

fermitools and fermipy

SLAC
PyGamma 2019 Workshop
Heidelberg, Germany
18-22 March 2019

Outline

- Focus on a few aspects of the fermitools and fermipy environment
 - fermitools
 - fermipy Region of Interest (ROI)-based analysis
 - Examples of functionality
 - fermipy analysis pipelines
 - Stacked Dark Matter search with dmpipe analysis pipeline
- Summary

Fermitools Standalone Applications

- fermitools include a set of standalone applications to perform each stage of a standard likelihood analysis
- fermitools supported by the Fermi Science Support Center (FSSC)

Likelihood Analysis with fermitools

Data maps, N(E; α , δ) produced by *gtbin*

Model maps, M(E; α , δ) produced by *gtmodel*

See talk by Perkins

Binned likelihood analysis (e.g., atlike) optimizes model

by maximizing the Poisson likelihood:

$$-\ln \mathcal{L} = \sum_{i}^{\mathrm{pix}} \sum_{k}^{\mathrm{energy}} N_{ik} \ln M_{ik} - M_{ik},$$

fermitools python Interface

- The standalone fermitools implement a simple likelihood analysis:
 - Binned or unbinned data
 - Fits a single data "component",
 - Single region
 - Single event class
 - Fitting is based on spatial templates, re-localizing sources or changing morphologies is not generally supported
 - Optimize the model provided, user intervention is required for further optimization
- Python interface into the underlying libraries allow user to avoid these limitations

fermipy Analysis Package

- Written by Matthew Wood inspired by the previous pygamma meeting
- GitHub package
 - https://github.com/fermiPy/fermipy
- Available in pip and conda (latest release: fermipy-0.17.4)
- Increasingly becoming standard for high-level Fermi-LAT analysis
 - 60k+ conda downloads (including download for automatic testing)
 - Used in Fermi summer school run by the FSSC
- Several example jupyter notebooks available
 - https://github.com/fermiPy/fermipy-extra/blob/master/notebooks

Fermipy Implements Region-Based Analysis

- Key concept is that fermipy analysis is "region" based:
 - fermipy provides a set of tools to model the gamma-ray emission in a region of interest (ROI)
- Produces standard analysis products
- Includes "context", such as adding sources from a catalog
- Includes hooks to manipulate sources:
 - add & remove sources from the model
 - change model and model parameters of any source
 - fix and free model parameters
- Includes "meta" tools, such as optimizing a region by iteratively fitting the region with different sources fixed and freed

fermipy Analysis Example

```
from fermipy.gtanalysis import GTAnalysis
gta = GTAnalysis('config.yaml')
gta.setup()
gta.write_roi('initial')
gta.optimize()
gta.write_roi('baseline', make_plots=True)
```

Some notes:

- 'config.yaml' is a 25 line (or more) yaml configuration file, specifying dataset, region of interest, binning parameters, and data analysis options
- gta.write_roi() writes a snapshot of the analysis region, containing everything needed to reproduce exactly the model of the region

Baseline Analysis is Already a Major Task

- The six line script on the previous slide:
 - Constructs all the data products need to analysis the region of interest (ROI)
 - Builds a model of the ROI, including catalog sources and diffuse emission models
 - Iteratively optimizes the ROI model
 - Makes a set of diagnostic plots

Diagnostics: Projected Data / Model Comparisons

- Fermipy can also produce a number of standard diagnostic plots
 - E.g., X-Y projections of counts in region with data / model comparison
 - Easy to extend or customize, e.g., adding curves for particular sources, or restricting to specific energy bands

Diagnostics: Counts Spectra Modeling

- Contributions to observed counts from all sources in the ROI model
- Plots are configurable, can select sub-regions of ROI

Spectral Energy Density

• Also, fermipy makes it very simple to fit the spectra of individual sources gta.sed('3FGL J1555.7+1111', make plots=True)

"Castro" Likelihood Curves

Spectral Fit, including bin-by-bin fluxes, likelihoods and broadband fit envelope

- Complete likelihood curve is much more useful that error bars / upper limits, so we developed a format to store them:
- https://gamma-astro-data-formats.readthedocs.io/en/latest/spectra/binned_likelihoods/index.html

Source Finding, Test Statistic Maps

Source finding
Algorithm builds
test statistic
(TS) map for region
and identifies peaks

$$TS = 2\frac{\mathcal{L}_s}{\mathcal{L}_0}$$

Note: one always builds a TS map with respect a baseline model of a region that is treated as the "null hypothesis"

Also, very simple to find new sources in the region:

new_srcs = gta.find_sources(sqrt_ts threshold=5,min separation=0.2)

Localizing Sources

- Also, very simple to re-localize any source:
- gta.lcoalize(srcName)
- Two-step process:
 - Wider "fast" TS-map with background fixed, approximate PSF image
 - Zoomed "full" TS-map with background free, exact PSF image

