimation

Imaging, Spectra, 
Lightcurve 
generation

Source detection

Stage 1

Image  
Processing

Stage 1

Image  
Processing

…

for each 
telescope, 

for each 
trigger

for each shower for each shower

for each set of 
observation blocks 
(region of interest)

Merge  
Obs

“DL3”  
Event lists

IRFs

Stage 6

Catalog 
Generation

Diffuse Model

Merge  
ROIs

Instrumental 
Response Function 

Generation

Physics 
Performance 

Benchmarking
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Stage 1: Per-telescope image processing
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…
calib + time integration de-noising parametrization

Readout

2nd CTA	Pipeline	Developer’s	Workshop
11th October	2016 9J.J.	Watson

examples/display_integrator.py
p examples/display_integrator.py -f {file.gz} -O hessio -t 1 --integrator 4
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Stage 2: Reconstruction
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x

yz
Tel 1 Tel 2

Tel 3

Tino Michael (CEA Saclay) Shower Reco October 11, 2016 3 / 5

(All tels overlaid) Outputs are: Point-of-Origin on 
sky and ground+ Energy + 
Classification parameters

Sky Ground
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Stage 2: Reconstruction
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x

yz
Tel 1 Tel 2

Tel 3

Tino Michael (CEA Saclay) Shower Reco October 11, 2016 3 / 5

(All tels overlaid) Outputs are: Point-of-Origin on 
sky and ground+ Energy + 
Classification parametersNote: 

More advanced techniques exist and are being implemented 
(generally with higher CPU requirements and data needs)

Sky Ground

Note: 

Reconstruction coordinate 

transforms implemented as 

custom astropy.coordinates 

Frames
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Stage 3: Discrimination
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parameters particle class

gamma-like

hadron-like

electron-like

per-image 
parameter sets 

(width, length, …)
per-shower 
parameters 

(impact distance, 
energy, number of 

tels, …)

Note: Also event quality classification, e.g. good PSF, good 
spectral resolution, sensitivity to unknown sources, … 

Note: Same technique for Energy reconstruction and Event Type Classification
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Output: Science Data
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event_id RA DEC E class type n_tels …
1 23,3 -40,1 0,01 5

2 24,6 -40,5 20,0 34

3 23,5 -41,12 0,45 3

4 21,3 -38,2 1,03 4

Event-List

Instrumental Responses:

Effective Area

Energy Migration

PSF

(note these are not CTA 
responses, just examples form 

HESS)

TIME Transparency
Temperatur

e
Trigger 

Rate

580234.34 0.8 32 12034

580234.35 0.94 32 13023

580234.36 0.70 33 12532

Technical Tables (for sub-GTIs)



A few framework 
features
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EventSource.from_url(filename)

Raw (event) Data Access Layer

�25

SimTelArray File 
(EvenIO format)

CHEC camera testbench 
file

DragonCam  Testbench 
Data (ZFITS format)

NectarCam Testbench 
Data 

(ZFITS format)

Fake Events Generator

SimTelEventSource

TargetIOEventSource

SST1MEventSource

NectarCamEventSource

ToyModelEventSource

RawDataContainer Algorithms

experts write these

we agree on this

don’t care where the 
data came from

…
In the future: 

Standard CTA 
raw data format 
(TBD)

Factory 
pattern used 

to choose 
implementation 

based on   
input
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Simple Event-wise Data Access

Working with data is supposed to be simple: 

• attempt to keep the framework lightweight for algorithm designers 
(lesson learned), while supporting advanced processing techniques
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from ctapipe.io import event_source 

source = event_source("gammas.simtel.gz") 

for event in source: 
   print(event.trig.tels_with_trigger) 
   print(event.trig.gps_time.iso) 
   print(event.trig.gps_time.mjd) 
   print(event.mc.energy.to('GeV')) 
   print(event.r0.tel[4].waveform.mean()) 
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   print(event.trig.gps_time.iso) 
   print(event.trig.gps_time.mjd) 
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   print(event.r0.tel[4].waveform.mean()) 

set of hierarchical 
Containers for 

various data items 
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like units and 
descriptions)
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based on astropy 
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EventSource based on 

file contents

All images and 
waveform cubes are 
NumPy NDArrays
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Containers (fancy dict-like classes)
Used for data interchabnge between algoriuthms 

Works as an object-relational mapper (ORM)  for I/O
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class MyContainer(Container):
   energy = Field(0.0, "reconstructed energy", unit=u.TeV)
   ra = Field(0.0, "right ascension", unit=u.deg, ucd='pos.eq.ra')

c = MyContainer(energy=12*u.TeV, ra=15.0*u.deg)
c.ra = 17*u.deg
c
MyContainer: 
                energy: reconstructed energy [TeV] 
                    ra: right ascension [deg] 

