
Rust and its usage as Python extensions
PyGamma 2019 Heidelberg

Matthieu Baumann

03/19/19

Summary

1. Rust programming language introduction
2. Use of Rust extension codes into the cdshealpix Python package
3. cdshealpix deployment for Windows, MacOS and Linux

https://github.com/cds-astro/cds-healpix-python
https://github.com/cds-astro/cds-healpix-python

Part I: Rust programming language presentation

Rust Presentation

I Rust is a compiled system programming language (no garbage
collector!)

I It tries to detect as much errors as possible statically (i.e. during the
compilation)

I Therefore, it embeds some “rules” to guide/force you to code in a
safety way

I These rules prevent your code to have segmentation faults,
dereference null pointers, etc. . .

What are these “rules” about ?
The ownership concept
I At any time, a resource is owned by exactly one scope!
I When the resource goes out of its scope, it gets freed

The borrowing
I A scope (e.g. other methods) can borrow a resource: this is done by

references
I Two types of borrowing: immutably (&, default behaviour) and

mutably (&mut)
I When the reference goes out of the scope, the ownership is restored

to the caller. The resource is not dropped
I At any time, you can either have:

I one and only one mut ref to a resource
I several immutable refs to the same resource

Lifetime annotation of references
I lifetime annotations ensure that referenced resources always outlive

object instances that refer them.

Some Rust nice features

I The cargo package manager. All rust dependency libs (called crates)
are written in a Cargo.toml configuration file at the root of the
project.

[package]
name = "cdshealpix_python"
version = "0.1.10"
...

[dependencies]
From github repo
cdshealpix = { git = 'https://github.com/
cds-astro/cds-healpix-rust', branch = 'master' }

or from crates.io
cdshealpix = "0.1.5"

I Safety: ownership, borrowing, lifetimes
I Performance:

I No garbage collector but strong rules checked during the compilation!
This force the programmer to code in a “safer” way, think about the
reference lifetimes etc. . .

I Zero-cost abstractions:
I Common collections given by the standard library: Vec, HashMap
I Generics: statically generation of Rust code auto-inlined by the

compiler.
I Iterators with map, filter, . . . , defined on them
I Lambda functions (called closures)
I Object oriented, Traits are java-like interfaces, no data attribute

inheritance.
I Error handling
I Strong typing and type inference

I Concurrency: some primitives implemented in the std library:
Mutexes, RWLocks, Atomics.

I See the well-explained official documentation and Rust by examples
for more infos!

https://doc.rust-lang.org/book/ch08-00-common-collections.html
https://doc.rust-lang.org/book/ch10-00-generics.html
https://doc.rust-lang.org/book/ch13-00-functional-features.html
https://doc.rust-lang.org/book/ch17-00-oop.html
https://doc.rust-lang.org/book/ch09-00-error-handling.html
https://doc.rust-lang.org/book/ch16-00-concurrency.html
https://doc.rust-lang.org/book/index.html
https://doc.rust-lang.org/rust-by-example/index.html

Where is Rust used and by who ?

I Quite new: 1.0.0 released in 2015
I Most Loved languages. Rust is 1st, Kotlin 2nd, Python 3rd, . . . , C++

22th. For the third year in a row Rust is the most loved language.
I Begin to be used in the game industry as a replacement for C++.

See here.
I Over 70% of developers who work with Rust contribute to open

source (stackoverflow latest 2018 survey)

https://insights.stackoverflow.com/survey/2018/#technology-most-loved-dreaded-and-wanted-languages
https://www.gamefromscratch.com/post/2018/07/31/Rust-for-Game-Development.aspx
https://insights.stackoverflow.com/survey/2018/

Part II: use of Rust extension codes into the
cdshealpix Python package

https://github.com/cds-astro/cds-healpix-python

cdshealpix presentation

I HEALPix python package wrapping the cdshealpix Rust crate
developed by FX Pineau.

