CALICE calorimeters status

I. LAKTINEH
CALICE

CALICE is a collaboration with 59 institutes and 360 people from 4 continents.

Born in 2005 to provide the needed environment to develop a new generation of calorimeters for the new linear e+ e- experiments for which new techniques are proposed: the Particle Flow Algorithms (PFA)

The PFA techniques try to separate the contribution of each of the produced particles in a collision and then use the right sub-detector for the right energy/momentum measurement. This leads to an optimal Jet Energy Resolution (JER) and an optimal reconstruction of the event.
A view of a simulated event in a high granularity detector
A view of a simulated event in a high granularity detector
Going granular

For PFA the finer the better but:

ECAL: X_0, ρ_M (length scale & Moliere Radius)

- in W: $X_0 \sim 3.5$ mm, $\rho_M \sim 9$ mm
- in Fe: $X_0 \sim 18$ mm, $\rho_M \sim 17$ mm

W is better in the ECAL to separate close-by photons and also longitudinal EM/had contributions.

HCAL: length scale $\sim \lambda_I$, but EM sub-showers impose requirements not too much different than in ECAL.

- in W: $\lambda_I \sim 11$ cm
- in Fe: $\lambda_I \sim 17$ cm

However, robust mechanical structure and abundant neutrons production favors Iron.
CALICE technologies

Highly granular calorimeters require enormous number of electronic channels

→ Cost and power consumption issues

PFA calorimeters require full active zones

→ Embedded electronics and integration issues

These challenges are addressed by the CALICE groups for the different proposed technologies. Common issues are addressed in the collaboration
Common readout electronics, common DAQ
<table>
<thead>
<tr>
<th>Year</th>
<th>Physics</th>
<th>Technological</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Si-W</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>AHCAL</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>DHCAL</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Scint-W</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>SDHCAL</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>AHCAL</td>
<td></td>
</tr>
</tbody>
</table>

- SDHCAL was operated also by adding 4 Micromegas layers in 2012
- DHCAL and AHCAL were operated with tungsten absorber in 2012
- Devices to measure timing were added to AHCAL, SDHCAL to study shower time evolution
- FOCAL (MAPS technology) was tested in 2016

Power-pulsed Embedded electronics compactness
Most of the readout electronics and the DAQ system were developed in common within CALICE: first, second and third ROC generations.
SiW ECAL

30 layer (24X₀) silicon-tungsten physics prototype (1x1 cm² cell size) with a deported electronics was built and successfully tested.

Scint-W ECAL

30 layers of tungsten (24X₀) interleaved with of 5x45 mm² scintillator strip with alternating Direction layers (X&Y) → equivalent of 5x5 mm² (SSA) read out by SiPM. A physics prototype with a deported electronics was built and successfully tested.
AHCAL

48 layers of 2 cm stainless steel interleaved with planes made of 3x3 cm2 tiles, read out directly by SiPM and embedded electronics.

A physical prototype of 38 layers of 1 m2, totalizing (5.3 λ_i) accompanied by a tail catcher (6 λ_i) with deported electronics was built and Successfully tested.

SC–based energy reconstruction improves on the resolution

DHCAL

A prototype of 50 layers each made of 3 RPC covering 1 m2 and read out by 1 cm2 pads With embedded electronics was successfully tested.
Technological prototypes
SDHCAL technological prototype

First technological prototype (2011->)

48 layers of 2 cm stainless steel interleaved with planes made of Glass RPC and their embedded readout 2-bit electronics allowing a lateral segmentation of 1 cm²

A technological prototype of 48 fulfilling almost all the ILD requirements of compactness and power consumption was built with a self-supporting mechanical structure. It was successfully tested with:

- Triggerless mode
- Power-pulsing mode
- Self-supporting mechanics
- No-dead zone

The GRPC was also successfully tested in a magnetic field of 3 T using the power-pulsing mode.
Energy reconstruction