In [10]: c.as_dict()                                                             
Out[10]: {'energy': 12, 'ra': 0.0} 
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Row-wise Data Output and further processing

TableWriter (serialize Containers to Tables, 
without keeping whole table in memory): 

• For writing data efficiently when you don’t 
have the whole column at once 


•Most Common Usage Pattern  
(not planned):


ctapipe event loop → HDF5TableWriter  → HDF5 files → 
pandas.read_hdf()


➤ Pandas breaks if any column has array data 
(astropy.table supports that though) 

➤ Pandas tends to strip off all useful metadata… 
➤ Still need a better solution that users like

�28
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Instrument Description (ctapipe.instrument)

�29

SubarrayDescription

TelescopeDescription
TelescopeDescription

TelescopeDescription

+ pos_x[i] 
+ pos_y[i] 
+ footprint 

+ to_table() 

OpticsDescription CameraGeometry

tel[i]

cameraoptics

+ effective_focal_length 
+ mirror_area 
+ mirror_type 
+ num_mirror_tiles

+ pix_x     [shape: npix] 
+ pix_y     [shape: npix] 
+ pix_id   [shape: npix] 
+ pix_area [shape: npix] 
+ pix_type  
+ neighbors (list) 
+ neighbor_matrix (shape: npix,npix) 

+ to_table()

str() → "MST:FlashCam" 
                   → "SST-ASTRI:ASTRICam"

str() → "FlashCam" 
        → "ASTRICam

str() → "MST" 
                 → "SST-ASTRI"

Astropy Table conversion:
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Configuration System:  based on traitlets
Component (traitlets.config.Configurable)


•wrapper for complex algorithms that need to have user-
level configuration parameters


• Parameters are defined in class Traitlets subclass


Tool (traitlets.config.Application)


• a UI, currently command-line application


• handles user configuration (command line or config file 
parameters) for a set of Components


•manages the Provenance system


•manages signals, etc. 


• set up logging
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Based on Traitlets library

https://traitlets.readthedocs.io

https://traitlets.readthedocs.io


ctapipe-display-dl1 --help-all 
Calibrate dl0 data to dl1, and plot the photoelectron images. 

Options 
------- 

Arguments that take values are actually convenience aliases to full 
Configurables, whose aliases are listed on the help line. For more information 
on full configurables, see '--help-all'. 

-D 
    Display the photoelectron images on-screen as they are produced. 
--max_events=<Int> (EventSource.max_events) 
    Default: None 
    Maximum number of events that will be read from the file 
--extractor=<CaselessStrEnum> (DisplayDL1Calib.extractor_product) 
    Default: 'NeighbourPeakIntegrator' 
    Choices: ['FullIntegrator', 'SimpleIntegrator', 'GlobalPeakIntegrator', 'LocalPeakIntegrator', 
'NeighbourPeakIntegrator', 'AverageWfPeakIntegrator'] 
    ChargeExtractor to use. 
--t0=<Int> (SimpleIntegrator.t0) 
    Default: 0 
    Define the peak position for all pixels 
--window_width=<Int> (WindowIntegrator.window_width) 
    Default: 7 
    Define the width of the integration window 
--window_shift=<Int> (WindowIntegrator.window_shift) 
    Default: 3 
    Define the shift of the integration window from the peakpos (peakpos - 
    shift) 
--sig_amp_cut_HG=<Float> (PeakFindingIntegrator.sig_amp_cut_HG) 
    Default: None 
    Define the cut above which a sample is considered as significant for 
    PeakFinding in the HG channel 
--sig_amp_cut_LG=<Float> (PeakFindingIntegrator.sig_amp_cut_LG) 
    Default: None 
    Define the cut above which a sample is considered as significant for 
    PeakFinding in the LG channel 
--lwt=<Int> (NeighbourPeakIntegrator.lwt) 
    Default: 0 
    Weight of the local pixel (0: peak from neighbours only, 1: local pixel 
    counts as much as any neighbour 
--clip_amplitude=<Float> (CameraDL1Calibrator.clip_amplitude) 
    Default: None 
    Amplitude in p.e. above which the signal is clipped. Set to None for no 
    clipping. 
-T <Int> (DisplayDL1Calib.telescope) 
    Default: None 
    Telescope to view. Set to None to display all telescopes. 
-O <Unicode> (ImagePlotter.output_path) 
    Default: None 
    Output path for the pdf containing all the images. Set to None for no saved 
    output. 
--log-level=<Enum> (Application.log_level) 
    Default: 30 

    Choices: (0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL') 
    Set the log level by value or name. 
--config=<Unicode> (Tool.config_file) 
    Default: '' 
    name of a configuration file with parameters to load in addition to command- 
    line parameters 

Class parameters 
---------------- 

Parameters are set from command-line arguments of the form: 
`--Class.trait=value`. This line is evaluated in Python, so simple expressions 
are allowed, e.g.:: `--C.a='range(3)'` For setting C.a=[0,1,2]. 