I Provides healpix_to_lonlat, lonlat_to_healpix, vertices, neighbours,
cone_search, polygon_search and elliptical_cone_search methods.

https://crates.io/crates/cdshealpix

cdshealpix: How does the binding works ?

cdsheapix/cdshealpix.py

def healpix_to_lonlat
def lonlat_to_healpix

...
def cone_search_lonlat

cdshealpix/bindings.h

void hpx_center_lonlat
void hpx_hash_lonlat

void hpx_query_cone_approx

src/lib.rs

fn hpx_center_lonlat
fn hpx_hash_lonlat

...
fn hpx_query_cone_approx

Python C prototype
definitions

Rust (compiled into the
dynamic lib)

Figure 1: Python -> C -> Rust bindings

I Python sees Rust code the same way as C
I Rust functions can be externed as if it would be C. This is what we

use for Python to call Rust functions!

cdshealpix: Python interface

I Use of CFFI (C Foreign Function Interface for Python) to load the
dynamic library compiled (.so or .pyd for Windows) with cargo (Rust
compiler)

I This is done as soon as the user imports something from cdshealpix
(in the _init_.py file).

https://cffi.readthedocs.io/en/latest/

Content of cdshealpix/_init_.py
import os
import sys
from cffi import FFI

ffi = FFI()
Open and read the C function prototypes
with open(

os.path.join(
os.path.dirname(__file__),
"bindings.h"

),
"r") as f_in:

ffi.cdef(f_in.read())

Open the dynamic library generated by setuptools_rust
dyn_lib_path = find_dynamic_lib_file()
lib = ffi.dlopen(dyn_lib_path)

cdshealpix: Python interface

I Then lib and ffi can be imported in cdshealpix/cdshealpix.py

Beginning of cdshealpix.py
from . import lib, ffi

I To call Rust code, just run:

lib.<rust_method>(args...)

cdshealpix examples: lonlat_to_healpix

I Let’s dive into how lonlat_to_healpix is wrapped around
hpx_hash_lonlat

I lonlat_to_healpix in cdshealpix/cdshealpix.py

def lonlat_to_healpix(lon, lat, depth):
Handle zero dim lon, lat array cases
lon = np.atleast_1d(lon.to_value(u.rad)).ravel()
lat = np.atleast_1d(lat.to_value(u.rad)).ravel()

if lon.shape != lat.shape:
raise ValueError("The number of longitudes does \
not match with the number of latitudes given")

num_ipixels = lon.shape[0]
We know the size of the returned HEALPix cells
So we allocate an array from the Python code side
ipixels = np.zeros(num_ipixels, dtype=np.uint64)
Dynamic library call
lib.hpx_hash_lonlat(

depth
depth,
num of ipixels
num_ipixels,
lon, lat
ffi.cast("const double*", lon.ctypes.data),
ffi.cast("const double*", lat.ctypes.data),
result
ffi.cast("uint64_t*", ipixels.ctypes.data)

)

return ipixels

I C hpx_hash_lonlat prototype defined in cdshealpix/bindings.h

void hpx_hash_lonlat(
uint8_t depth,
uint32_t num_coords,
const double* lon,
const double* lat,
uint64_t* ipixels);

Rust hpx_hash_lonlat in src/lib.rs
#[no_mangle]
pub extern "C" fn hpx_hash_lonlat(

depth: u8,
num_coords: u32,
lon: *const f64, lat: *const f64,
ipixels: *mut u64,

) {
let num_coords = num_coords as usize;

let lon = to_slice(lon, num_coords);
let lat = to_slice(lat, num_coords);
let ipix = to_slice_mut(ipixels, num_coords);

let layer = get_or_create(depth);
for i in 0..num_coords {

ipix[i] = layer.hash(lon[i], lat[i]);
}

}

Conclusion

I Quite readable and only few lines of code:
1. Some test exceptions
2. One numpy array allocation
3. The call to the dynamic library (some casts to match the C prototype)

I Whenever it is possible (size of the returned HEALPix cell array
known) one should always allocate memory content in the Python
side because it is auto garbage collected!