The thresholds weight evolution with the total number of hits obtained by minimizing a χ²:

\[\chi^2 = \frac{(E_{\text{beam}} - E_{\text{rec}})^2}{E_{\text{beam}}} \]

\[E_{\text{rec}} = \alpha (N_{\text{tot}}) N_1 + \beta (N_{\text{tot}}) N_2 + \gamma (N_{\text{tot}}) N_3 \]

\(N_1, N_2 \) and \(N_3 \) : exclusive number of hits associated to first, second and third threshold.
\(\alpha, \beta, \gamma \) are quadratic functions of the total number of hits \((N_{\text{tot}}) \)

Third threshold hits are related essentially to the EM part. Their weight increases with energy to compensate for the saturation effect.
New SDHCAL energy Reconstruction

→ In addition to the three thresholds information, density information could be very useful.

\[E_{\text{dens}} = \sum_{i=1}^{3} \sum_{d=1}^{9} \alpha_{id} N_{id} \]

Preliminary
SDHCAL Particle Identification

6 variables discriminating the different species of particles: hadrons, electrons and muons were used to train a BDT on both MC and data and then the BDT was used to keep hadrons (absence of Cerenkov detector in front of SDHCAL).

CALICE-CAN-2019-001

I.Laktineh CEPC Oxford workshop 2019
Arbor-Lyon@SDHCAL
Granularity helps to optimize the connection of hits belonging to the same shower by using first the topology and then the energy information.

ArborPFA algorithm:
It connects first the hits and then the clusters using distance and orientation information, then corrects using tracker information.

![Graphs and diagrams showing efficiency, purity, and ΔE for CALICE SDHCAL Preliminary measurements.](CALICE note CAN054)
SiW Ecal technological stack for beam tests

- Total ~15 layers constructed
- 1024 channels per layer
- Assembly chains in France and Japan
- Beam tests at DESY and CERN since 2016

PCB FEV12
with long adapter card
Wafer thickness
325 µm

PCB FEV13
with small adapter card
Wafer thickness
650 µm
Assembly bench for:
- Fragile Wafer
- Precision of PCB’s ~ 50μm
 ⇒ precision of 100μm on SLAB
- Interconnection

Connections to be handled by industry
- Dedicated Kaptons ×
- Connectors

End of Slab and DAQ R&D
Layer #6, pedestal position (ADC) map for SCA = 0

Beam-test 2015–2018

CERN 2015

“Naked FEV11”

S/N_{ADC} = 16–17
(MIP – ped) / σ_{ped}

Defaults cataract:
- Negative signals
- re-triggers
- ~ high thr.
- sq events / 10

DESY 2018

S/N_{Trig} ~ 11.6 ± 0.7
Trigger → ~1/3 mip (est.)
First comm. of FEV13
S/N_{ADC} ~ 30-40

DESY 2017

7 FEV11

S/N_{ADC} = 16–17
(MIP – ped) / σ_{ped}

Defaults cataract:
- Negative signals
- re-triggers
- ~ high thr.
- sq events / 10

CERN 2018

Masked ch (FEV11) ~ 4 %

S/N_{ADC} = 20.3,
σ_{S/N} = 1.5 (7.4 %)
masked ch. ~ 8 %
Hit eff. ~ 99.95 %
0°, 45° ✓
1T operation ✓
SiW Ecal – Performance at MIP Level I

Objectif: Trigger and readout of small signals, design criterion: $S/N \sim 10:1$

- **Trigger curves**
 - Test signals
 - Cosmics
 - S/N ratio from relative position and width of threshold curves
 - Result here $S/N \sim 12.9 \pm 3.4$
 - Dedicated runs in 2018 TB, Analysis ongoing

- **Charge**
 - Ability to trigger on small signals and to read them out for analysis

Arxiv:1810.05133
SiW Ecal – Performance at MIP Level II

- Trigger thresholds uniform at around $1/2$ MIP
- MIP Detection efficiency $\sim 100\%$

