Developing a Python framework for
low-level data processing for CTA

Karl Kosack
CEA Paris-Saclay / CTA Observatory

PyGamma19, Heidelberg

What is the goal of
low-level CTA data
e rocessing?

Generate data that
science users want
to start with!

What is the goal of
low-level CTA data
’_erocessing?

Generate data that
science users want
to start with!

Produce Event Lists

e Reconstruct single “events” (gamma ray or
background), select gamma-ray candidates, provide
Energy and Position information

» or real data

> For simulated data

What is the goal of Produce Event Lists

low-level CTA data e Reconstruct single “events” (gamma ray or

rocessing? background), se]gct gamma-ray candidates, provide
e - Energy and Position information

» or real data

> For simulated data

Generate data that Produce Instrument Response Functions
SCience users Want e Input is large library of reconstructed event lists

to start with! » From Simulations (e.g. PSF, Aeti, Emig)

» From Real Data (e.g. residual background rate)

What is the goal of
low-level CTA data
erocessing?

Generate data that
science users want
to start with!

Produce Event Lists

e Reconstruct single “events” (gamma ray or
background), select gamma-ray candidates, provide
Energy and Position information

» or real data

> For simulated data

Produce Instrument Response Functions

e Input is large library of reconstructed event lists

» From Simulations (e.g.

DS |:, Aeﬁ,

Zmig)

» From Real Data (e.g. residual background rate)

Support Development and Verification of Prototype

Telescopes

Electromagnetic Showers

photon
or e-

~10 km

200 m

K. Kosack, PyGammal9 3

Electromagnetic Showers

200 m

K. Kosack, PyGammal9 3

Electromagnetic Showers

200 m

K. Kosack, PyGammal9 3

Electromagnetic Showers

200 m

K. Kosack, PyGammal9 3

Electromagnetic Showers

200 m

K. Kosack, PyGammal9 3

Electromagnetic Showers

effective area = size of light pool (small array) 200 m

=~ size of array (large array) K. Kosack, PyGammal9 4

Electromagnetic Showers

effective area = size of light pool (small array) 200 m

=~ size of array (large array) K. Kosack, PyGammal9 4

Electromagnetic Showers

e+

effective area = size of light pool (small array) 200 m

=~ size of array (large array) K. Kosack, PyGammal9 4

Hadronic Showers

cosmic ray cosmic
ray

~10 km

EM Cascade

EM sub-showers

200 m

K. Kosack, PyGammal9 5

Hadronic Showers

cosmic
ray

cosmic ray

Nucleon Cascade

e+

EM Cascade
EM Cascade

EM Cascade

EM Cascade

EM sub-showers

200 m

K. Kosack, PyGammal9 5

Hadronic Showers

cosmic
ray

cosmic ray

Nucleon Cascade

e+ c—
e+

EM Cascade
EM Cascade

EM Cascade

EM Cascade

EM sub-showers

K. Kosack, PyGammal9 5

Hadronic Showers

cosmic
ray

cosmic ray

Nucleon Cascade

e+ c—
e+

EM Cascade
EM Cascade

EM Cascade

EM Cascade

EM sub-showers

K. Kosack, PyGammal9 5

Challenges and
Lessons

Challenge: Data Volume

Southern Hemisphere CTA data size (as powers of 10 only):

‘ ' ' | +100 telescopes (CTA-south)

10,000 array triggers per second O(] 0) PB/yr

10 telescopes on average per trigger

et 0 +10-100 image frames per telescope camera
PP -1,000 to 10,000 pixels per camera

*= 100 lossy and lossless compression

of raw data

Circles:

Monte-Carlo Simulations
(basically continuously, similarly data volume)

Yearly reprocessing of all data with new calibration and
reconstruction (30 year lifetime of CTA...)

K. Kosack, PyGammal9 7

Challenge: Complex Instrument (1)

Camera and optics complexity

e / cameras (for now)

» Hexagonal and square pixels, Pixel gaps

» [Ime-series readouts vs peak times, multiple sampling
frequencies

e 0 telescope optics: 1 and 2-mirror systems, various
mirror geometries

e 4+ raw data formats

CAVEAT: Much of this will simplify before the final construction
phase... but still at least 3 cameras and 3 optics types, and likely
many generations/variations in each.

K. Kosack, PyGammal9 8

Challenge: Complex Instrument (2)

Atmosphere and Observation Condition Complexity:

Instrument’s response changes with:

e Gamma-ray Energy

e Position in Field-of-View

e Zenith Angle (elevation): atmosphere thickness
e Azimuth: Earth magnetic field orientation

e Ground position of shower in the array / Number of telescopes
of each type that trigger / exactly which telescopes trigger!

e Subarray Choice
e Atmosphere Density profile

e Optical Night-Sky-Background light level (Moon, Zodiacal
light, Light pollution)

e Atmosphere Aerosol content profile
e Detector Configuration (high voltage gain, etc)

e Analysis Configuration (reconstruction algorithm, discrimination
strength, ...)

K. Kosack, PyGammal9

Challenge: Complex Instrument (2)

Atmosphere and Observation Condition Complexity:

Instrument’s response changes with:

e Gamma-ray Energy Change during
e Position in Field-of-View an observation
e Zenith Angle (elevation): atmosphere thickness

e Azimuth: Earth magnetic field orientation

e Ground position of shower in the array / Number of telescopes
of each type that trigger / exactly which telescopes trigger!

e Subarray Choice

e Atmosphere Density profile Change between observations

e Optical Night-Sky-Background light level (Moon, Zodiacal
light, Light pollution)

e Atmosphere Aerosol content profile
e Detector Configuration (high voltage gain, etc)

e Analysis Configuration (reconstruction algorithm, discrimination
strength, ...)

