The CMS
High Granularity
Calorimeter Upgrade

Vito Palladino on behalf of the CMS Collaboration
CepC 15-17 April 2019
Overview

- HL-LHC step-up in instantaneous luminosity: from $\sim 2 \times 10^{34}$ to $5-7 \times 10^{34}$ cm$^{-2}$ s$^{-1}$
- Average pileup (PU) increases from ~ 50 up to 200 interactions per bunch crossing.
- Integrated radiation dose over the lifespan of some detectors increases by one order of magnitude.
- New design and/or electronics for sub-detectors needed to meet the new maximum L1 trigger rate (from 100 to 750 kHz) and latency (from 4 to 12.5 μs).
HGCAL Design

- The radiation dose in the current endcap calorimeters will exceed the design limit.
- The increase in PU will stress the background rejection performance.
- The solution to those issues has been chosen to be the new High Granular Calorimeter.

Fluence 10^{16} n$_{eq}$ cm$^{-2}$

Radiation Dose 10^6 Gy
HGCAL Design

- Radiation tolerance:
 - Si-only planes in the high radiation region,
 - Scint+SiPM in the low radiation region ➔
 hybrid planes in downstream half of HGCAL,
 - Active cooling at -30 °C (~100kW/endcap).
- Lateral shower confinement: dense calorimeter (CuW+Cu+Pb absorber).
- Adjacent shower separation: fine lateral granularity (two cell sizes 0.52 and 1.18 cm²).
- PU rejection, PID and energy resolution: fine longitudinal granularity (52 layers).
- PU energy rejection: good time resolution (25 ps).
HGCAL Design

- Calorimeter Endcap Electromagnetic (CE-E):
 - 28 layers (Si-only)
 - CuW+Cu+Pb absorber
 - $25.4 \times \lambda_0$
 - $1.5 \lambda_0$

- Calorimeter Endcap Hadronic (CE-H):
 - 24 layers (Si-only + Si-Scint)
 - Stainless Steel absorber
 - $8.9 \lambda_0$
HGCAL Design

- Calorimeter Endcap Electromagnetic (CE-E):
 - 28 layers (Si-only)
 - CuW+Cu+Pb absorber
 - $25.4 \times X_0$
 - $1.5 \lambda_0$

- Calorimeter Endcap Hadronic (CE-H):
 - 24 layers (Si-only + Si-Scint)
 - Stainless Steel absorber
 - $8.9 \lambda_0$

<table>
<thead>
<tr>
<th>TDR 2018 (2 x EC)</th>
<th>CE-E (Si)</th>
<th>CE-H (Si)</th>
<th>CE-H (Scint)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (m²)</td>
<td>368</td>
<td>215</td>
<td>487</td>
</tr>
<tr>
<td>Channels (k)</td>
<td>3916</td>
<td>1939</td>
<td>389</td>
</tr>
<tr>
<td>Modules (Si/Tileboards)</td>
<td>16008</td>
<td>8868</td>
<td>3960</td>
</tr>
<tr>
<td>Partial Modules</td>
<td>1008</td>
<td>1452</td>
<td>-</td>
</tr>
<tr>
<td>Weight (t)</td>
<td>23</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Si-only Planes</td>
<td>28</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Si-Scint Mixed Planes</td>
<td>-</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
HGCAL Design

- Calorimeter Endcap Electromagnetic (CE-E):
 - 28 layers (Si-only)
 - CuW+Cu+Pb absorber
 - 25.4 λ_0
 - 1.5 λ_0

- Calorimeter Endcap Hadronic (CE-H):
 - 24 layers (Si-only + Si-Scint)
 - Stainless Steel absorber
 - 8.9 λ_0

