Status of R&D for Time projection chamber module and prototype

Huirong Qi
Haiyun Wang, Yiming Cai, ZhiYang Yuan, Liu Ling, Yulan Li, Zhi Deng, Hui Gong, Yuyan Huang, Xinyuan Zhao, Wei Liu, Yulian Zhang, Manqi Ruan, Ouyang Qun, Jian Zhang

Institute of High Energy Physics, CAS
Tsinghua University
CEPC Workshop, Oxford, UK, April, 16, 2019
Outline

- Baseline design
- Requirements and challenges
- Feasibility study of TPC detector
- R&D activities
- Summary
Three Detector Concepts (CEPC CDR)

- **Baseline**: Silicon + TPC
- **FST**: all-silicon tracker
- **IDEA**: Silicon+Drift chamber (DCH)

<table>
<thead>
<tr>
<th>Operation mode</th>
<th>\sqrt{s} (GeV)</th>
<th>L per IP (10^{34} cm$^{-2}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>240</td>
<td>3</td>
</tr>
<tr>
<td>Z</td>
<td>91.2</td>
<td>32 (*)</td>
</tr>
<tr>
<td>W^+W^-</td>
<td>158–172</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Higgs</th>
<th>W</th>
<th>Z (3T)</th>
<th>Z (2T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of IPs</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam energy (GeV)</td>
<td>120</td>
<td>80</td>
<td>45.5</td>
<td></td>
</tr>
<tr>
<td>Circumference (km)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchrotron radiation loss/turn (GeV)</td>
<td>1.73</td>
<td>0.34</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>Crossing angle at IP (mrad)</td>
<td>16.5 \times 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Detector length**: 1300 cm
- **Detector height**: 1100 cm
- **Preshower**
- **DCH R_{out}**: 200 cm
- **DCH R_{in}**: 30 cm
- **Cal R_{in}**: 250 cm
- **Cal R_{out}**: 450 cm

- **Silicon Wrapper**
- **Magnet z = +300 cm**
- **Yoke 100 cm**
TPC detector at CEPC

TPC could directly provide three-dimensional space points; the gaseous detector volume gives a low material budget; and the high density of such space points enables excellent pattern recognition capability.

Why use TPC detector as the tracker detector?

- Motivated by the H tagging and Z
- TPC is the perfect detector for HI collisions ...(ALICE TPC…)
- Almost the whole volume is active
- Minimal radiation length (field cage, gas)
- Easy pattern recognition (continuous tracks)
- PID information from ionization measurements (dE/dx)
- Operating under high magnetic field
- MPGD as the readout

Overview of TPC detector concept
TPC requirements for CEPC

TPC detector concept:
- Under 3 Tesla magnetic field (Momentum resolution: $\sim 10^{-4}$/GeV/c with TPC standalone)
- Large number of 3D space points (~ 220 along the diameter)
- dE/dx resolution: <5%
- ~ 100 µm position resolution in $r\phi$
 - ~ 60µm for zero drift, <100µm overall
 - Systematics precision (<20µm internal)
- TPC material budget
 - <1X_0 including outer field cage
- Tracker efficiency: >97% for $pT>1$GeV
- 2-hit resolution in $r\phi$: ~ 2mm
- Module design: ~ 200mm \times 170mm
- Minimizes dead space between the modules: 1-2mm
TPC possible limitations

- Ions back flow in chamber
- Calibration and alignment
- Low power consumption FEE ASIC chip
Feasibility study of TPC

- Would it be Limited by
 - Voxel occupancy
 - Primary ions along the track in the chamber
 - Amplification ions create the ions disk back to the chamber (\(\times \text{Gain} \))
 - Charge Distortion induced by the ions: Mainly from Ion back flow

Voxel size defined (3D space bucket):
\[\text{Pad size} \times T_{\text{sample}} \times V_{\text{drift}} \]

Total ions in chamber: \(~ \text{Back flow ions} \sim (1 + k), k = \text{Gain} \times \text{IBF} + \text{Primary}\)
Feasibility study of TPC at Z pole

- Occupancy simulation
 - Gain × IBF refers to the number of ions that will escape the end-plate readout modules per primary ionization, obtained by the multiplication of the readout modules gain and the ion backflow reducing rate (IBF)
 - L: the luminosity in units of $10^{34}\text{cm}^{-2}\text{s}^{-1}$
 - Voxel size: $1\text{mm} \times 6\text{mm} \times 2\text{mm}$ @DAQ/40MHz
 - Maximal occupancy at TPC inner most layer: $\sim 10^{-5}$ (safe)
 - Full simulation: 9 thousand Z to qq events
 - Bhabha events: a few nb
 - Background considered? (Need careful designed Shielding/detector protection)

To conclude, the TPC will be able to be used if the Gain × IBF can be controlled to a value smaller than 5.