K. Kosack, PyGammal9

Challenge: Complex Instrument (2)

Atmosphere and Observation Condition Complexity:

Instrument’s response changes with:

Potentially very high-dimensional

e Gamma-ray Ener Change durin .
/ & & & Instrumental Response Functions!

e Position in Field-of-View an observation
e Zenith Angle (elevation): atmosphere thickness
e Azimuth: Earth magnetic field orientation

e Ground position of shower in the array / Number of telescopes
of each type that trigger / exactly which telescopes trigger!

e Subarray Choice

e Atmosphere Density profile Change between observations

e Optical Night-Sky-Background light level (Moon, Zodiacal
light, Light pollution)

HY'FERCUBE

e Atmosphere Aerosol content profile

e Detector Configuration (high voltage gain, etc)

e Analysis Configuration (reconstruction algorithm, discrimination

strength, ...) Or lots of custom simulations...
K. Kosack, PyGammal9

Challenge: diverse developer needs

What Physicists Want:

e Small learning curve for unexperienced developers

(TTTTTTTTTTTTreToen o

e Ability to quickly implement a new algorithms and cross-check T “, i

e Easy to play with data and explore , interactivity “”

e Simple deterministic loops over events and sequences of
algorithm steps

K. Kosack, PyGammal9 10

Challenge: diverse developer needs

What Physicists Want:

e Small learning curve for unexperienced developers

e Easy to play with data and explore , interactivity ‘ ““ n

e Ability to quickly implement a new algorithms and cross-check I i \,, ,

e Simple deterministic loops over events and sequences of
algorithm steps

What we eventually need:
e High-performance processing or PBs of data
» Big-Data-style Parallelisation (map-reduce, streaming, etc.)

» High-Performance Computing: efficient use of CPU / GPU

e Well-maintainable code (CTA = 30 years!)

e Involvement of computer scientists / engineers
K. Kosack, PyGammal9 10

Lessons Learned...

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, lceCube, Antares, ...

(Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level L
essons Learned...

analysis on C++ and CERN’s ROOT framework

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, lceCube, Antares, ...

(Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level L
essons Learned...

analysis on C++ and CERN’s ROOT framework

e Nearly all complained about it.

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, lceCube, Antares, ...

(Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework Lessons LearnEd "aw

e Nearly all complained about it.

e Much of the code was bookkeeping and custom built astronomy ‘
algorithms (coordinates, regions, etc)

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, lceCube, Antares, ...

(Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework Lessons LearnEd "aw

e Nearly all complained about it.

e Much of the code was bookkeeping and custom built astronomy ‘
algorithms (coordinates, regions, etc)

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, lceCube, Antares, ...

(Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework Lessons LearnEd "aw

e Nearly all complained about it.

e Much of the code was bookkeeping and custom built astronomy ‘
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, lceCube, Antares, ...

(Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework Lessons LearnEd "aw

e Nearly all complained about it.

e Much of the code was bookkeeping and custom built astronomy ‘
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms

Too complex / heavy a framework is a burden to developers and users.

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, lceCube, Antares, ...

(Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework Lessons LearnEd "aw

e Nearly all complained about it.

e Much of the code was bookkeeping and custom built astronomy ‘
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms

Too complex / heavy a framework is a burden to developers and users.

Recommendations:

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, lceCube, Antares, ...

(Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework Lessons LearnEd "aw

e Nearly all complained about it.

e Much of the code was bookkeeping and custom built astronomy ‘
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms

Too complex / heavy a framework is a burden to developers and users.

Recommendations:

e Leverage the Astronomy community! (vs Particle Physics) From Whlpple 1 Om, HESS,
MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, ...

(Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework Lessons LearnEd "aw

e Nearly all complained about it.

e Much of the code was bookkeeping and custom built astronomy ‘
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms

Too complex / heavy a framework is a burden to developers and users.

Recommendations:

® k/levkereff t:te A.st:inomy community! (vs Particle Physics) From Whlpple 1 Om, HESS,
T MAGIC, VERTIAS, Fermi-
LAT, IceCube, Antares, ...

(Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework

e Nearly all complained about it.

e Much of the code was bookkeeping and custom built astronomy
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms

Too complex / heavy a framework is a burden to developers and users.

Recommendations:

e Leverage the Astronomy community! (vs Particle Physics)

e Make it lightweight

e Make it friendly : Rich visualisations , tutorials, notebooks, easy to
discover and explore

Lessons Learned...

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, lceCube, Antares, ...

(Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework

e Nearly all complained about it.

e Much of the code was bookkeeping and custom built astronomy
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms

Too complex / heavy a framework is a burden to developers and users.

Recommendations:

e Leverage the Astronomy community! (vs Particle Physics)

e Make it lightweight

e Make it friendly : Rich visualisations , tutorials, notebooks, easy to
discover and explore

e Use standards and open tools (minimize custom code)

Lessons Learned...

From Whipple 10m, HESS,
MAGIC, VERTIAS, Fermi-
LAT, lceCube, Antares, ...

