
 1

Analysis Description Languages for LHC

& CutLang

Gokhan UNEL, UC Irvine

3rd International Turkey-Iran Joint Conference on LHC Physics

 2

…time to get better organized to work more efficiently!

Welcome to the LHC analysis jungle

Inclusive analyses
with hundreds of
selection regions

Multiple analyses
exploring similar

final states

Overlaps between
different analyses?

Is my control
region your signal

region???

Many alternative
definitions for  

one object
Many variables,

ambiguous
definitions

 3

Maximize the scientific Impact of the  
LHC analysesLHC

Maximize the
Impact of LHC 

analyses

accessible data accessible  
simulation

accessible results accessible
analysis information

Analysis description
languages

 4

An Analysis Description Language (ADL) for the LHC is:

• A domain specific language capable of describing the contents of an
LHC analysis in a standard and unambiguous way.

• Customized to express analysis-specific concepts.

• Designed for use by anyone with an interest in, and knowledge of, LHC
physics : experimentalists, phenomenologists, other enthusiasts…

• Earlier HEP formats/languages proved successful and useful:

• SUSY Les Houches Accord

• Les Houches Event Accord

Analysis description languages for LHC

 5

Principles for an LHC ADL

The principles of an analysis description language were defined in the Les
Houches 2015 new physics WG report (arXiv:1605.02684)

Towards an analysis description accord for the LHC

D. Barducci, A. Buckley, G. Chalons, E. Conte, N. Desai, N. de Filippis, B. Fuks, P.
Gras, S. Kraml, S. Kulkarni, U. Laa, M. Papucci, C. Pollard, H. B. Prosper, K.
Sakurai, D. Schmeier, S. Sekmen, D. Sengupta, J. Sonneveld, J. Tattersall, G. Unel,
W. Waltenberger, A. Weiler.

Abstract: We discuss the concept of an “analysis description accord" for LHC
analyses, a format capable of describing the contents of an analysis in a standard
and unambiguous way. We present the motivation for such an accord, the
requirements upon it, and an initial discussion of the merits of several
implementation approaches. With this, we hope to initiate a community-wide
discussion that will yield, in due course, an actual accord.

https://arxiv.org/abs/1605.02684

 6

ADL scope

By construction, an ADL is not designed to be general purpose;
therefore, getting the right scope is key.

The core of ADL for the LHC should include

simple and
composite

object
definitions (jets,

muons, Ws,
RPV stops, …)

event variable
definitions (MT2,

angular variables,
BDTs…)

event selection
definitions

(signal, control,
validation

regions, …)

(optional: standard reports, visualizations)

input:

event

content

output:

event
selection

Event processing…

Further operations with selected events (background estimation
methods, scale factor derivations, etc.) can vary greatly, and thus may
not easily be considered within the ADL scope.

 7

ADLs would help everyone

Motivation / use case Exp TH/
Pheno Public

Analysis abstraction, design, implementation ✔ ✔ ✔

Analysis communication, clarification,
synchronization, visualization ✔ ✔ ✔

Analysis review by internal or external
referees ✔ ✔ ✔

Easier comparison/combination of analyses ✔ ✔

Interpretation studies, analysis
reimplementation ✔ ✔ ✔

Analysis preservation (ongoing discussions
with CERN Analysis Preservation Group) ✔ ✔ ✔

Improve our way of thinking about our
analyses modelling and structure ✔ ✔ ✔

Framework independence highly desirable

LHC  
physicist

LHC  
physics

 8

complex software

takes time to learn

hard to  
maintain

everyone writes code differently

physics information scattered

Coding
analyses in

different frameworks
takes too much

time!

ever-changing 
frameworks

Framework independence highly desirable

LHC  
physicist

LHC  
physics

A D L

 8

complex software

takes time to learn

hard to  
maintain

everyone writes code differently

physics information scattered

Coding
analyses in

different frameworks
takes too much

time!

ever-changing 
frameworks

 9

Features of an ADL for the LHC

Basic requirements:

• Public: Belongs to everyone

• Can describe the complete analysis

• Easily learned

• Demonstrably correct

• Human readable

Desirable features:

• Self-contained

• Domain specific language (not a general purpose language)

• Analysis framework-independent

 10

What could be a good way
to systematically organize

the components of an
analysis?

Use “blocks”  
as in SLHA or LHE.

A specific ADL proposal

 11

A Proposal for a Les Houches Analysis Description Accord

D. Barducci, G. Chalons, N. Desai, N. de Filippis, P. Gras, S. Kraml, S. Kulkarni, U. Laa, M. Papucci, H.
B. Prosper, K. Sakurai, D. Schmeier, S. Sekmen, D. Sengupta, J. Sonneveld, J. Tattersall, G. Unel, W.
Waltenberger, A. Weiler.
Abstract: We present the first draft of a proposal for “a Les Houches Analysis Description Accord" for LHC
analyses, a formalism that is capable of describing the contents of an analysis in a standard and unambiguous way
independent of any computing framework. This proposal serves as a starting point for discussions among LHC
physicists towards an actual analysis description accord for use by the LHC community.

