
notebooks

José Enrique Ruiz
Instituto de Astrofísica de Andalucía - CSIC

MPIK Heidelberg

on steroids

@bultako

The exploratory research workflow
Interactive exploration vs. Coding framework

A read–eval–print loop (REPL), also termed an interactive top-level or language shell, is a simple,
interactive environment that takes single user inputs (i.e., single expressions), evaluates them, and
returns the result to the user.

IPython 0.01
https://gist.github.com/fperez/1579699 2001 2011

The read-eval-print loop

https://gist.github.com/fperez/1579699

The IPython Kernel is the responsible for executing the user input.

The terminal IPython is the REPL core, dealing with user
inputs and outputs issued from their execution.

Frontends, like the notebook or the Qt console, can communicate with the IPython
Kernel using JSON messages sent over ZeroMQ sockets. The ZeroMQ library
provides the low-level transport layer over which these messages are sent.

The core execution machinery for the kernel is shared with terminal IPython.

IPython internals

http://zeromq.org/
http://zeromq.org/

The Notebook frontend, stores code and output, together with markdown notes, in an
editable document called a notebook. When you save it, this is sent from your browser to
the notebook server, which saves it on disk as a JSON file with a .ipynb extension.

local Tornado
 web server

IPython notebook internals

multi-language

su
pport

add narrative save share reproduce

Web execution server

Frontends clients
HTML Document Format

HTTP Transfer Protocol

Interactive Computing Messaging Protocol

Execution kernel
Frontends clients

JSON Document Format

/J
SO

N

18/12/2011

The web analogy

2014/2015

The interactive exploratory environment in the browser
The project ecosystem

•JupyterLab is (not only) another user interface for notebooks.

•JupyterLab is the evolution of the JupyterNotebook user interface into a flexible unified platform.

2011 2018

FileBrowser Terminal TexEditor Widgets Extensions

•JupyterLab is a major internal refactoring of the frontend:

- Clean Model-View separation -> multiple views / high interactivity.

- Modern JavaScript -> TypeScript, npm/yarm webpack packaging, react, phosphor.js

- Fully extensible by third parties -> everything is an extension + differentiated private/public APIs.

- Higher performance - especially with big tabular datasets !

• There are no changes in the notebooks, messaging protocol or the kernels.

-The interactive messaging protocol and JSON notebooks format is kept.

-GitHub and any other existing front-ends will continue working with JupyterLab notebooks.

• User functionalities are focused towards an IDE-like / integrated exploratory research desktop.

-Open windows to the local desktop and data formats.

-Higher interactivity between any kind of element involved in the exploratory process.

JupyterNotebook and JupyterLab
https://jupyter-notebook.readthedocs.io

https://jupyterlab.readthedocs.io

https://jupyter-notebook.readthedocs.io
https://jupyterlab.readthedocs.io

JupyterLab Live Demo

Line magics act on one line %
https://ipython.readthedocs.io/en/stable/interactive/magics.html

IPython magics

Cell magics act on the entire cell %%

You may also access the shell with !
!shell command

%matplotlib notebook for interactive plots

use ?? to print the code and ? to print the docstring

https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://github.com/rasbt/watermark

Interactive widgets

ipywidgets

https://ipywidgets.readthedocs.io

Build small interactive GUIs that can communicate with the kernel and with other widgets.
Mostly used for enhanced visualization purposes.
ipywidgets is required by many extensions.

https://ipywidgets.readthedocs.io

JupyterNotebook Extensions
https://jupyter-contrib-nbextensions.readthedocs.io

https://jupyter-contrib-nbextensions.readthedocs.io
https://jupyter-notebook.readthedocs.io

%watermark

https://github.com/rasbt/watermark

JupyterNotebook Extensions

https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://github.com/rasbt/watermark

%sql

https://github.com/catherinedevlin/ipython-sql

JupyterNotebook Extensions

https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://github.com/rasbt/watermark
https://github.com/catherinedevlin/ipython-sql

qgrid

https://github.com/quantopian/qgrid

JupyterNotebook Extensions

https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://github.com/rasbt/watermark
https://github.com/quantopian/qgrid

JupyterNotebook Extensions
https://ipyvolume.readthedocs.io

Ipyvolume

Astronomical data cube: Radio observations Medical data cube: scan of a male head

https://jupyter-contrib-nbextensions.readthedocs.io

JupyterNotebook Extensions

Ipyvolume

Exploring 100+ million
rows by volume
rendering a 3d
histogram

https://ipyvolume.readthedocs.io

Glue-Jupyter uses ipyvolume for 3D rendering.
https://github.com/glue-viz/glue-jupyter

https://jupyter-contrib-nbextensions.readthedocs.io
https://github.com/glue-viz/glue-jupyter

JupyterLab Extensions

Use the extension manager

1. Go to Advance Settings 2. Enable Extension Manager 3. Discover /install extensions

https://jupyterlab.readthedocs.io/en/stable/user/extensions.html

https://jupyterlab.readthedocs.io/en/stable/user/extensions.html

JupyterLab Workspaces
https://jupyterlab.readthedocs.io/en/stable/user/urls.html

JupyterLab sessions reside in workspaces, which contain the state
of JupyterLab : the files that are currently open, the layout of
the application areas and tabs, etc. When the page is refreshed or
JupyterLab is re-started the workspace is restored.