Source Extension

 fermipy can fit source extension by doing profile likelihood scan of extension parameter

gta.extension(srcName)

fermipy analysis pipelines

- Fermi-LAT experience has shown us that users end up producing fairly involved data analysis pipelines
 - Analysis complexity expands to fill available resources
- fermipy includes simple workflow tools implemented in fermipy.jobs, used to implement:
 - Stacked Dark Matter searches (dmpipe)
 - All-sky diffuse emission fitting (fermipy.diffuse)
- Example jupyter notebook using dmpipe:
 - https://github.com/fermiPy/fermipy-extra/blob/master/notebooks/dSphs.ipynb

Rapidly Growing Number of Targets (eg., dSphs)

- Advent of deep, digital survey era in optical astronomy has led to the discovery of numerous new Milky Way-satellite dwarf galaxies
- LSST & other surveys will continue to find new dwarf galaxies after the Fermi mission

Stacking Analysis Requires a "Stacking" Variable

- Stacking (i.e., analysis of multiple targets) analyses common in γ-ray astronomy
- Key to proper treatment of stacking, creating a model the exactly what the stacked targets have in common, e.g.,:
 - For DM searches, the interaction cross section <\sigmav>
 - For radio galaxies, radio-gamma flux correlation coefficient

Example: DM Analysis Pipeline

dmpipe-collect-stacked-limits

dmpipe-stack-likelihood

Joint Fitting Results from dSphs

 Stacked analysis of a "nominal sample" of confirmed dSphs is well within the expectation band for null hypothesis and is in mild tension with DM interpretations of GC excess

Standard Control Simulations

- A significant (dominant?) part of analysis is performing standard control studies
- We have implemented standardized version of these in *dmpipe*
 - Fast simulations, throw Poisson noise on model map of ROI

Summary

- fermitools provide libraries and standalone applications to perform Fermi-LAT data analysis
- Many users have scripted fermitools to implement high-level analysis
- fermipy provides a region-based analysis framework
 - Functionality to optimize model of region in a variety of ways
- fermipy.jobs provides pipeline-building tools for users
 - fermipy.diffuse and dmpipe implement example analysis pipelines

RESOURCES

Package References

- fermitools (formerly ScienceTools): Fermi-LAT data analysis
 - https://github.com/fermi-lat/Fermitools-conda
- fermipy: high level binned likelihood analysis of Fermi-LAT data
 - https://fermipy.readthedocs.io/
 - fermipy.jobs: tools to build analysis pipelines
 - fermipy.diffuse: tools for all-sky diffuse analysis
- dmpipe: DM analysis pipeline
 - https://dmpipe.readthedocs.io/

fermitools package details:

- Installation:
 - conda create -n fermi -c conda-forge/label/cf201901 -c fermi fermitools
- Documentation: https://fermi.gsfc.nasa.gov/ssc/data/analysis/software
- Code repo: https://github.com/fermi-lat
- Maintainers:
 - Fermi Science Support Center
- Current version: fermitools 1.0.1
- Dependencies:
 - numpy, xml, cfitsio, healpix, astropy, wcslib, clhep, root ...

fermipy package details:

- Installation:
 - pip install fermipy
 - conda install fermipy
- Documentation: https://fermipy.readthedocs.io/
- Code repo: https://github.com/fermiPy/fermipy
- Python Package Index: https://pypi.org/project/fermipy/
- Developers:
 - Matthew Wood, EC, many others...
- Current version: fermipy 0.17.4
- Dependencies:
 - numpy, healpy, astropy, gammapy, fermitools

dmpipe package details:

- Installation:
 - pip install dmpipe
- Documentation: https://dmpipe.readthedocs.io/
- Code repo: https://github.com/fermiPy/dmpipe
- Python Package Index: https://pypi.org/project/dmpipe/
- Developers:
 - EC, Mattia di Mauro
- Current version: dmpipe 0.1.2
- Dependencies:
 - numpy, astropy, fermipy, dmsky

DM Pipeline Intermediate Data Products

- Target J factor maps
- Pre-prepared events, spacecraft and livetime cube files
- Target ROI analysis inputs
 - Counts maps, exposure maps, "source map" templates
 - Model definitions
- Target ROI baseline analysis
 - fermipy Region of interest "snapshots"
- Target SED analysis
 - fermipy SED likelihood FITS files, L(E, F_E)
 - https://gamma-astro-data-formats.readthedocs.io/en/latest/spectra/
- DM Likelihoods, L(m_γ, <σv>)
 - DM likelihood "castro" files, modified version of SED FITS files
- Simulation summary data
 - Expectation bands for limits and maximum likelihood estimate