
Porting legacy software packages
to the Conda Package Manager

Joe Asercion, Fermi Science Support Center, NASA/GSFC

Previous Process

FSSC

Previous Process

FSSC
Release Tag

Previous Process

FSSC

Code Ingestion
Release Tag

Previous Process

FSSC

Code Ingestion

Builds on

supported systems

Release Tag

Previous Process

FSSC

Code Ingestion

Builds on

supported systems

Testing

Release Tag

Push back

changes

Previous Process

FSSC

Code Ingestion

Builds on

supported systems

Testing

Release Tag

Push back

changes

Packaging

Previous Process

FSSC

Code Ingestion

Builds on

supported systems

Testing

Release Tag

Push back

changes

Packaging

Release

All binaries and

source made

available on the

FSSC’s website

Previous Process

• Very long development cycle

• Many bottlenecks

• Increase in build instability

• Duplication of effort

• Large download size

• Difficult dependency
management

• Frequent library collision
errors with user machines

• Large number of individual
binaries to support

Issues

Goals of Process Overhaul

• Continuous Integration/Release Model

• Faster report/patch release cycle

• Increased stability in the long term

• Increased Automation

• Increase process efficiency

• Increased Process Transparency

• Improved user experience

• Better dependency management

Conda Package Manager

• Languages: Python, Ruby, R, C/C++, Lua, Scala, Java, JavaScript

• Combinable with industry standard CI systems

• Developed and maintained by Anaconda (a.k.a. Continuum
Analytics)

• Variety of channels hosting downloadable packages

Packaging with Conda

Conda Build

Meta.yaml

• Contains metadata of the package to
be build

• Contains metadata needed for build
• Dependencies, system requirements, etc

• Allows for staged environment
specificity

• Large amount of customization
available

• Jinja2 macros

Build.sh/bld.bat

• Executed during the build stage

• Written like standard build script

• Ideally minimalist

• Any customization not handled by
meta.yaml can be implemented here.

Meta.yaml
Custom Variables

Package versioning metadata

Source code handling

Build process parameters

Build stage dependencies

Host stage dependencies

Run stage

dependencies

Test handling

Defining Package Metadata

Package
Descriptive metadata for the
package. Name and version string
must be included.

Source
Conda can pull from multiple
sources natively.

• url

• Local path

• Git

• Hg

• Svn

Conda can handle aggregate builds
from multiple source locations

Build
Specifies metadata which describes
the build itself including build
targets

Build number is used to specify new
builds of the same version

Only mandatory sections: package/name & package version

Conda Build Environments

Build

• Meant for all low-level build
system libraries needed for the
compilation

• Anything that provides ‘sysroot’
files

• These packages need to be able
to run on the build machine but
be capable of outputting builds
for a target platform

Host

• Host was added to represent
packages “that need to be
specific to the target platform
when the target…is not
necessarily the same as the
native build platform.”

• Fermi lists the vast majority of
its dependencies here

• ’Host’ and ‘Build’ prefixes are
almost always separate except
in a few specific cases

Run

• Packages required to run the
package

• Installed automatically when the
built package is installed

• Stored as metadata in the binary
which is distributed via the
Anaconda Cloud

• Good practice is to pin required
versioning information to the
package.

• As of Conda-Build 3 you can
augment packages in the build and
host sections with the
’run_exports’ header to negate
the need for this section. (Weak
vs. Strong)

Conda Build Environments

Build

• Meant for all low-level build
system libraries needed for the
compilation

• Anything that provides ‘sysroot’
files

• These packages need to be able
to run on the build machine but
be capable of outputting builds
for a target platform

Host

• Host was added to represent
packages “that need to be
specific to the target platform
when the target…is not
necessarily the same as the
native build platform.”

• Fermi lists the vast majority of
its dependencies here

• ’Host’ and ‘Build’ prefixes are
almost always separate except
in a few specific cases

Run

• Packages required to run the
package

• Installed automatically when the
built package is installed

• Stored as metadata in the binary
which is distributed via the
Anaconda Cloud

• Good practice is to pin required
versioning information to the
package.

• As of Conda-Build 3 you can
augment packages in the build and
host sections with the
’run_exports’ header to negate
the need for this section. (Weak
vs. Strong)

Build Machine

Conda Build Environments

Build

• Meant for all low-level build
system libraries needed for the
compilation

• Anything that provides ‘sysroot’
files

• These packages need to be able
to run on the build machine but
be capable of outputting builds
for a target platform

Host

• Host was added to represent
packages “that need to be
specific to the target platform
when the target…is not
necessarily the same as the
native build platform.”