(Greater astronomical
community

Nearly all High Energy Experiments / Telescopes based their low-level
analysis on C++ and CERN’s ROOT framework Lessons Learned "aw

e Nearly all complained about it.

e Much of the code was bookkeeping and custom built astronomy ‘
algorithms (coordinates, regions, etc)

Few developers are really C++ experts and code in C++ can take many
forms

Too complex / heavy a framework is a burden to developers and users.

Recommendations:

® k/levkereff t:te A.st:inomy community! (vs Particle Physics) From Whlpple 1 Om, HESS,
e Make it lightwei _
Mak 'tfg'J di gR' h visualisati tutorial tebooks, easy to MAGIC’ VERTIAS’ Fermi-
e Make it friendly : Rich visualisations , tutorials, no , y
discover and explore LAT, IceCube, AntareS,

e Use standards and open tools (minimize custom code) Greater astronomical

e Don’t be too clever with how algorithms are chained together: can be :
confusing to users, difficult to debug, and you can achieve the same COmmumty

thing later by wrapping in a big-data framework (spark, celery, etc)

Implementation

Bullding a Framework

Bottom-Up approach Top-Down approach

start
here

start
here

Our approach: start early
with python and high-level
API

Most previous frameworks
did 1t this way

K. Kosack, PyGammal9 13

How do we get to a final product” (Implementation Choices)

K. Kosack, PyGammal9 14

How do we get to a final product” (Implementation Choices)

Core library in Python:
a controversial choice at the time!
(a distant 3-4 years ago)

e Existence of AstroPy and early GammaPy
was a major motivation, but both still <1.0
release at the time

e Momentum in astronomy community, but
not well known In our community
(astroparticle physics)

e Bad experiences (reportedly...) in past
with python: (numeric / numarray mess,
slowness, etc)

e Proof of concept was needed.

K. Kosack, PyGammal9 14

How do we get to a final product? (Implementation Choices)

Core library in Python: Open Source!
a controversial choice at the time!

(a distant 3-4 years ago) e Builds trust! (and better code if you worry

about others seeing it...)
e Existence of AstroPy and early GammaPy

. L . Unforeseen science cases
was a major motivation, but both still <1.0 ¢

release at the time » low-level data will be accessible upon
. : oroposal to GOs (expect very few, but
e Momentum in astronomy community, but who knows?)

not well known In our community
(astroparticle physics) e Cross-over with other instruments (HESS,

MAGIC, VERITAS | ticul
e Bad experiences (reportedly...) in past ’ in particular)

with python: (numeric / numarray mess,
slowness, etc)

e Proof of concept was needed.

K. Kosack, PyGammal9 14

How do we get to a final product? (Implementation Choices)

Core library in Python: Open Source!
a controversial choice at the time!

(a distant 3-4 years ago) e Builds trust! (and better code if you worry

about others seeing it...)
e Existence of AstroPy and early GammaPy

. L . Unforeseen science cases
was a major motivation, but both still <1.0 ¢

release at the time » low-level data will be accessible upon
. : oroposal to GOs (expect very few, but
e Momentum in astronomy community, but who knows?)

not well known In our community
(astroparticle physics) e Cross-over with other instruments (HESS,

MAGIC, VERITAS | ticul
e Bad experiences (reportedly...) in past ’ in particular)

with python: (numeric / numarray mess,
slowness, etc)

e Proof of concept was needed.

K. Kosack, PyGammal9 14

How do we get to a final product? (Implementation Choices)

Modern Collaborative Development
Practices!

e GitHub, TravisCl, Codacy,
coverage.io, Slack

e Require 2 code reviews before
merging a PR
(and no commits to master!)

e 35 committers so far
» ~10 with large contributions),

» many just helping write good code
and docs!

Future Path to Higher-Performance!

e HPC re-implementations of FS;e “alk by
algorithms, cross-checked with T/ZOfZan até oy,
“standard” python “Isday

Implementations via automated
tests

» Physicists = write python

» Computer Scientists = Adapt it to

_|

PG orwrap it in

frameworks

Sig-Data

e to fancier parallelization systems:

» Physicists = write algorthms

» E=xperts = VWrap them to run in

1

Sig Data” frameworks

K. Kosack, PyGammal9 15

common “core” package — full prototype

ctapipe will be glue between various components. github.com/cta-observatorv/ctanil?e

Provides common APIs and user interfaces
packaging, etc.

pipeline release &

tools
e deployment

executables)

o
ctapipe
package/framework advanced

pipeline -

applications Package + Virtual

(onlin.e, streaming, Env containing fixed
DAQ interface, ...) versions of all

dependences
(compiler / python
interpreter included)

Eventl O Wrapper Q (',‘f::r‘n"v"r-.".
algorithms File system

I/"

¥ matplotli

(python) algorithms

p (C/C++)

e.g. HPC

ODIRAC

THE INTERWARE

K. Kosack, PyGammal9 16

http://github.com/cta-observatory/ctapipe

Algorithms and
Workflow

Data Processing Pipeline (simplified)

for each set of

~

alibration
& Time

\Integrationj K

Image

Processing

~

/

_
Stage 1

~

(R
P
(CalibratioD g
& Time

Qntegratiov K

Image

) H

Processing

/

_

J

@ Stage 1

. D

alibration
& Time

Qﬂegrationj &

Image

Processing

~

J

for each
telescope,

for each

trigger

£

for each shower #

for each shower

W

~

Stage3 4

Progenitor

Classification

((DL:)) »