ArXiv: 1704.04401

- Pad size: $1\text{mm} \times 6\text{mm}$
- T_{sample}: 25ns
- V_{drift}: 80$\mu\text{m}/\text{ns}$

Distortion on the hit position reconstruction
Technical challenges of TPC for CEPC

Ion Back Flow and Distortion

- **Goal:**
 - Operate TPC at high luminosity at Z pole run
 - No Gating options

- IBF control similar with ALICE TPC upgrade

- ~100 µm position resolution in \(r\phi \)

- Distortions by the primary ions at CEPC are negligible

- Manu ions discs co-exist and distorted the path of the seed electrons

- The ions cleaned during the \(~us\) period continuously

- Continuous device for the ions

- Long working time

Amplification ions from the endplate @CEPC

<table>
<thead>
<tr>
<th></th>
<th>ALICE TPC</th>
<th>CEPC TPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum readout rate</td>
<td>>50kHz@pp</td>
<td>w.o BG?</td>
</tr>
<tr>
<td>Gating to reduce ions</td>
<td>No Gating</td>
<td>No Gating</td>
</tr>
<tr>
<td>Continuous readout</td>
<td>No trigger</td>
<td>Trigger?</td>
</tr>
<tr>
<td>IBF control</td>
<td>Build-in</td>
<td>Build-in</td>
</tr>
<tr>
<td>IBF*Gain</td>
<td><10</td>
<td><5</td>
</tr>
<tr>
<td>Calibration system</td>
<td>Laser</td>
<td>NEED</td>
</tr>
</tbody>
</table>

Compare with ALICE TPC and CEPC TPC
Feasibility study of TPC detector

Continuous IBF module:
- Operation at Higgs and Z-pole run
- Continuous Ion Back Flow due to the continuous beam structure
- Low discharge and spark possibility
- Space charge effect for IBF
- Gain: 5000-6000
- Good energy resolution: <20%

Laser calibration system:
- The ionization in the gas volume along the laser path occurs via two photon absorption by organic impurities (Nd:YAG laser @266nm)
- Laser calibration system around the chamber
- Calibration of the drift velocity, gain uniformity, the distortion
- High stability of the laser beam (<5µm)
Some R&D activities

- TPC detector module -> IBF control
- TPC detector prototype -> Calibration
- Low power consumption -> FEE ASIC chip
TPC detector module@ IHEP

- Study with GEM-MM module
- New assembled module
- Active area: 100mm × 100mm
- X-tube ray and 55Fe source
- Bulk-Micromegas assembled from Saclay
- Standard GEM from CERN
- Avalanche gap of MM: 128μm
- Transfer gap: 2mm
- Drift length: 2mm ~ 200mm
- pA current meter: Keithley 6517B
- Current recording: Auto-record interface by LabView
- Standard Mesh: 400LPI
- High mesh: 508 LPI

DOI: 10.1088/1748-0221/12/04/P0401 JINST, 2017.4
DOI: 10.1088/1674-1137/41/5/056003, CPC, 2016.11
GEM+MM@CEPC R&D

For e^+e^- machine
Primary N_{eff} is small: ~ 30
Pad size: $1\text{mm} \times 6\text{mm}$

GEM+MM module:
Photo peak and escape peak are clear!
Good electron transmission.
Good energy resolution.

One option for ALICE TPC
GEM+GEM+MM
Gain of mid GEM: $\times 0.5$
Gain of the hybrid structure detector

Key IBF factor: IBF × Gain < 5
From July, the high mesh of 508LPI has been assembled with CEA-Saclay collaboration. The preliminary results indicate that it could reach the lower IBF and better performance.
Check and answer- $\rho_{\text{ion}} \times d$

Current of Pad is very low in our Experiment results.
No any obvious space charge effect to decrease IBF.