• Fermi lists the vast majority of
its dependencies here

• ’Host’ and ‘Build’ prefixes are
almost always separate except
in a few specific cases

Run

• Packages required to run the
package

• Installed automatically when the
built package is installed

• Stored as metadata in the binary
which is distributed via the
Anaconda Cloud

• Good practice is to pin required
versioning information to the
package.

• As of Conda-Build 3 you can
augment packages in the build and
host sections with the
’run_exports’ header to negate
the need for this section. (Weak
vs. Strong)

Build Machine
Target Machine Target Machine

Conda Macros

Conda build helpfully provides a
number of Jinja2 functions which help
automate and generalize the build
process.

Common Jinja2 use cases

• Automatic compiler selection/setup

• Pinning expressions

• Templating

Conda Macros

Conda build helpfully provides a
number of Jinja2 functions which help
automate and generalize the build
process.

Common Jinja2 use cases

• Automatic compiler selection/setup

• Pinning expressions

• Templating

Custom Variable

Setting

Variable Calling

Conda Macros

Conda build helpfully provides a
number of Jinja2 functions which help
automate and generalize the build
process.

Common Jinja2 use cases

• Automatic compiler selection/setup

• Pinning expressions

• Templating

Custom Variable

Setting

Variable Calling

Shell

Environment

reference

Conda Macros

Conda build helpfully provides a
number of Jinja2 functions which help
automate and generalize the build
process.

Common Jinja2 use cases

• Automatic compiler selection/setup

• Pinning expressions

• Templating

Custom Variable

Setting

Variable Calling

Shell

Environment

reference

Conda Compiler

function

Conda Compilers

As of Anaconda 5 Conda provides a
set of compilers which are
recommended for use in build
recipes.

Use of the Anaconda compilers
helps make the recipe more
agnostic with regards to the host
machine.

Linux macOS

gcc_liunx_64

g++_linux_64

gfortran_linux_64

clang_liunx_64

clangxx_linux_64

gfortran_linux_64

• Explicitly built for cross-

compilation

• Customizable

Preprocessing Selectors

Preprocessing selectors can be used to
specify different meta-data cases for
different build environments. This is
most commonly used to specify different
platforms/architectures as
build/dependency targets.

Almost all of the selector variables are
Booleans and allow for logical statements
to be passed in preprocessing. However,
good practice is to employ comparison
operators over specific selector variables.

Selectors always follow a target in the
format ‘TARGET # [SELECTOR]’

Build.sh

• Default: Bash Script (.bat on

Windows)

• Executed in a special “Conda

Build” environment

• Custom/explicit

environmental variables need

to be defined via meta.yaml

• Needed compiler flags are

specified here

• Can use any installed

scriptable build system

(make, sCons, etc.)

Build Environment Variables

• Specialized environmental

variables defined in the

Conda Build process.

• Some are inherited and some

are defined by Conda

PREFIX – Path to the build

directory. Used by all systems

• MacOS/Windows have unique

variables

Distribution

Anaconda Cloud is the primary distribution
mechanism for the Conda Package
manager. Organizations can have
dedicated channels to distribute software
built and packaged using Conda Build.

Hosting for public projects are free.
Private plans are available for a fee.

Fermi has its own organization (the Fermi
Channel) which distributes software which
is developed and maintained directly by
the Fermi Science Support Center

Conda-Forge is another such organization.

Anaconda Channels

Channels organize packages by the user
or group of users (Organization) that
uploaded them.

Label help differentiate different
different packages hosted in a channel,
effectively creating ‘sub-channels’.

Label checking in Conda is strict.
Including a label tag in a conda install
or update command will search for
matching packages with that label
alone.

Conda Forge

Conda Forge

Community Driven

• Est 2016

• Conda Forge seeks to expand
upon the default packages
uploaded by Anaconda Inc.

• Packages are maintained by
their uploaders in accordance
with Conda Forge build
standards

• Core Conda Forge developers
work to maintain stability of
legacy code

Standardized Build
Process

• Conda Forge uses a Github
integrated CI system

• Linux -> Circle CI/Azure

• MacOS -> Travis CI/Azure

Package
Centralization

• All feedstocks hosted on github
in the conda-forge organization

• Compiled packages hosted on
the Conda-Forge Anaconda
cloud channel

• 6500+ packages currently
availible

Conda Forge

Community Driven

• Est 2016

• Conda Forge seeks to expand
upon the default packages
uploaded by Anaconda Inc.