Event Type

Classification

RYSERYER

Cross Calibration

Science
Performance
Monitoring Y

-

N[

Instrumental
Response Function

Event listsé

\\

L Generation J

lOW level observation blocks
- (region of interest)

(

Stage 4-5

Merge
ROIls

K. Kosigk, PyGammal9

]

Image
Processing

]

Image
Processing

_J

e 1

C)

Image
Processing

N

for each
telescope,

for each

trigger

for each shower g

for each shower

r Stage3 |

Progenitor

Classification

((DLB » :
Event lists§

Event Type

Classification

RYSERYER

_

Cross Calibration

L

f()

Physics
Performance

k Benchmarking J

_

D
g Instrumental h

Response Function

k Generation J

for each set of

observation blocks

(region of interest)

r Stage 4-5

Data Processing Pipeline (simplified)

Merge
ROIs

19

r Stage 6

\

K. Kosack, PyGammal9

350
300
250
200
150
100

Amplitude-Ped (ADC)

350
300
250
200
150
100

50

-50

Amplitude-Ped (ADC)

Sample 000
CT100 (NectarCam), event 0000010217

0.0 0.5 1.0

X position (m)

-1.0 -0.5

0 10

- Per-telescope image processing

(Max) Pixel: 440, True: 45, Measured = 38.109

~

20

30

40

50 60 70

Time (ns)

(Max Nei) Pixel: 392, True: 11, Measured = 12.560

(

/\\

20

o
|
o

Readout

30

40

50 60 70

“T100 (NectarCam), event 0000010217

calib + time integration

- L.L

- 1.0

0.8

0.6

0.4

Y position (m)

0.2

-1.0

-0.5

0.0 0.5 1.0

X position (m)

de-noising

40

30

20

10

Y position (m)

—0.5 A

—-1.0 4

CT100 (NectarCam), event 0000010217

N\

CT100 (NectarCam), event 0000010217

parametrization

0.5 A

0.0 A

Y position (m)

_.0_5 -

—1.0 1

I I 0

-1.0

-0.5

0.0
X position (m)

1 1

0.5 1.0 0.0
X position (m)
ANoe L\UJWV'\, y 8 J/ NJTJWwiliIviivww 4L O

-1.0 -0.5 0.5 1.0

o

350
300
250
200
150
100

Amplitude-Ped (ADC)

350
300
250
200
150
100

50

-50

Amplitude-Ped (ADC)

Sample 000
CT100 (NectarCam), event 0000010217

0.0 0.5 1.0

X position (m)

-1.0 -0.5

0 10

- Per-telescope image processing

(Max) Pixel: 440, True: 45, Measured = 38.109

~

20

30

40

50 60 70

Time (ns)

(Max Nei) Pixel: 392, True: 11, Measured = 12.560

(

/\\

20

o
|
o

Readout

30

40

50 60 70

“T100 (NectarCam), event 0000010217

calib + time integration

- L.L

- 1.0

0.8

0.6

0.4

Y position (m)

0.2

-1.0

-0.5

0.0 0.5 1.0

X position (m)

de-noising

40

30

20

10

Y position (m)

—0.5 A

—-1.0 4

CT100 (NectarCam), event 0000010217

N\

CT100 (NectarCam), event 0000010217

parametrization

0.5 A

0.0 A

Y position (m)

_.0_5 -

—1.0 1

I I 0

-1.0

-0.5

0.0
X position (m)

1 1

0.5 1.0 0.0
X position (m)
ANoe L\UJWV'\, y 8 J/ NJTJWwiliIviivww 4L O

-1.0 -0.5 0.5 1.0

o

Y position (m)

Y position (m)

(All tels overlaid)

)

- 70

-1.0 -0.5 0.0 0.5 1.0

- 60

50

40

30

20

10

-10

-3 L

X position (m)
CT75 CT76
I I I | 3 [I I I I I
448
11 442 2r
36
1 -
30
<
2 ot
247G
o
Q
b
18
_1 -
12
- _2 -
6
0
_ -3 L
1 | 1 | | |

X position (m)

|
-1.5-1.0-0.5 0.0 05 1.0 15

-1.5-1.0-0.5 0.0 O.
X position (m)

148

36

W
o

N
- .&
Y position (m)

[
(o)

12

Reconstruction

|
[

| | |

-1.5-1.0-0.5 0.0 0.

X position (m)

—

35

30

Outputs are: Point-of-Origin on

sky and ground+ Energy +
Classification parameters

\
/
| —"

_—]

\

Tel 3

Tel 2

az_180 pointlike, obs id: 7360, event id: 36606
. True Impact
1000 + GT’O un-d . gg Estimated Impact

500 - . o. .o .

0 4 - & Pl ’ = -
-500 - o ’

~1000 - : ' :
—1(')00 —5'00 6 560 10'00

21

Y position (m)

Y position (m)

(All tels overlaid)

)

- 70

-1.0 -0.5 0.0 0.5 1.0

- 60

50

40

30

20

10

-10

-3 L

X position (m)
CT75 CT76
I I I | 3 [I I I I I
448
11 442 2r
36
1 -
30
<
2 ot
247G
o
Q
b
18
_1 -
12
- _2 -
6
0
_ -3 L
1 | 1 | | |

X position (m)

|
-1.5-1.0-0.5 0.0 05 1.0 15

-1.5-1.0-0.5 0.0 O.
X position (m)

148

36

W
o

N
- .&
Y position (m)

[
(o)

12

Reconstruction

|
[

| | |

-1.5-1.0-0.5 0.0 0.

