Full G4 Detector Simulation

CHENGDONG FU (IHEP)
ON THE BEHALF OF SOFTWARE GROUP
WORKSHOP ON CEPC, EU EDITION 2019
2019-04-16, OXFORD
Outline

- Status
- Software for full simulation
- Detector geometry implement
- Discussion and Conclusion
Status

- Full simulation is based on Geant4 fully

- History
 - pre-CDR → CDR → TDR → Running
 - Mokka → MokkaC → MokkaC
 \[→ DD4hep → DD4hep \]
 \[→ Another? \]

- MokkaC (a developing version of Mokka at CepC)
 - Updating for TDR as requirement of detector optimization

- DD4hep
 - Developing the geometries
 - Standalone application
 - Implemented into new software framework (Tao Lin’s talk)

Standalone simulation

Generator

- particle gun, gps, stdhep, hepevt, hepmc, pairs, slcio

MokkaC

- slcio+Gear

Reconstruction: Marlin

Detector geometry manager

Database/steering files

xml files
Mokka Interface to Geant4

![Diagram of Mokka Interface to Geant4]
DD4hep Toolkit

- From DD4hep manual
MokkaC VS DD4hep

Geometry manager
- MokkaC: general detector construction with parameters from database or steering file, more readable for Geant4 experts
- DD4hep: organized by models with parameters from xml files, more intuitive for normal users

Physics List
- Both support default Geant4 physics lists: QGSP_BERT, FTFP_BERT, …
- Both easy to change the range cut values

Geant4 version
- 9.6.p02 VS 10.04.p02

Output
- MokkaC → slcio
- DD4hep → slcio/root, support alignment

Development at CepC
- MokkaC: experimental, easy to add new support, such as new generators
- DD4hep: beginning and depending on its development
MC Truth in Simulation

- Use MCParticle class of LCIO
 - Generator status to know stable/decayed particle in generator
 - Simulation status to know whether created in Geant4, back scatter, decayed in tracker, etc.

- Save secondary particles in tracker region, not in calorimeter
 - Cause an issue that those produced in LumiCal also are saved, fix ongoing
Hits and Digitization

- **SimTrackerHit**
 - Cell ID
 - Position
 - Deposited energy
 - Time
 - Path length
 - Link to MCParticle that cause the hit, one hit ↔ one particle

- **SimCalorimeterHit**
 - Cell ID
 - Position
 - Deposited energy
 - Link to MCParticles that cause the hit, one hit ↔ multi particle

- **Digitization of positions**
 - Tracker hit: simple smear according to resolution, completion ongoing
 - processed in Marlin framework before reconstruction
 - Calorimeter hit: cell center

- **Digitization of energy**
 - Not yet
Geometries

- **In Mokka**
 - Driver: general Geant4 detector construction
 - Supper driver: building a temporary database needed by the corresponding driver, based on the parameters from Mokka’s geometry environment (database or steering file), way to change parameters

- **In CDR baseline**
 - Single driver:
 - MDI, SIT/SET, FTD, TPC, Ecal, Hcal, Yoke
 - Driver + supper driver:
 - VXD, Coil, LumiCal

- **In DD4hep**
 - Detector constructors
 - compact description from xml
 - Calculate parameter from others
Vertex Detector

- three double-layers
 - support layer thickness: 0.94 mm SiC foam, 0.05 flex cable, 0.01 metal traces
 - 0.05 mm silicon
 - to TDR
 - 1 mm carbon fiber support, revisable
 - Wider ladder to overlap

- DD4hep can also change them
 - layers_common_parameters

  ```
  flex_cable_material="G4_KAPTON"
  flex_cable_thickness="0.05*mm"
  foam_spacer_material="SiC_foam"
  foam_spacer_thickness="0.94*mm"
  metal_traces_material="G4_Al"
  metal_traces_thickness="0.01*mm"
  ```

- New material in database

Layer parameters etc.
Tracker

- **SIT/SET**
 - SIT: two double-layer strip layers
 - SET: one double-layer strip layers
 - to TDR: possible to add layers through database (MokkaC) or xml (DD4hep)

- **TPC**
 - 222 pad rows, adjusted by radius and pad height, \(N = \frac{\text{Router}_{s-Rinner}_{s}}{\text{Pad Height}} \)