Green: T2K, Yellow: Ar/iso(95/5)

T2Kgas Ic: 4pA~59pA, $\sim 10^3$ (fC/cm2)
Ar/iso gas Ic: 3.5pA~53pA, $\sim 10^3$ (fC/cm2)
Update on the small prototype R&D
Motivation of the TPC prototype

- Study and estimation of the distortion from the IBF and primary ions with the laser calibration system

- Main parameters
 - Drift length: \(~510\text{mm}\), Readout active area: \(200\text{mm} \times 200\text{mm}\)
 - Integrated the laser calibration with 266nm
 - GEMs/Micromegas as the readout
 - Matched to assembled in the 1.0T PCMAG

Diagram of the TPC prototype with the laser calibration system
Study of laser position and energy

- Size: \(~0.85\text{mm} \times 0.85\text{mm}\)
- Transmission and reflection mirrors
- Duration of measurement time: 20 mins
- \(X\) direction of the beam’s center of gravity: <3.2 \(\mu\text{m}\)
- \(Y\) of the beam’s center of gravity: <2.8 \(\mu\text{m}\)
- Average of the energy: 46.53\(\mu\text{J}/\Phi 5\text{mm}\)
- Stability of the laser beam energy: 3.3%
Study of the drift velocity

Diagram of the TPC small prototype
Signal with the laser and 55Fe

- Readout board, 128 Channels electronics, DAQ and laser mirror and PCB board have been done and assembled
- TPC barrel mount and re-mount with the Auxiliary brackets
- TPC preliminarily tested with 55Fe and the different power laser beam
- Optimization of the laser studied

![Graph with output signal and energy density of the laser beam]
Energy spectrum of the detector module

\[Q_{\text{distribution}} \]

\[210V/cm@T2K \]

Triggerless

\[>300kHz \]

\[n>3 \]

\[^{55}\text{Fe} \text{ radioactive source} \]

\[266\text{nm laser beam}@0.8\text{mm}^2 \]

\[210V/cm@T2K \]

Laser trigger

\[10Hz \]
Drift velocity of the electron in the chamber

$61.53 \pm 0.15 \, \mu m/\text{ns} @ 210 \, \text{V/cm} @ T2K$

Test and simulation results of the drift velocity of the electron in the chamber
Z_0 finding (GEM surface position)

Preliminary
Laser track test

Preliminary results of Laser tracker energy spectrum and tracker
Resolution of the prototype

Position resolution and χ^2 with the laser beam
Low power consumption ASIC
Feasibility study of the low power consumption FEE

- Each endplate has a total of about 1 million channels
- Over 30,000 ASIC chips with 32 channels each
- Total power consumption of the front-end electronics is limited by the CO$_2$ cooling system to be several kilowatts in practice
- Two-phase CO$_2$ cooling/Micro-channel CO$_2$ cooling methods should be studied further
- TPC readout electronics are a few meters away from the collision point, and the radiation dose is rather low (< 1 krad), and radiation sophisticated design needs to be considered too

Current TPC readout ASICs

<table>
<thead>
<tr>
<th></th>
<th>PASA/ALTRO</th>
<th>AFTER</th>
<th>Super-ALTRO</th>
<th>SAMPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC</td>
<td>ALICE</td>
<td>T2K</td>
<td>ILC</td>
<td>ALICE upgrade</td>
</tr>
<tr>
<td>Pad size</td>
<td>4x7.5 mm2</td>
<td>6.9x9.7 mm2</td>
<td>1x6 mm2</td>
<td>4x7.5 mm2</td>
</tr>
<tr>
<td>Pad channels</td>
<td>5.7×10^5</td>
<td>1.25×10^5</td>
<td>$1-2 \times 10^6$</td>
<td>5.7×10^5</td>
</tr>
<tr>
<td>Readout Chamber</td>
<td>MWPC</td>
<td>MicroMegas</td>
<td>GEM/MicroMegas</td>
<td>GEM</td>
</tr>
<tr>
<td>Gain</td>
<td>12 mV/fC</td>
<td>18 mV/fC</td>
<td>12-27 mV/fC</td>
<td>20/30 mV/fC</td>
</tr>
<tr>
<td>Shaper</td>
<td>CR-(RC)4</td>
<td>CR-(RC)2</td>
<td>CR-(RC)4</td>
<td>CR-(RC)4</td>
</tr>
<tr>
<td>Peaking time</td>
<td>200 ns</td>
<td>100 ns</td>
<td>30-120 ns</td>
<td>80/160 ns</td>
</tr>
<tr>
<td>ENC</td>
<td>385 e</td>
<td>1000 e</td>
<td>520 e</td>
<td>482 e @ 180ns</td>
</tr>
<tr>
<td>Waveform Sampler</td>
<td>ADC</td>
<td>SCA</td>
<td>ADC</td>
<td>ADC</td>
</tr>
<tr>
<td>Method</td>
<td>ADC</td>
<td>SCA</td>
<td>ADC</td>
<td>ADC</td>
</tr>
<tr>
<td>Sampling frequency</td>
<td>10MSPS</td>
<td>25MSPS</td>
<td>40MSPS</td>
<td>20MSPS</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>10bit</td>
<td>10bit</td>
<td>10bit</td>
<td>10bit</td>
</tr>
<tr>
<td>Power consumption</td>
<td>32mW/ch</td>
<td>6.2-7.5mW/ch</td>
<td>47.3mW/ch</td>
<td>8mW/ch</td>
</tr>
<tr>
<td>CMOS Process</td>
<td>250 nm</td>
<td>350 nm</td>
<td>130 nm</td>
<td>130nm</td>
</tr>
</tbody>
</table>