X position (m)

—

35

30

Outputs are: Point-of-Origin on

sky and ground+ Energy +
Classification parameters

\
/
| —"

_—]

\

Tel 3

Tel 2

az_180 pointlike, obs id: 7360, event id: 36606
. True Impact
1000 + GT’O un-d . gg Estimated Impact

500 - . o. .o .

0 4 - & Pl ’ = -
-500 - o ’

~1000 - : ' :
—1(')00 —5'00 6 560 10'00

21

Reconstruction

Y position (m)

(All tels overlaid)

-1.0 -0.5 0.0 0.5 1.0

1.0 |
0.5 -
E
c
2 0.0
‘B
o
o
S
-0.5
-1.0 -
3 B I I |
2 -
1 -
0k
_1 -
_2 -
-3 L
| | |

- 70

- 60

50

40

30

20

10

-10

X position (m)
CT76
I I | 3 [I I I I I _
448
11 442 2r |
36
1 -
30
<
2 ot
24°%
o
Q
S
18
_1 -
12
- _2 - -
6
0
- -3 L -
| 1 | | |

|
-1.5-1.0-05 0.0 05 10 15
X position (m)

|
-1.5-1.0-05 0.0 05 10 15
X position (m)

148

36

30

[
(o)

12

Y position (m)

o

|
[

" Note:
ore advance(
techr!:ques exist and are

eing implemented

(generally with p;
dly with higher
réquirements and datC;U
Needs)

Outputs are: Point-of-Origin on

sky and ground+ Energy +
Classification parameters

e\
~

| | |

|
-1.5-1.0-0.5 0.0 05 1.0 15

_—]

\

Tel 3

Tel 2

X position (m)

az_180 pointlike, obs id: 7360, event id: 36606
. True Impact
1000 + GT’O un-d . gg Estimated Impact
500 - . o o oL
0 4 - & Pl ’ = B
-500 - ’
~1000 - ‘ ' :
—1600 —5'00 6 560 10b0

21

Reconstruction

Y position (m)

-3

(All tels overlaid)

1.0

0.5 A

0.0 A

Y position (m)

-1.0 -

-1.0 -0.5 0.0 0.5 1.0

-

| |

- 70

- 60

50

40

30

20

10

-10

|
-1.5-1.0-0.5 0.0 05 1.0 15

X position

X position (m)
CT76
I I | 3 [I I I I I _
{48
11 442 2r |
36
1 -
30E
<
O 0L
242
O
Q
p
18
_1 -
12
- _2 - -
6
0
i 3L i
| 1 | | | |
-1.5-1.0-0.5 0.0 O. 1.0 1.5
(m) X position (m)

148

36

W
o

N
- .&
Y position (m)

[
(o)

12

-3

" Note:
ore advance(
techryques exist and are

eing implemented

(generally with p;
dly with higher
réquirements and datC;U
Needs)

Outputs are: Point-of-Origin on

sky and ground+ Energy +
Classification parameters

e\
~

|
-1.5-1.0-0.5 0.0 05 1.0 15

|

cOﬂSUUC{\O“\ZO nted @3
e °
el cansfor s \MP 00 dinates
m 53113‘“’J:
custo Frames
Tel 2

X position (m)

az_180 pointlike, obs id: 7360, event id: 36606
. True Impact
1000 + GT’O un-d . ;é Estimated Impact
500 - . ° . e .
0 4 & Pl ’ =
—500 A
~1000 - ’ ' ’
—1600 —5'00 6 560 10'00 21

Discrimination

Note: Same technique for Energy reconstruction and Event Type Classification

per-image |
parameter sets gamma-like
(width, length, ...)
per_shower parameters particle class h a d r O n ~ I_I I (e
parameters .
electron-like

(impact distance,
energy, number of
tels, ...)

machine learning in Python

Note: Also event quality classification, e.g. good PSF, good
spectral resolution, sensitivity to unknown sources, ...

K. Kosack, PyGammal9 22

Output: Science Data

Event-List
T class | type |n.tels Technical Tables (for sub-GTlIs)
5 Temperatur Trigger
TIME Transparency P g8
e Rate
580234.34 0.8 32 12034
o 580234.35 0.94 32 13023
.| 580234.36 0.70 33 12532
10255 —is 210 _6'3,09,0(01_;:‘/)fl~e\/)0i'5 110 1.5rue2.o Energy Migration (note these are not CTA
20 ; 10 Energy Response 0250 responses, just examples form
y f’ Igz HESS)
7. - d o
L0 -05 00 05 10 15 20 -0 -05 00 05 10 15 20 IO:OOO K. KOSCle, P)/Gammalg 23

loglO(Etm) logl()(Exruc)

A few framework
features

Raw (event) Data Access Layer

EventSource.from_url(filename)

experts write these
Factory
SimTelArray File !
pattern used (Cenloformat SimTelEventSource
to choose
implementation AW°
CHEC camera testbench e ot
based on =5 argetlOEventSource a@‘ee
[J e
Input \ W
Dr;i::(CZaFIInTST:;:r:?’:)C : SSTIMEventSource —» RawDataContainer
don’t care where the
NectarCam Testbench d t f
. Data NectarCamEventSource ala Came 1rom
In the future’ (ZFITS format)
Standard CTA

raw data format
(TBD)