- **FTD**
 - two pixel disks
 - three double-layer strip disks
Ecal option

- Optimized from CEPC_v1 to CEPC_v4, cell size from 5 mm to 10 mm
- 20 layers + 10 layers (optional)
 - 0.5 mm silicon (optional)
 - 2.1 mm (4.2 mm) tungsten (optional)
- Silicon/scintillator as sensitive layer

```c
("Ecal_Aliveolus_Air_Gap");
("Ecal_Slab_shielding");
("Ecal_Slab_copper_thickness");
("Ecal_Slab_PCB_thickness");
("Ecal_Slab_glue_gap");
("Ecal_Slab_ground_thickness");
("Ecal_fiber_thickness");
("Ecal_Si_thickness");
("Ecal_guard_ring_size");
("Ecal_radiator_material");
("Ecal_radiator_layers_set1_thickness");
("Ecal_radiator_layers_set2_thickness");
("Ecal_radiator_layers_set3_thickness"); etc.
```

Default case: 8
Hcal

- Optimized from pre-CDR to CDR, from 48 to 40 layers
 - 6.73 mm RPC chamber
 - 20 mm stainless steel (tungsten)
 - cell size: 10 mm

- optional scintillator readout

Figure 10: The hits in Hcal for 100,000 single muon particles.
Yoke (muon detector) option

- Pre-CDR
 - yoke05 (12 iron layers, 13 RPCs for barrel and 12 RPCs for endcap)

- CDR (driver yoke06 in MokkaC, not official Mokka)
 - /Mokka/init/globalModelParameter YokeUserLayer 1
 - /Mokka/init/globalModelParameter YokeGapThickness 25,40,40,40,40,40,40,40,40,40,40,40
 - /Mokka/init/globalModelParameter YokeIronThickness 80,80,120,120,160,160,200,200,240,540,540
Simple Calorimeter

- Quick geometry implement to simulation (SiCal)
 - Layer: tube
 - SiCalLayerStructure input (chain)
 - (W:2.8, Si:0.5, PCB:2)*30; (W:20, Scintillator:3, PCB:2)*40
 - EcalMaterial
 - Si, BGO, LGO,…
 - HcalMaterial
 - Scintillator, THGEM1, THGEM2, RPC1, RPC2,…

- DD4hep has defined similar detector module
 - CylindricalBarrelCalorimeter
 - CylindricalEndcapCalorimeter
Other detectors

- LumiCal
- ETD (not included in CDR baseline)
- Laser Calibration System of TPC (not included in CDR baseline)
Full Silicon-based Tracker

- Use sub-detector driver
 - /Mokka/init/EditGeometry/newSubDetector SiTracker01 100

- Options
 - ladder/disk number and positions
 - Sensor/support thickness
 - Support material
IDEA Concept

- IDEA group has standalone simulation tool, to implement into CepC software
- Approximated, Geant4 can not work because of too many fiber
- Update Geant4 version for MokkaC is in plan

Simplified method

- Add fiber...
 - Ignore cut
 - 2500 length of fibers: 1mm, 2mm, ..., 2500mm
 - >2500, more memory and less distance
 - <2500, less memory and more distance

This method need only 2500 volumes of class memory.

Cherenkov fiber

Scintillator fiber

Hyunsuk's

Filled with copper

A little distance < 1mm
Discussion and Conclusion

- Two toys for full simulation to TDR

- Open questions
 - CPU time ↔ Physics list and range cut ↔ Physical results
 - What will be optimized detector

- Ongoing
 - Some fixes
 - Geometry implement for updated detector
 - Complete comparison between MokkaC and DD4hep

- Plan
 - Update Geant4 version
 - Implement DD4hep into new software framework
Thank you!
Material Budget Tools

- Budget plugin in MokkaC
 - Use geantino to scan its past material

- Executable program to scan
 - materialScan CepC_v4.xml 0 0 0 183 0 0
Simple Validation for DD4hep

- As first step, check hits distribution of sub-detectors
- Sample
 - 2000 single electrons, 10GeV
dE/dx

![dE/dx in VXD silicon (MeV/mm)](image1)

![dE/dx in TPC gas (MeV/mm)](image2)