CutLang: A particle physics ADL and runtime interpreter

S. Sekmen, G. Ünel
Abstract: This note introduces CutLang, a domain specific language that aims to provide a clear, human readable
way to define analyses in high energy particle physics (HEP) along with an interpretation framework of that language.
A proof of principle (PoP) implementation of the CutLang interpreter, achieved using C++ as a layer over the CERN
data analysis framework ROOT, is presently available. This PoP implementation permits writing HEP analyses in an
unobfuscated manner, as a set of commands in human readable text files, which are interpreted by the framework at
runtime. We describe the main features of CutLang and illustrate its usage with two analysis examples. Initial
experience with CutLang has shown that a just-in-time interpretation of a human readable HEP specific language is a
practical alternative to analysis writing using compiled languages such as C++.

LH 2015 New Phys WG report (arXiv:1605.02684), section 15

Comput.Phys.Commun. 233 (2018) 215-236 (arXiv:1801.05727)

—> Generic and abstract ADL design

—> ADL design driven by runtime interpretability.
CutLang and LHADA follow same principles but slightly differ in syntax.

https://arxiv.org/abs/1605.02684
https://arxiv.org/abs/1801.05727

 12

The ADL

The ADL consists of

• a plain text file describing the analysis using a HEP specific language with

syntax rules that include standard mathematical and logical operations
and 4-vector algebra.

• a library of self-contained functions encapsulating variables that are non-
trivial to express with the ADL syntax.

The ADL is analysis framework independent so that it can offer a standard
input to analysis frameworks, just like an SLHA file offers standard input to
SUSY calculators.

Both ADL files and external functions can be eventually hosted at central
databases for LHC analyses. Discussions ongoing with CERN Analysis
Preservation Group.

 13

Examples: object definitions

#	AK4	jets	
object	AK4jets	
		take	Jet	
		select	pt	>	30	
		select	|eta|	<	2.4	

#	b-tagged	jets	-	loose	
object	bjetsLoose	
		take	AK4jets	
		select	btagDeepB	>	0.152	

#	b-tagged	jets	-	medium	
object	bjetsMedium	
		take	AK4jets	
		select	btagDeepB	>	0.4941

#	AK4	jets	
object	AK4jets	using	JET	
	select	{JET_	}Pt	>	30	
		select	abs({JET_}Eta)	<	2.4	

#	b-tagged	jets	-	loose	
object	bjetsLoose	:	AK4jets	
		select	{AK4jets_}btagDeepB	>	0.152	
 

#	b-tagged	jets	-	medium	
object	bjetsMedium	:	AK4jets	
		select	{AK4jets_}btagDeepB	>	0.4941

LHADA ADL style CutLang style

Color legend:

defined object 
existing object 

object attribute 
internal function 

selection criterion

From CMS SUSY razor analysis (Phys.Rev. D97 (2018) no.1, 012007, arxiv:1710.11188)

LHADA style full implementation link 
CutLang style full implementation link

https://arxiv.org/abs/1710.11188
https://github.com/hbprosper/adl2tnm/blob/master/examples/razorboost/razorboost_adl2tnm.adl
https://github.com/unelg/CutLang/blob/master/runs/razorboost_cutlang.adl

 14

Examples: variable definitions

define	MR	=	fMR(megajets)	
define	Rsq	=	sqrt(fMTR(megajets,	met)	/	MR)	
define	dphimegajets	=	dPhi(megajets[0],	megajets[1])	
define	METl	=	met	+	leptonsVeto[0]	
define	Rsql	=	sqrt(fMTR(megajets,	METl)	/	MR)	
define	MT	=	fMT(leptonsVeto[0],	met)	
define	Mll	=	fMll(leptonsTight[0],	leptonsTight[1])

LHADA style

CutLang style

define	MR	=	fMR(megajets)	
define	Rsq	=	sqrt(fMTR(megajets,	MET)	/	MR)	
define	dphimegajets	=	dPhi(megajets[0],	megajets[1])	
define	METLVm	=	METLV[0]	+	muonsVeto[0]	
define	Rsqm	=	sqrt(fMTR(megajets,	METLVm)	/	MR)	
define	MTm	=	sqrt(2*{muonsVeto[0]}Pt*MET*(1-cos({METLV[0]}Phi	-	{muonsVeto[0]}Phi)))	
define	Mll	=	{	muonsTight[0]		muonsTight[1]	}m

Color legend:

defined variable 
existing object 
object attribute 
existing variable 
internal function 
external function

 15

Examples: event selection

#	preselec^on	region	
region	preselec^on	
		select	size(AK4jets)	>=	3	
		select	size(AK8jets)	>=	1	
		select	MR	>	800	
		select	Rsq	>	0.08	