Fake Events Generator ToyModelEventSource

K. Kosack, PyGammal9 25

Simple Event-wise Data Access

Working with data is supposed to be simple:

from ctapipe.io import event_source
source = event_source("gammas.simtel.gz")

for event 1n source:
print(event.trig.tels_with_trigger)
print(event.trig.gps_time.1s0)
print(event.trig.gps_time.mjd)
print(event.mc.energy.to('GeV'))
print(event.r0.tel[4].waveform.mean())

e attempt to keep the framework lightweight for algorithm designers
(lesson learned), while supporting advanced processing technigues

K. Kosack, PyGammal9 26

Simple Event-wise Data Access

Working with data is supposed to be simple:

from ctapipe.io import event_source

__y Source = event_source("gammas.simtel.gz")

an instance of .
EventSource based on for event 1n source:

file contents print(event.trig.tels_with_trigger)
print(event.trig.gps_time.1s0)
print(event.trig.gps_time.mjd)
print(event.mc.energy.to('GeV"'))
print(event.r0.tel[4].waveform.mean())

e attempt to keep the framework lightweight for algorithm designers
(lesson learned), while supporting advanced processing technigues

K. Kosack, PyGammal9 26

Simple Event-wise Data Access

Working with data is supposed to be simple:

from ctapipe.io import event_source

__y source = event_sou rce("gammas.simtel.gz")
an instance of .
EventSource based on for event 1in source:
file contents print(event.trig.tels_with_trigger)

set of hierarchical print(event.trig.gps_time.1s0)

Containers for print(eyept.trig.gps_time.mjd)
various data items/pﬁﬁt.mc.energy.to('GeV'))
(also stores print(event.r0@.tell[4].waveform.mean())
“column” metdata

like units and
descriptions)

e attempt to keep the framework lightweight for algorithm designers
(lesson learned), while supporting advanced processing technigues

K. Kosack, PyGammal9 26

Simple Event-wise Data Access

Working with data is supposed to be simple:

from ctapipe.io import event_source

__y Source = event_source("gammas.simtel.gz")

an instance of .
EventSource based on for event 1n source:

file contents print(event.trig.tels_with_trigger)
set of hierarchical print(event.trig.gps_time.1s0)

. . . . time, units, angles
Containers for/wt .trig.gps_time.mjd) /
T (

various data items event.mc.energy.to('GeV'))
(a[so stores print(event .ro. te].|:4:| .waveform. mean())

“column” metdata
like units and
descriptions)

rich conversions
based on astropy

e attempt to keep the framework lightweight for algorithm designers
(lesson learned), while supporting advanced processing technigues

K. Kosack, PyGammal9 26

Simple Event-wise Data Access

Working with data is supposed to be simple:

from ctapipe.io import event_source

__y Source = event_source("gammas.simtel.gz")

an instance of .
EventSource based on for event 1n source:

file contents print(event.trig.tels_with_trigger)
set of hierarchical print(event.trig.gps_time.1s0)

. . . . time, units, angles
Containers for/wt .trig.gps_time.mjd) /
T (

various data items event.mc.energy.to('GeV"))

rich conversions
based on astropy

(also stores print(event.r0.tel[4].waveform.mean()) All images and
“column” metdata waveform cubes are
like UnitS and NumPy NDArrayS

descriptions)

e attempt to keep the framework lightweight for algorithm designers
(lesson learned), while supporting advanced processing technigues

K. Kosack, PyGammal9 26

Containers (fancy dict-like classes)

Used for data interchabnge between algoriuthms

Works as an object-relational mapper (ORM) for 1/0

class MyContainer(Container):
energy = Field(0.0, "reconstructed energy”, unit=u.TeV)
ra = Field(0.0, "right ascension”, unit=u.deg, ucd='pos.eq.ra'’)

c = MyContainer(energy=12*u.TeV, ra=15.0*u.deq)
c.ra = 17"u.deg
C

MyContainer:
energy: reconstructed energy [TeV]
ra: right ascension [deg]

In [10]: c.as_dict()
Out[10]: {'energy': 12, 'ra': 0.0} K. Kosack, PyGammal9 27

Row-wise Data Output and further processing

[48]: data = utils.get_dataset_path("gamma_test_large.simtel.gz")

source = event_source(data, allowed_tels=[1,2,3,4], max_events=10) # re¢

TableWriter (serialize Containers to Tables,
without keeping whole table in memory):

[50]: from ctapipe.io import HDF5TableWriter

e For writing data efficiently when you don’t
have the whole column at once

[51]: with HDF5TableWriter(filename='hillas.h5', group_name='dll', overwrite:
for event in source:
calib.calibrate(event)

e Most Common Usage Pattern
(not planned):

for tel _id, tel_data in event.dll.tel.items():
tel = event.inst.subarray.tel[tel_id]
mask = tailcuts_clean(tel.camera, tel_data.image([@])
params = hillas_parameters(tel.camera[mask], tel_data.imag
writer.write("hillas", params)

ctapipe event loop = HDF5TableWriter — HDFS5 files —
pandas.read_hdf()