PFA requires:
- a) Access to small signals \rightarrow Low trigger thresholds ✔
- b) Tracking in calorimeters \rightarrow High MIP detection efficiency ✔

Arxiv:1810.05133
highly granular scintillator SiPM-on-tile hadron calorimeter, 3*3 cm² scintillator tiles

- fully integrated design
- front-end electronics, readout
- voltage supply, LED system for monitoring
- no cooling within active layers

- scalable to full detector (~8 million channels)

- **HCAL Base Unit:** 36*36 cm², 144 tiles, 4 ASICs
 - slabs of 6 HBUs
 - up to 3 slabs per layer
AHCAL Technological Prototype

Since 2018

- 38 active layers of 72*72 cm²
- 4 HBUs per module
 - 16 SPIROC 2E readout ASICs, 576 channels of 3*3 cm² tiles
 - in total: 608 ASICs, ~22000 channels
- all modules with surface-mount MPPCs
 - S13360-1325PE
 - 2668 pixels (3x physics prototype (PP))
 - operated at 5V overvoltage
 - 50% less temperature sensitivity w.r.t. PP
 - nominal operation voltage within 200mV in a module -> use same voltage
 - Simplified set-up
 - Layer-wise regulation
 - About 3 orders of magnitude less noise
- steel absorber stack corresponding to ~1% of ILD barrel
as in May, plus:

- added one module with 6*6 cm² tiles (prototype for rear layers)
 - added CMS HGCAL “thick stack” (12 layers of 1 HBU, 7.4 cm steel absorber) as tailcatcher
- added single HBU in front of absorber as “pre-shower” detector
Event Displays and Online Monitoring

electron

hadron

muon
Online Monitoring: Energy Sums

Electron Beam

Pion Beam

Energy [MIP]

Energy Sum [MIP]
2 weeks of combined testbeam at CERN SPS in October 2018

- 28 layers HGCAL EE (silicon/lead), 12 layers HGCAL FH (silicon/steel), 39 layers AHCAL (scintillator/steel); common DAQ: EUDAQ2

- important test of concept, important information for simulation of showers
>2 weeks of combined testbeam at CERN SPS in October 2018
>28 layers HGCAL EE (silicon/lead), 12 layers HGCAL FH (silicon/steel), 39 layers AHCAL (scintillator/steel)
>important test of concept, important information for simulation of showers
Towards SDHCAL Module0

- Detectors as large as 3m X 1m need to be built
- Electronic readout should be the most robust with minimal intervention during operation.
- DAQ system should be robust and efficient
- Mechanical structure to be similar to the final one
- Envisage new features such timing, etc..
Large detector with new gas distribution scheme

New readout electronics (HARDROC3)

- **Independent channels**
- Extended dynamic range (**up to 50 pC**)
- Packaging in QFP208, die size ~30 mm2
- Zero suppress
- I2C link with triple voting for slow control parameters

![Graph showing S_Curve_DAC0_GcorrDAC0 with various data points ranging from 0 to 100%]
New electronics

Electronics readout for the 1m³ prototipo

1 DIF (detector InterFace) for 2 ASU (Active Sensor Unit.- PCB+ASICs) ➔ 3 DIFs for ONE 1m²

1m² board ➔ 6 ASUs hosting 24 ASICs

144 ASICs = 9216 channels/1m²

Electronics readout for the final detector

Data transmission to/from DAQ by Ethernet
• Clock and synchronization by TTC (already used in LHC)
Goal: To fix the steel plate replace bolts with EWB to reduce the dead zone and the deformation

Deformation < 1mm
Conclusion

- A lot of activities within CALICE
- Technological prototypes have been built or being completed.
- A big progress on Scint-W ECAL and MAPS ECAL
57Co response

S/N$_{ADC}$ \sim 30

Gluing FEV and SMB to FPC

Newly introduced automatic alignment (X-Y with camera and Z with laser)

FEV placed manually