<table>
<thead>
<tr>
<th>TDR 2018 (2 x EC)</th>
<th>CE-E (Si)</th>
<th>CE-H (Si)</th>
<th>CE-H (Scint)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (m2)</td>
<td>368</td>
<td>215</td>
<td>487</td>
</tr>
<tr>
<td>Channels (k)</td>
<td>3916</td>
<td>1939</td>
<td>389</td>
</tr>
<tr>
<td>Modules (Si/Tileboards)</td>
<td>16008</td>
<td>8868</td>
<td>3960</td>
</tr>
<tr>
<td>Partial Modules</td>
<td>1008</td>
<td>1452</td>
<td>-</td>
</tr>
<tr>
<td>Weight (t)</td>
<td>23</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Si-only Planes</td>
<td>28</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Si-Scint Mixed Planes</td>
<td>-</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
HGCAL Design

- **Calorimeter Endcap Electromagnetic (CE-E):**
 - 28 layers (Si-only)
 - CuW+Cu+Pb absorber
 - $25.4 \lambda_0$
 - $1.5 \lambda_0$

- **Calorimeter Endcap Hadronic (CE-H):**
 - 24 layers (Si-only + Si-Scint)
 - Stainless Steel absorber
 - $8.9 \lambda_0$

<table>
<thead>
<tr>
<th>TDR 2018 (2 x EC)</th>
<th>CE-E (Si)</th>
<th>CE-H (Si)</th>
<th>CE-H (Scint)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (m²)</td>
<td>368</td>
<td>215</td>
<td>487</td>
</tr>
<tr>
<td>Channels (k)</td>
<td>3916</td>
<td>1939</td>
<td>389</td>
</tr>
<tr>
<td>Modules (Si/Tileboards)</td>
<td>16008</td>
<td>8868</td>
<td>3960</td>
</tr>
<tr>
<td>Partial Modules</td>
<td>1008</td>
<td>1452</td>
<td>-</td>
</tr>
<tr>
<td>Weight (t)</td>
<td>23</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Si-only Planes</td>
<td>28</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Si-Scint Mixed Planes</td>
<td>-</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
HGCAL Design

- **Calorimeter Endcap Electromagnetic (CE-E):**
 - 28 layers (Si-only)
 - CuW+Cu+Pb absorber
 - 25.4 λ_0
 - 1.5 λ_0

- **Calorimeter Endcap Hadronic (CE-H):**
 - 24 layers (Si-only + Si-Scint)
 - Stainless Steel absorber
 - 8.9 λ_0

<table>
<thead>
<tr>
<th>TDR 2018 (2 x EC)</th>
<th>CE-E (Si)</th>
<th>CE-H (Si)</th>
<th>CE-H (Scint)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (m²)</td>
<td>368</td>
<td>215</td>
<td>487</td>
</tr>
<tr>
<td>Channels (k)</td>
<td>3916</td>
<td>1939</td>
<td>389</td>
</tr>
<tr>
<td>Modules (Si/Tileboards)</td>
<td>16008</td>
<td>8868</td>
<td>3960</td>
</tr>
<tr>
<td>Partial Modules</td>
<td>1008</td>
<td>1452</td>
<td>-</td>
</tr>
<tr>
<td>Weight (t)</td>
<td>23</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Si-only Planes</td>
<td>28</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Si-Scint Mixed Planes</td>
<td>-</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Silicon Modules

- Basic hexagonal blocks from 8” diameter silicon wafers.
- Sensor’s thickness and active cell size are η dependent: radiation damage minimization, better shower separation in the high occupancy region.

PCB (hexaboard)
Sensor
Kapton-Au bias plane
Baseplate ($^{\text{Cu/W}}_{\text{PCB}}$ for CE-E, $^{\text{Cu}}_{\text{PCB}}$ for CE-H)

192 cells 1.18 cm2
432 cells 0.52 cm2

Colored regions: coarse granularity for trigger purposes.
Silicon Modules

- Preparation for full scale production undergoing at the Module Assembly Centres:
 - China (Beijing IHEP),
 - India (Mumbai BARC),
 - Taiwan (Chungli NCU/Taipei NTU),
 - USA (Carnegie-Mellon, Texas Tech., UCSB).
 - ~100 modules produced for test beam purposes.

- Sensors wire bonded to PCB through large holes.