I => No need to think about free the content!
I If memory has to be allocated by the dynamic library => do not

forget to call later the lib to deallocate the memory space! Let’s see
another example to illustrate that case !

cdshealpix examples: cone_search_lonlat

I The Python-side code does not know how much HEALPix cells will
be returned by hpx_query_cone_search

I Thus, allocation must necessary be done in the Rust-side

Rust hpx_query_cone_search in src/lib.rs
#[no_mangle]
pub extern "C" fn hpx_query_cone_approx(

depth: u8, delta_depth: u8,
lon: f64, lat: f64, radius: f64

) -> *const PyBMOC {
let bmoc = cone_coverage_approx_custom(

depth, delta_depth, lon, lat, radius,
);

let cells: Vec<BMOCCell> = to_bmoc_cell_array(bmoc);
let len = cells.len() as u32;
// Allocation here
let bmoc = Box::new(PyBMOC { len, cells });
// Returns a raw pointer to a struct containing
// * the num of HEALPix cells
// * the array of cells
Box::into_raw(bmoc)

}

I Deallocation can only be done in the Rust side too!
I Thus, Python-side must call this method

#[no_mangle]
pub extern "C" fn bmoc_free(ptr: *mut PyBMOC) {

if !ptr.is_null() {
unsafe {

Box::from_raw(ptr)
// Drop the content of the PyBMOC here.

};
}

}

I If not called, we would have memory leaks.

I This is something the Python user should not bother to do!
I Solution: wraps the result of hpx_query_cone_approx structure

into a class

class ConeSearchLonLat:
def __init__(self, d, delta_d, lon, lat, r):

self.data = lib.hpx_query_cone_approx(
d, depth_d, lon, lat, r

)

def __enter__(self):
return self

Called when garbage collected
def __del__(self):

lib.bmoc_free(self.data)
self.data = None

cone_search_lonlat in cdshealpix/cdshealpix.py
def cone_search_lonlat(lon, lat, radius,

depth, delta_depth):
Exceptions handling
...

lon = lon.to_value(u.rad)
lat = lat.to_value(u.rad)
radius = radius.to_value(u.rad)

cone = ConeSearchLonLat(
depth, depth_delta,
lon, lat, radius)

return cone.data

Part III: cdshealpix deployment for Windows,
MacOS and Linux

Setuptools_rust

I setuptools_rust package is used to:

1. Build the dynamic library (need cargo compiled installed)

2. Pack into a wheel:
I The python files contained in cdshealpix/
I The built dynamic library
I The C file containing binding function prototypes

Content of the setup.py

setup(...
rust_extensions=[RustExtension(
Package name
"cdshealpix.cdshealpix",
The path to the Cargo.toml.
Contains the dependencies of the Rust side code
'Cargo.toml',
CFFI bindings
binding=Binding.NoBinding,
--release option for cargo
debug=False)],
...)

I python setup.py build_wheel/install will build the wheel into
a .whl file for the host architecture (resp. install cdshealpix into your
local machine)

Travis-CI

I Travis-CI is used for testing and deploying the wheels for Linux and
MacOS

I The .travis.yml contains 2 stages: a testing & a deployment one
I Each stage is divided into jobs responsible for testing (resp.

deploying) cdshealpix for a specific platform and python version.
I Deployment jobs use cibuildwheel tool. cibuildwheel uses docker with

manylinux32/64bits images for generating the wheels for linux.
I See the script for deploying the wheels for linux/macos here.
I List of the deployed wheels on PyPI.

https://travis-ci.org/cds-astro/cds-healpix-python
https://github.com/cds-astro/cds-healpix-python/blob/master/.travis.yml
https://github.com/joerick/cibuildwheel
https://github.com/cds-astro/cds-healpix-python/blob/master/deploy.sh
https://pypi.org/project/cdshealpix/#files

Questions ?

	Part I: Rust programming language presentation
	Part II: use of Rust extension codes into the cdshealpix Python package
	Part III: cdshealpix deployment for Windows, MacOS and Linux
	Questions ?