[53]: import pandas as pd
> Daﬂdas breaKS 1T aﬂy CO‘ UIMN Nas array da-ta hillas = pd.read_hdf("hillas.h5", key='/dl1/hillas')
hillas
<aSJ[rO py' tab ‘ e S b p pOrtS th a-t J[IA O u g h> [53]: intensity kurtosis length phi psi r skewness width
0 516.973074 2.002860 0.241504 158.337072 63.038146 1.044776 0.306567 0.047223 -0.970
B :
) and aS teﬂd S -to S-trl p Oﬁ a‘ ‘ usefu‘ metad a-ta L 1 12351.140514 3.896901 0.257008 131.028596 -77.249721 0.832273 1.061792 0.114391 -0.546
. . . 2 104.850078 5.350268 0.321235 46050519 88.237061 0.812167 -2.056825 0.024754 0.563
) Stl ‘ ‘ need a better SO‘ Uthn -I:ha-t USerS ‘ | ke 3 111.341088 2111895 0.050280 69.051947 79.696708 0.960495 0.138985 0.022882 0.343
4 92755466 5135449 0217182 121.504415 80.614031 0.900817 -1.966423 0.021410 -0.470
_ _28.

- A, m_ e s v

-y -_.:/-q_’,,,..

P e

Instrument Description (ctapipe.instrument)

SubarrayDescription
/ \ tel[i]
+ pos_x[i]
+ pos_yli]
+ footprint
TelescopeDescription

Astropy Table conversion: + to_table()

optics camera

+ effective_focal_length + pix_x [shape: npix]

+ mirror_area + pix_y [shape: npix]

+ mirror_type + pix_id [shape: nP'X]

+ num_mirror_tiles + pix_area [shape: npix]
+ pix_type

+ neighbors (list)
+ neighbor_matrix (shape: npix,npix)

+ to_table
_ 0 K. Kosack, PyGammal9 29

Configuration System: based on traitlets

Component (traitlets.config.Configurable)

e wrapper for complex algorithms that need to have user-
level configuration parameters

e Parameters are defined in class Traitlets subclass

Tool (traitlets.config.Application)
e a Ul, currently command-line application

e handles user configuration (command line or config file
parameters) for a set of Components

e manages the Provenance system
e manages signals, etc.

e set up logging

https://traitlets.readthedocs.10
) K. Kosack, PyGammal9 30

https://traitlets.readthedocs.io

ctapipe-display-dl1 --help-all
Calibrate dl0 data to dl1, and plot the photoelectron images.

Arguments that take values are actually convenience aliases to full
Configurables, whose aliases are listed on the help line. For more information
on full configurables, see '--help-all'.

-D

Display the photoelectron images on-screen as they are produced.
--max_events=<Int> (EventSource.max_events)

Default: None

Maximum number of events that will be read from the file
--extractor=<CaselessStrEnum> (DisplayDL1Calib.extractor_product)

Default: 'NeighbourPeakIntegrator'

Choices: ['Fulllntegrator', 'SimpleIntegrator', 'GlobalPeakIntegrator', 'LocalPeakIntegrator',

'NeighbourPeakIntegrator', 'AverageWfPeakIntegrator']
ChargeExtractor to use.
--t0=<Int> (Simplelntegrator.t0)
Default: 0
Define the peak position for all pixels
--window_width=<Int> (WindowIntegrator.window_width)
Default: 7
Define the width of the integration window
--window_shift=<Int> (WindowIntegrator.window_shift)

Default: 3
Define the shift of the integration window from the peakpos (peakpos -
shift)

--sig_amp_cut_HG=<Float> (PeakFindingIntegrator.sig_amp_cut_HG)
Default: None
Define the cut above which a sample is considered as significant for
PeakFinding in the HG channel
--sig_amp_cut_LG=<Float> (PeakFindingIntegrator.sig_amp_cut_LG)
Default: None
Define the cut above which a sample is considered as significant for
PeakFinding in the LG channel
--1wt=<Int> (NeighbourPeakIntegrator.lwt)
Default: 0
Weight of the local pixel (@0: peak from neighbours only, 1: local pixel
counts as much as any neighbour
--clip_amplitude=<Float> (CameraDL1Calibrator.clip_amplitude)
Default: None
Amplitude in p.e. above which the signal is clipped. Set to None for no
clipping.
-T <Int> (DisplayDL1Calib.telescope)
Default: None
Telescope to view. Set to None to display all telescopes.
-0 <Unicode> (ImagePlotter.output_path)
Default: None
Output path for the pdf containing all the images. Set to None for no saved

output.
--log-level=<Enum> (Application.log_level)
Default: 30

Choices: (0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL')
Set the log level by value or name.

--config=<Unicode> (Tool.config_file)
Default: "'
name of a configuration file with parameters to load in addition to command-
line parameters

Class parameters

Parameters are set from command-line arguments of the form:
"—--Class.trait=value . This line is evaluated in Python, so simple expressions
are allowed, e.g.:: --C.a='range(3)'" For setting C.a=[0,1,2].

DisplayDL1Calib options
--DisplayDL1Calib.config_file=<Unicode>
Default: "'
name of a configuration file with parameters to load in addition to command-
line parameters
--DisplayDL1Calib.extractor_product=<CaselessStrEnum>
Default: 'NeighbourPeakIntegrator'
Choices: ['Fulllntegrator', 'SimpleIntegrator', 'GlobalPeakIntegrator', 'LocalPeakIntegrator',
'NeighbourPeakIntegrator', 'AverageWfPeakIntegrator']
ChargeExtractor to use.
--DisplayDL1Calib.log_datefmt=<Unicode>
Default: '%Y-%m-%d %H:%M:%S"'
The date format used by logging formatters for %(asctime)s
--DisplayDL1Calib.log_format=<Unicode>
Default: '[%(name)s]%(highlevel)s %(message)s'
The Logging format template
--DisplayDL1Calib.log_level=<Enum>
Default: 30
Choices: (@, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL')
Set the log level by value or name.
--DisplayDL1Calib. telescope=<Int>
Default: None
Telescope to view. Set to None to display all telescopes.