- Thermo-mechanical studies are performed in order to ensure robustness during repeated thermal cycles (-30 to +40 °C).
Scintillator Modules

- Plastic scintillator tiles arranged in r-\(\phi\) grid.
- Tile surface varies from 4 to 32 cm\(^2\) (from small to large \(r\)).
- Readout is performed by on-tile SiPM.
- Tiles grouped in tileboards with max dimension of 45\(\times\)41 cm\(^2\).
- Tile Assembly Centres:
 - US (FNAL)
 - Germany (DESY)
On-detector Electronics

- Bunch Crossing synchronous data from hexaboards are sent to concentrator ASICs, mounted on ‘motherboard’ PCB, through up to 36 e-links at 1.28 Gbps.
- ECON-T will select trigger data before transmitting to the Back-End.
- ECON-D will send zero suppressed fine granularity data to DAQ.
- DAQ path sent via lpGBT link at 10.24 Gpbs.
- lpGBT, VTRX+ and SCA are common developments.
Motherboard

- Motherboards will host the ECONs and the transceivers to the off-detector electronics.
- Bandwidth to off-detector electronics is highly cost constrained.
- Up to 4×10 Gbps links to the off-detector electronics:
 - 1 for DAQ
 - Up to 3 for Trigger
- Geometry needs optimization to minimise link count.

Average Bandwidth for data and trigger (in Gbs)
Front End Electronics: HGCROC ASIC

- Two different input stages for Si and Scint.
- Final version of the final HGROC chip expected in early-2021.
- High dynamic range: from 0.2 fC to 10 pC.
- 10-bit ADC + ToT (12-bit TDC).
- ToA:
 - Available for deposits above 10-15 fC,
 - 10-bit TDC, step < 25ps range up to 25 ns,
 - Precision for hit ≤100 ps, and ~30 ps for showers.
- Low power: ≤ 15 mW/channel.
- High radiation environment: up to 2 MGy and a fluence of 10^{16}.
- Technology: CMOS 130 nm.
Front End Electronics: HGCROC

- Two different input stages for Si and Scint.
- Final version of the final HGROC chip expected in early-2021.
- High dynamic range: from 0.2 fC to 10 pC.
- 10-bit ADC + ToT (12-bit TDC).
- ToA:
 - Available for deposits above 10-15 fC,
 - 10-bit TDC, step < 25 ps range up to 25 ns.
 - Precision for hit ≤ 100 ps, and ~30 ps for showers.
- Low power: ≤ 15 mW/channel.
- High radiation environment: up to 2 MGy and a fluence of \(10^{16}\).
- Technology: CMOS 130 nm.
Cassettes

- Detector is divided in 60° sectors.
- **CE-E:**
 - Silicon only cassettes.
 - Absorber included in the cassette.
 - Double sided around the cooling plate.
- **CE-H:**
 - Silicon only planes have similar design as CE-E cassette, differences: single sided, absorber not included, build out of 2×30° sectors.
 - From layer 9 hybrid Si+Scint cassette.
Cooling

- To reduce silicon radiation damage silicon temperature -30°C with 1-3°C gradient.
- Electronics power dissipation main source of heat in the cold volume (~70%), total ~100kW/endcap.
- Scheme based on the AMS cooling system, also adopted by LHCb and current CMS pixel.
- Coolant choice: CO₂
 - Low viscosity ➔ small pipes.
 - High radiation tolerance.
 - Environmentally friendly.
- Baseline:
 - Dual phase CO₂ close-loop.
 - Cooling power 300kW for both endcaps.
 - Minimum design temperature -35°C.
 - Divided in 30° sectors.
Services

- Many different services are required:
 - CO2 cooling.
 - Low-voltage for the electronics.
 - Bias voltages for silicon detectors and SiPM.
 - Optical fibres for data and trigger information.
 - Dry gas system.
 - Detector Control System (DCS).
 - Detector Safety System (DSS).
- Services routed under and adjacent to cooling distribution pipes (purple volume in the top drawing).
- Services exit the cold volume through feedthroughs placed on the back of the HGCAL endcaps.
Off-detector Trigger Electronics