• Packages are maintained by
their uploaders in accordance
with Conda Forge build
standards

• Core Conda Forge developers
work to maintain stability of
legacy code

Standardized Build
Process

• Conda Forge uses a Github
integrated CI system

• Linux -> Circle CI/Azure

• MacOS -> Travis CI/Azure

Package
Centralization

• All feedstocks hosted on github
in the conda-forge organization

• Compiled packages hosted on
the Conda-Forge Anaconda
cloud channel

• 6500+ packages currently
available

This is becoming a problem!

Managed Dependencies

Fermi Channel

• Ape

• Fermitools Data

• Support Packages
• Fermi Repoman

• Fermitools Test Scripts

• Fermitools Test Scripts Data

Conda Forge

• Root5

• F2c

• Clhep

• Healpix_cxx

The Fermi Development Pipeline

Development Process Overview

Development

Cycle

Continuous

Integration

& Validation

Development

Commit

Push to Branch

Pull Request

Jenkins

Webhooks

Docker

Container

Builds

Unit

Testing

Alpha

Packaging and

Upload

Development Process Overview

Development

Cycle

Continuous

Integration

& Validation

Pre-release

Beta

Generation

Development

Commit

Push to Branch

Pull Request

Jenkins

Webhooks

Docker

Container

Builds

Unit

Testing

Alpha

Packaging and

Upload

Linux Alpha

Promotion

MacOS Beta

Build/Testing

MacOS Beta

Packaging/

Upload

Development Process Overview

Development

Cycle

Continuous

Integration

& Validation

Pre-release

Beta

Generation

Unit/Thread

/HITL

Validation

Development

Commit

Push to Branch

Pull Request

Jenkins

Webhooks

Docker

Container

Builds

Unit

Testing

Alpha

Packaging and

Upload

Linux Alpha

Promotion

MacOS Beta

Build/Testing

MacOS Beta

Packaging/

Upload

Scripted

Unit

Testing

HITL

Testing

Thread

Testing

Development Process Overview

Development

Cycle

Continuous

Integration

& Validation

Pre-release

Beta

Generation

Unit/Thread

/HITL

Validation

Development

Commit

Push to Branch

Pull Request

Jenkins

Webhooks

Docker

Container

Builds

Unit

Testing

Alpha

Packaging and

Upload

Linux Alpha

Promotion

MacOS Beta

Build/Testing

MacOS Beta

Packaging/

Upload

Scripted

Unit

Testing

HITL

Testing

Thread

Testing

Software

Release

Documentation

Update

Promote

Beta to

Main

Update

open

Github

issues

Announce

Release

CI System

Jenkins

Linux Docker

Container

MacOS Build

Environment

Anaconda

Cloud

GitHub Pull

Request

Pull Request

Initiated

CI Repo Pull

CI System

Linux Docker Container

• Customized Conda-Forge
Docker container

• Based on Centos 6

• Pulled, configured, and
launched on the fly during the
CI cycle

MacOS Build System

• Currently physical High Sierra
system at Goddard

• Exploring Mac VM/Azure
Pipeline for incorporation into
Jenkins CI pipeline

GitHub Integration

GitHub

Continuous Integration

Configuration

Conda Build Recipes

Tool Source Code

Primary User

Documentation

Issue Tracking

Meta Packages

Fermitools-Conda

• Contains all necessary
Conda recipe files

• Hosts Fermitools wiki

• Primary Github
documentation landing
page

CI

• Contains all Jenkins CI
scripts

• Webhooks script

Sciencetools (meta)

• Contains list of
constituent packages for
the overarching
‘ScienceTools’
(Fermitools) checkout

• Test list

Organization Package Management

Fermi Repoman

Custom build of the repoman
collection of utilities. Allows
checkouts of the entirety of the
Fermitools source code. Also
has limited tagging capabilities.

Alternative: Git Submodules

Fermi Model Handling

• Packaged via Conda Build for ‘NoArch’ target

• Diffuse models and other outRef files backed up on github

• Galactic Diffuse Model stored in Git LFS
• Not an ideal solution

• Easier to deal with copy on local storage

Large File Storage

Git LFS

• Free Tier Available

• 1 GB storage

• 1 GB Bandwidth/Month

Anaconda Cloud

• Free (Public)

• 3 GB storage space

• Files need to packaged by
conda

Versioning and Tagging

• Follows standard xx.xx.xx tagging format

• <Version>.<Revision>.<Patch>

• On release all packages are tagged with a release tag in the
format ‘Fermitools-xx.xx.xx’

• Allows release traceability via GitHub

Next Steps

• Incorporate Azure MacOS build environment into Jenkins pipeline

• Further modularize the Fermitools subpackages

• Increase test efficiency

• Python3/C++11 updates

• Dependency Pinning review

Thanks!