EventSource options
--EventSource.allowed_tels=<Set>

Default: set()

list of allowed tel_ids, others will be ignored. If left empty, all

telescopes in the input stream will be included
--EventSource. input_url=<Unicode>

Default: "'

Path to the input file containing events.
--EventSource.max_events=<Int>

Default: None

Maximum number of events that will be read from the file

CameraDL1Calibrator options

--CameraDL1Calibrator.clip_amplitude=<Float>

Metadata and Provenance

Requirement that CTA data products are reproducible See talk by Matthieu Servillat

e software version

e configurations wasDerivedFrom

® /nputs P O o

» 1 IRF might have T000s of input files, tables, calibration wasAttributedTo /. Enﬁfy J
coefficients, lab measurements P N wasGeneratedBy

Inside ctapipe “Tools” automatically keep track of at ' e)Ned
least the “local provenance” metadata washssocatedWith N\ N terss | I

e Any file opened (input or output) is automatically tracked Stamdmr:/ 0 \,fedAmme

e The “activity” details are also recorded (local machine xsd:dateTime | WasIMformedBY ' ysq.dateTime

name, running time, and other info)

Local provenance can be put into a database to derive
the full chain of processing history for any output file

K. Kosack, PyGammal9 32

Code Example

ctapipe.reco.HillasReconstructor

def estimate_core_position(self, hillas_dict, telescope_pointing):
psi = u.Quantity([h.psi for h in hillas_dict.values()])
z = np.zeros(len(psi))
uvw_vectors = np.column_stack([np.cos(psi).value, np.sin(psi).value, z])

tilted_frame = TiltedGroundFrame(pointing_direction=telescope_pointing)
ground_frame = GroundFrame()

positions = [

(
SkyCoord(*plane.pos, frame=ground_frame)
.transform_to(tilted_frame)
.cartesian.xyz

)

for plane in self.hillas_planes.values()

]

core_position = line_line_intersection_3d(uvw_vectors, positions)

core_pos_tilted = SkyCoord(
x=core_position[0] * u.m,
y=core_position[1] * u.m,
frame=tilted_frame

)

core_pos = project_to_ground(core_pos_tilted)

return core_pos.x, core_pos.y K. Kosack, PyGammal9 33

irch docs

ing Started For Developers

elopment Guidelines
orials
etting Started with ctapipe

Part 1: load and loop over data

Part 2: Explore the instrument
description

Part 3: Apply some calibration
and trace integration

Part 4: Let’s put it all together:

xploring Raw Data
xplore Calibrated Data

Aake a theta-square plot

018 LST Bootcamp walkthrough

imples

quently Asked Questions

Docs » Tutorials » Getting Started with ctapipe

Getting Started with ctapipe

This hands-on was presented at the Paris CTA Consoritum meeting (K

Part 1: load and loop over data

[1]:

[2]:

[3]:

(4] :
(4] :

from ctapipe.io import event_source
from ctapipe import utils

from matplotlib import pyplot as plt
smatplotlib inline

path = utils.get_dataset_path('"gamma_test_large.simtel.gz")
source = event_source(path, max_events=4)

for event in source:
print(event.count, event.r@.event_id, event.mc.energy)

0 23703 90.5707105398178101 TeV
1 31007 1.8637498617172241 TeV
2 319010 1.8637498617172241 TeV
3 31012 1.8637498617172241 TeV

event

ctapipe.io.containers.DataContainer:
event_type: Event type
ro.x: Raw Data
rl.x: R1 Calibrated Data
dl@9.x: DL@® Data Volume Reduced Data
dll.x: DL1 Calibrated image
dl2.x: Reconstructed Shower Informat
mc.*: Monte-Carlo data

— el bl | — — 2 = N el - ”™ o Y — . e] | — - i - —

Tutorials and
examples in
documentation
using nbsphinx
plugin

Benchmarking

———————————————————————————————

Benchmark Cl System ! ! CTA Computing Grid
|
(T Developer's Machine + Dev Cl system | | [Benchmark | | ‘2
| o Production —P : g Full Production
- ! N ‘ . approval N\ ! i ﬁo REEERS
Q_;_> Development [¢——<> : i : ,} N Performance New Pipeline p
! failure v N : Validation Release X
! :
Existing Pipeline CodeAcceptance aionapipeline | | C—
v'gsioze LL (unit test, review) Version — K

Current plan (partially realized):
e Collection of Jupyter notebooks
» data preparation
> |low-level benchmarks
» Nhigh-level summaries
e Papermill:

> parameterization of NoteooKS m prerm ill

» notebook output data access
K. Kosack, PyGammal9 35

Open Questions

Can we use ctapipe python algorithms in our RTA?
e preliminary studies say maybe

e tests using dask, spark and others found some
bottlenecks (not related to algorithms themselves),
but more work to do

What should the output data format be?
e so far we like HDF5, but some problems
e FITS for DL3.... still some things to define

36