- Two distinct stages based on ‘coarse’ information (trigger cells) from detector available (4 or 9 times the full granularity).
- Baseline:
 - Stage 1: builds and selects 2D clusters, implements Time Multiplex (TMUX),
 - Stage 2: generates the trigger primitives (TP) in forms of 3D clusters.
- ‘Direct 3D’ approach considered:
 - Stage 1: multiplexes data to Stage 2 and implements the TMUX,
 - Stage 2: builds TP using full depth information with no loss of raw information.
Generic ATCA Board: Serenity

- Generic motherboard common to several subsystems.
 - Exchangeable FPGAs on daughterboards: versatile.
 - DAQ and TPG will use different kind of FPGAs ➔ cost reduction and tailored resources.
 - Up to 72 in and 72 out links at 25 Gbps (Xilinx VU7P FPGA).
- Baseline firmware for TPG Stage 1 developed, needs to be ported on target FPGA.
 - Alternative TPG algorithms are under study.
- Clock distribution node: channel-to-channel RMS jitter has been measure to be 2.8 ps (input jitter 1.3 ps).
 - HGCAL clock distribution jitter requirement: <10 ps.
Test Beam

Test beam setup

Energy Resolution (Electromagnetic)

Energy Resolution (Hadronic)
Machine Learning for HGCAL

- In parallel to developing a more conventional reconstruction (structured to allow the possibility to run on GPUs), a machine learning approach is also being investigated.
- Exploiting lateral and longitudinal high granularity.
- Image processing approach.
- Wide spectrum of options:
 - Convolutional Neural Network (NN) for denoising
 - Graph NN Irregular geometry
 - Reconstruction
 - ...

Example of de-noising in HGCAL.
Conclusions

- Physics simulation is teaching us how to exploit the full capability of the High Granularity Calorimeter.

- The HGCAL project is moving fast towards the start of production in 2021.
- Many design choices have been frozen but many more need optimization.
- EDR foreseen for Q1 2021.
Backup
The HGCAL Roadmap

- HGCAL adopted by CMS in 2015.
- First prototype modules produced and tested in 2016.
- Mass construction due to start ~2021.
- Installation foreseen during LS3 (2024-2025), for operation in Run4 (starting in 2026).
Dummy Cassette for Cooling tests

Dummy cassette for heat exchange at FNAL.

- Stainless-steel clad Pb absorber 2.1mm Stainless-steel clad
- PCB motherboard
- ASICs etc. PCB sensor board
- Silicon CuW baseplate
- Cu cooling plate

- Inlet temp -24C, outlet temp -27C
- Pressure difference 1bar
- Cooling plate -24C, ambient -9C
Sensor Thickness

Sensor thickness tuned on the expected neutron fluence after 3 ab⁻¹
Luminosity at CMS

CMS Peak Luminosity Per Day, pp, 2018, $\sqrt{s} = 13$ TeV

Data included from 2018-04-17 10:54 to 2018-10-26 08:23 UTC

Max. inst. lumi.: 21.40 Hz/nb

CMS Preliminary
Time Based PU Discrimination

Before Time cut

After Time cut $\Delta t < 90$ ps

VBF event ($H \rightarrow \gamma\gamma$) with one photon and one jet in the same quadrant.

- Reminder: ToA available only for a deposited charge of ~ 12 fC.
Scintillator Modules

- Plastic scintillator tiles arranged in r-\(\phi\) grid.
- Tile surface varies from 4 to 32 cm\(^2\) (from small to large \(r\)).
- Readout is performed by on-tile SiPM.
- Tiles grouped in tileboards with max dimension of 45×41 cm\(^2\).
Cassette
Test Beam 2018

Configurations:

- **Config1:**
 - 28 layers in EE + 9×7 + 3×1 in FH

- **Config2:**
 - 28 layers in EE + 2×1 + 9×7 in FH

- **Config3:**
 - 8 layers in EE + 12×7 in FH
dowlink @ 2.56 Gb/s
uplink @ 10.24 Gb/s

dowlink @ 2.56 Gb/s
uplink @ 10.24 Gb/s

CLK & Fast Timing
I2C, temp, etc.

CLK, Fast Timing, I2C

HGCROCs