Total number of channels

<table>
<thead>
<tr>
<th>AFE (Analog Front-End)</th>
<th>ENC (Equivalent Noise Charge)</th>
<th>1 million per endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain Shaper Peaking time</td>
<td>Gain CR-RC 100 ns</td>
<td>500e @ 10pF input capacitance</td>
</tr>
<tr>
<td>ADC Sampling rate Resolution</td>
<td>≥ 20 MSPS 10 bit</td>
<td>Output data bandwidth 300-500 MB/s 32</td>
</tr>
<tr>
<td></td>
<td>≤ 5 mW per channel</td>
<td>Channel number TSMC 65 nm LP</td>
</tr>
<tr>
<td></td>
<td>Power consumption</td>
<td>Process</td>
</tr>
</tbody>
</table>

Key specifications of the front-end readout ASIC for TPC
Results of FEE ASIC

- Develop a low power and highly integration front-end ASIC in 65 nm CMOS
- Each channel consists of the analog front-end (AFE) and a SAR ADC in 10b and up to 40 MSPS
- Less than 5 mW per channel

- AFE test summary

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>10mV/fC</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>>120fC</td>
</tr>
<tr>
<td>INL</td>
<td><1%</td>
</tr>
<tr>
<td>Power consumption</td>
<td>2.50mW/ch</td>
</tr>
<tr>
<td>ENC</td>
<td>500e@10pF</td>
</tr>
<tr>
<td>Xtalk</td>
<td><1%</td>
</tr>
</tbody>
</table>

- SAR ADC test summary

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling rate</td>
<td>40 MSPS</td>
</tr>
<tr>
<td>Resolution</td>
<td>10 bit</td>
</tr>
<tr>
<td>INL</td>
<td><0.65 LBS</td>
</tr>
<tr>
<td>DNL</td>
<td><0.6 LSb</td>
</tr>
<tr>
<td>ENOB</td>
<td>>9 bit</td>
</tr>
<tr>
<td>Power consumption</td>
<td><2.5 mW/ch</td>
</tr>
</tbody>
</table>
TPC R&D cooperation

- Any ideas and manpower are welcome
- TPC prototype cooperated with Tsinghua
- TPC module cooperated with CEA-Scalay
- Joined LCTPC international collaboration group
TPC prototype cooperated with Tsinghua

Photos of TPC prototype R&D

Kick off meeting and the review meeting /NSFC Key funding project
International cooperation

- CEA-Saclay IRFU group (FCPPL)
 - Three video meetings with Prof. Aleksan Roy / Prof. Yuanning / Manqi and some related persons (2016~2017)
 - Exchange PhD students: Haiyun Wang participates in Saclay’s R&D six months in 2017~2018
- Bulk-Micromegas detector assembled and IBF test
- IBF test using the new Micromegas module with more 590 LPI
- UV+ laser tracker
International cooperation

- LCTPC collaboration group (LCTPC)
 - Singed MOA and joined in LC-TPC collaboration @Dec. 14, 2016
 - As coordinator in ions test and the new module design work package
 - CSC funding: PhD Haiyun joint CEA-Scalay TPC group (6 months)
 - Joint beam test in DESY with our hybrid detector module in 2019
Summary and further R&D

Requirements and critical challenges for CEPC:

- High momentum resolution and position resolution
- Continuous beam structure and the ~25ns time space

Continuous IBF module for CEPC:

- Continuous Ion Back Flow supression
- Key factor: IBF×Gain=5 and less than (R&D)
- Low discharge and the good energy spectrum

Prototype with laser calibration for CEPC:

- It needs very sophisticated calibration in order to reach the desired physics performance at Z pole run
- Prototype has been designed with laser (Developed in IHEP and Tsinghua)
- Plan: Test with the TPC module and prototype in 1.0T magnetic field

A lot of progress in TPC module and prototype R&D. Next step, more hard works should be do for TPC R&D at CEPC with more cooperation.

Low power consumption ASIC chip:

- FEE electronics and DAQ collaborated with Tsinghua University
- Less than 5mV per channel
Thanks.