DisplayDL1Calib options 
----------------------- 
--DisplayDL1Calib.config_file=<Unicode> 
    Default: '' 
    name of a configuration file with parameters to load in addition to command- 
    line parameters 
--DisplayDL1Calib.extractor_product=<CaselessStrEnum> 
    Default: 'NeighbourPeakIntegrator' 
    Choices: ['FullIntegrator', 'SimpleIntegrator', 'GlobalPeakIntegrator', 'LocalPeakIntegrator', 
'NeighbourPeakIntegrator', 'AverageWfPeakIntegrator'] 
    ChargeExtractor to use. 
--DisplayDL1Calib.log_datefmt=<Unicode> 
    Default: '%Y-%m-%d %H:%M:%S' 
    The date format used by logging formatters for %(asctime)s 
--DisplayDL1Calib.log_format=<Unicode> 
    Default: '[%(name)s]%(highlevel)s %(message)s' 
    The Logging format template 
--DisplayDL1Calib.log_level=<Enum> 
    Default: 30 
    Choices: (0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL') 
    Set the log level by value or name. 
--DisplayDL1Calib.telescope=<Int> 
    Default: None 
    Telescope to view. Set to None to display all telescopes. 

EventSource options 
------------------- 
--EventSource.allowed_tels=<Set> 
    Default: set() 
    list of allowed tel_ids, others will be ignored. If left empty, all 
    telescopes in the input stream will be included 
--EventSource.input_url=<Unicode> 
    Default: '' 
    Path to the input file containing events. 
--EventSource.max_events=<Int> 
    Default: None 
    Maximum number of events that will be read from the file 

CameraDL1Calibrator options 
--------------------------- 
--CameraDL1Calibrator.clip_amplitude=<Float> 
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Metadata and Provenance
Requirement that CTA data products are reproducible 

• software version 

• configurations 

• inputs  
➤ 1 IRF might have 1000s of input files, tables, calibration 

coefficients, lab measurements 
Inside ctapipe “Tools” automatically keep track of at 
least the “local provenance” metadata 

•Any file opened (input or output ) is automatically tracked 

• The “activity” details are also recorded (local machine 
name, running time, and other info) 

Local provenance can be put into a database to derive 
the full chain of processing history  for any output file
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See talk by Matthieu Servillat

14

Provenance DM from W3C

● 3 core classes:

– Activity

– Entity

– Agent

● core relations:

– used

– wasGeneratedBy

– wasDerivedFrom

– wasAttributedTo

– wasAssociatedWith

● + many more classes and relations

http://www.w3.org/TR/prov-dm/, published 2013
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Code Example
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 def estimate_core_position(self, hillas_dict, telescope_pointing):         
        psi = u.Quantity([h.psi for h in hillas_dict.values()]) 
        z = np.zeros(len(psi)) 
        uvw_vectors = np.column_stack([np.cos(psi).value, np.sin(psi).value, z]) 

        tilted_frame = TiltedGroundFrame(pointing_direction=telescope_pointing) 
        ground_frame = GroundFrame() 

        positions = [ 
            ( 
                SkyCoord(*plane.pos, frame=ground_frame) 
                .transform_to(tilted_frame) 
                .cartesian.xyz 
            ) 
            for plane in self.hillas_planes.values() 
        ] 
        core_position = line_line_intersection_3d(uvw_vectors, positions) 

        core_pos_tilted = SkyCoord( 
            x=core_position[0] * u.m, 
            y=core_position[1] * u.m, 
            frame=tilted_frame 
        ) 

        core_pos = project_to_ground(core_pos_tilted) 

        return core_pos.x, core_pos.y 

ctapipe.reco.HillasReconstructor



Tutorials and 
examples in 
documentation 
using nbsphinx 
plugin
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Benchmarking

Current plan (partially realized): 

•Collection of Jupyter notebooks 

➤ data preparation 
➤ low-level benchmarks 
➤ high-level summaries 

• Papermill: 

➤ parameterization  of notebooks 
➤ notebook output data access
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Open Questions Can we use ctapipe python algorithms in our RTA? 

• preliminary studies say maybe


• tests using dask, spark and others found some 
bottlenecks (not related to algorithms themselves), 
but more work to do


What should the output data format be? 

• so far we like HDF5, but some problems


• FITS for DL3…. still some things to define


•
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