Import/Export Workspaces with CLI

Import/Export with URL params API

Workspaces are stored in the web server.

https://jupyterlab.readthedocs.io/en/stable/user/urls.html

JupyterLab work in progress GoogleDrive extension for Real Time Collaboration

Multi-user environments
A multi-user version of the notebook designed for companies, classrooms and research labs.
https://jupyter.org/hub

• Sharing resources and computing environment.
• Users are not burdened with installation and maintenance tasks.
• Customizable and scalable, suitable for small and large large-scale infrastructures.
• Deployed anywhere i.e. commercial cloud providers, virtual machines, or even your own laptop hardware.
• Authentication is pluggable, supporting a number of authentication protocols (such as OAuth and GitHub).
• Users can get their work done in their own workspaces.

https://zero-to-jupyterhub.readthedocs.io
On kubernetes

Based on jupyter-drive extension to share notebooks on Google Drive https://github.com/jupyter/jupyter-drive

https://tljh.jupyter.org
On Ubuntu

a collaborative environment is not fully achieved since there is no easy sharing of notebooks

https://jupyter.org/hub
https://zero-to-jupyterhub.readthedocs.io
https://github.com/jupyter/jupyter-drive
https://tljh.jupyter.org

Multi-language support
There exist Jupyter kernels for nearly any scripting language.

There exist extensions implemented as IPython magic commands to build polyglot notebooks.
These allow variable exchange across the different languages running in the same kernel.
We may see these magics commands as pipes dispatching the syntax and variables to new subprocesses.
This could also be done in pure Python and is possible due to the nature of Python as a glue language.

https://github.com/mgaitan/fortran_magic

https://rpy2.readthedocs.io
https://pypi.org/project/cffi_magic

https://blog.jupyter.org/i-python-you-r-we-julia-baf064ca1fb6

https://github.com/ebellm/ipython-idlmagic
https://pypi.org/project/idlmagic

may be options to
exchange vars

any la
nguage

https://github.com/mgaitan/fortran_magic
https://rpy2.readthedocs.io
https://pypi.org/project/cffi_magic/
https://blog.jupyter.org/i-python-you-r-we-julia-baf064ca1fb6
https://github.com/ebellm/ipython-idlmagic
https://pypi.org/project/idlmagic/

Multi-language support
SoS Script of Scripts uses multiple kernels in one notebook.

https://vatlab.github.io/sos-docs/doc/user_guide/multi_kernel_notebook.html

https://vatlab.github.io/sos-docs/doc/user_guide/multi_kernel_notebook.html

Scalability

https://nb.lsst.io

LSST Science Platform Aspect

ESRI Environmental Systems Research Institute

https://jupyter-enterprise-gateway.readthedocs.io

CERN - SWAN Service for Web-based Analysis https://sw
an.w

eb.cern.ch

https://github.com/jupyter-incubator/sparkmagic

https://github.com/jupyter-attic/kernel_gateway_bundlers
sing

le no
tebo

oks
deplo

yed

as d
ocke

rize
d ht

tp

micr
oser

vices

acce
ss t

o dis
tribu

ted
com

puta
tion

SCIENCE PORTALS

https://github.com/jupyterhub/dockerspawner
dock

eriz
ed n

oteb
ook

serv
ers

for
each

 use
r

https://nteract-scrapbook.readthedocs.io
https://nb.lsst.io
https://jupyter-enterprise-gateway.readthedocs.io
https://github.com/jupyter-incubator/sparkmagic
https://github.com/jupyter-attic/kernel_gateway_bundlers
https://github.com/jupyterhub/dockerspawner

Modularity
The easy solution

The very complex solution

The sophisticated solution

https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Importing%20Notebooks.html

https://github.com/jupyter-incubator/contentmanagement

Transform the “very long notebook” into a short one using other
notebooks as modules, which enables re-use and avoids duplication

a

b

https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Importing%20Notebooks.html
https://github.com/jupyter-incubator/contentmanagement

Automation
Papermill: parametrized notebooks https://github.com/nteract/papermill

https://m
edium

.com
/netflix-techblog/notebook-innovation-591ee3221233

https://m
edium

.com
/netflix-techblog/scheduling-notebooks-348e6c14cfd6

1. Declare some cells as a parameters cells.

3. Run papermill with Python API. 3. Run papermill with CLI.

2. Declare parameters values in YAML file.

https://github.com/nteract/papermill
https://medium.com/netflix-techblog/notebook-innovation-591ee3221233
https://medium.com/netflix-techblog/scheduling-notebooks-348e6c14cfd6

Automation

Composing workflows based on the orchestration of several notebooks and their linked outputs.

https://nteract-scrapbook.readthedocs.io

• Low Branching Factor: Keep notebooks fairly linear. Not many conditionals or potential execution paths.
• Library Functions in Libraries: If you do end up with complex functions which you might reuse or

refactor independently, these are good candidates for a coding library rather than in a notebook.
• Short and Simple is Better: A notebook which generates lots of useful outputs and visuals with a few

simple cells is better than a ten page manual.

Some guidelines to make happy automated notebooks

:)

• Prototype automated tasks
• Reports building
• Testing and logging
• Benchmarking

SHORT LINEAR NOTEBOOKS WITH SMALL CODE CELLS

Papermill + Scrapbook: workflows with parametrized notebooks

https://nteract-scrapbook.readthedocs.io

nteract

Junoipnb-quicklook / nbviewer app

Voila
Frontends / Viewers

https://nteract.io https://github.com/QuantStack/voila

https://juno.sh

https://github.com/tuxu/nbviewer-app

https://github.com/tuxu/ipynb-quicklook

Desktop app shipping node.js, R and Python as
kernels. It can also access your locally defined
kernels. Fires up notebook files from the desktop.

DataExplorer feature for enhanced visualization.

Renders read-only notebooks with interactive widgets.
Execution of arbitrary code is disabled by default.
The code cells are stripped by default producing a
kind of documented interactive GUI from a notebook,
that communicates with a dedicated kernel

iOS app for mobile platforms acting as a Jupyter
frontend. It needs to connect to a remote notebook
server (i.e. PC, AWS node, Azure notebooks, etc.)Quicklook read-only viewers for MacOS X

https://nteract.io
https://github.com/QuantStack/voila
https://juno.sh
https://github.com/tuxu/nbviewer-app
https://github.com/tuxu/ipynb-quicklook

Publish in GitHub

Publish in HTML

Publish an executable book

Publication
Please, make a small effort and transform exploratory into explanatory notebooks.

Leading open code repository rendering notebooks very well indexed by search engines.
Open collaborative community driven and linked to services (i.e. Collab, Binder, Zenodo)

VisibilityReproducibility

https://nbsphinx.readthedocs.io

nbsphinx is a Sphinx extension that provides a source parser for *.ipynb files.

https://www.nbinteract.com
python package to generate interactive widgets in HTML pages by using Binder.

https://github.com/jakevdp/PythonDataScienceHandbook

https://github.com/jakevdp/WhirlwindTourOfPython

https://nbsphinx.readthedocs.io
http://sphinx-doc.org/
https://www.nbinteract.com
https://github.com/jakevdp/PythonDataScienceHandbook
https://github.com/jakevdp/WhirlwindTourOfPython

Add Python kernels of different conda environments

Make a Binder

Reproducibility
https://mybinder.org

LOCALLY

Web service

https://alpha.iodide.ioBuilt-in browser Python is compiled to run on WebAssembly.Built-in

Define your environment

•requirements.txt
•environment.yml
•Dockerfile

Share on Google Colaboratory

http://colab.research.google.com

https://mybinder.org
https://alpha.iodide.io
http://colab.research.google.com

Interactivity leads to complex/hidden state in non-linear notebooks
Reproducibility

https://github.com/jupytercalpoly/reactivepy
https://github.com/stitchfix/nodebook

https://github.com/jupytercalpoly/reactivepy
https://github.com/stitchfix/nodebook

Jupytext
Versioning

https://github.com/mwouts/jupytext

• small changes change metadata
• especially if output is in the notebook
https://github.com/kynan/nbstripoutstrip the output cells

A paired notebook is an .ipynb notebook that is synchronized with a text representation —  say a Python script. When the
notebook is saved, Jupytext updates both files. The script has a clear diff history, focused on the input cells only

git diff is #*!@ish

https://github.com/mwouts/jupytext
https://github.com/elehcimd/pynb
https://github.com/kynan/nbstripout

Publishing reproducible papers
https://zenodo.org/record/2381863

https://zenodo.org/record/2381863

Building versioned executable tutorials

•The web browser as the working desktop environment

•Capture exploratory and data analysis tasks into log-like notebooks
•Multi format display for rich explanatory notebooks - code, data, plots, equations, videos, etc..

•Shareable, re-usable and executable documentation / recipes

•Complementary executable format of published books

•First-class citizens in GitHub - easily discovered >3M notebooks

•Used as executable tutorials reduce the learning curve
•Multi-language support even possible in the same notebook

•Highly extensible and customizable in functionalities

•Local execution or multi-user server-side deploy

•Scalable and parameterisable

2019
A working methodology

•The web browser as the working desktop environment

•Capture exploratory and data analysis tasks into log-like notebooks
•Multi format display for rich explanatory notebooks - code, data, plots, equations, videos, etc..

•Shareable, re-usable and executable documentation / recipes

•Complementary executable format of published books

•First-class citizens in GitHub - easily discovered >3M notebooks

•Used as executable tutorials reduce the learning curve
•Multi-language support even possible in the same notebook

•Highly extensible and customizable in functionalities

•Local execution or multi-user server-side deploy

•Scalable and parameterisable

complex state allowed due to
non-linear execution of cells

painful exploration
of versioning and
code-review

hard to test

hard to re-use into
other formats i.e.
copy/paste content

hard to make modular
poorly factored code

productivity flaws as
code linting, type
checking or tab

completion
frontend/environment

dependencies

2019
A working methodology