#	control	region	for	a+jets	
region	ajetsCR	
		select	preselec^on	
		select	size(leptonsVeto)	==	1	
		select	size(WjetsMasstag)	>=	1	
		select	dphimegajets	<	2.8	
		select	MT	[]	100	
		#	or	select	fMT(leptonsVeto[0],	met)	[]	30	100	
		#	or	select	30	<	MT	<	100	
		select	size(bjetsLoose)	==	0

#	p#	preselec^on	region	
region	preselec^on	
		select	ALL	#	count	all	events	
		select	Size(AK4jets)	>=	3		
		select	Size(AK8jets)	>=	1		
		select	Size(megajets)	==	2		
		select	MR	>	800		
		select	Rsq	>	0.08		

#	control	region	for	W+jets	
region	WjetsCR	
		preselec^on	
		select	Size(muonsVeto)+Size(electronsVeto)	==	1	
		select	Size(WjetsMasstag)	>=	1	
		select	dphimegajets	<	2.8	
		select	Size(muonsVeto)	==	1	?	MTm	[]	30	100	  
																																																						:	MTe	[]	30	100	
		select	Size(bjetsLoose)	==	0

LHADA style CutLang style

Color legend:

defined region 
existing region 
existing object 

existing variable 
internal function 
external function 

selection criterion

 16

ADL block types and keywords

LHADA—>ADL CutLang —> ADL
object definition blocks object obj / object
event selection blocks region algo / region
analysis information info info
tables of results, etc. table —

LHADA—>ADL CutLang —> ADL
define variables, constants define def / define
select object or event select select / cmd
reject object or event reject —
define the mother object take : / take / using
define histograms — histo
applies object/event weights weight —
bins events in regions bin —

Green: Implemented in (some) parser/interpreter tools

Black: Implementation in progress

 17

ADL operators

LHADA—>ADL CutLang —> ADL

Comparison operators > < => =< ==
 [] (include)][(exclude)

> < => =< ==
 [] (include)][(exclude)

Mathematical operators + - * / ^ + - * / ^
Logical operators and or AND/&& OR/||

Ternary operator condition ? true-case :
false-case

condition ? truecase :
falsecase

Optimization operators —

~= (closest to) 
!= (furthest from) (optimal
particle sets are assigned

negative indices)
Lorentz vector addition LV1 + LV2 LV1 LV2 / LV1 + LV2

Green: Implemented in (some) parser/interpreter tools

Black: Implementation in progress

 18

ADL functions

Standard/internal functions: Sufficiently generic math and HEP operations
would be a part of the language and any tool that interprets it

• Math functions: abs()/|| , sin(), cos(), tan(), log(), sqrt(), … (mostly

implemented in CutLang)

• Reducers: size(), sum(), min(), max(), any(), all(), …

• HEP-specific functions: dR(), dphi(), m(), …. (exist in CutLang)

• CutLang treats object attributes like pT, eta, … as functions

External/user functions: Variables that cannot be expressed using the available
operators or standard functions would be encapsulated in self-contained
functions that would be addressed from the ADL file

• Variables with non-trivial algorithms: MT2, aplanarity, razor variables, …

• Non-analytic variables: Object/trigger efficiencies, vatiables computed with

MVAs, …

Green: Implemented in CutLang and partially in other tools,

Black: Implementation in progress

 19

Transpilers for LHADA style ADL - I

adl2tnm (Harrison Prosper)

• Python script converts ADL to c++ code.

• c++ code executed within the generic TNM (TheNtupleMaker) generic

ntuple analysis framework. Only depends on ROOT.

• Can work with any simple ntuple format. Automatically incorporates

the input event format into the c++ code: 
ADL + input ROOT files adl2tnm.py c++ analysis code

• Assumes that a standard extensible type is available to model all
analysis objects. Uses adapters to translate input to standard types.

• Can be used for experimental or phenomenological analyses.

• Upcoming version will include formal grammar building and parsing.

GitHub link: https://github.com/hbprosper/adl2tnm

https://github.com/hbprosper/adl2tnm

 20

Transpilers for LHADA style ADL - II

lhada2tivet (Philippe Gras)

• Python script converts LHADA to c++ code for Rivet.

• Particles and jets are implemented using Rivet-specific truth level

objects. Smearing added in Rivet.

• For phenomenological analyses.

lhada2checkmate (Daniel Dercks)

• Python script converts from early LHADA to CheckMate c++ code.

• Works with Delphes objects

• Tested a simple version of automatic function download, and

confirmed feasibility of a function database for the future.

• For phenomenological analyses

GitHub link: https://github.com/lhada-hep/lhada/tree/master/lhada2rivet.d

https://github.com/lhada-hep/lhada/tree/master/lhada2rivet.d

 21

CutLang runtime interpreter & framework

CutLang runtime interpreter:

• No compilation. Directly runs on the ADL file.

• ADL: [initializations] [definitions] [objects] [definitions] commands
• Written in c++, works in any modern Unix environment.

• Based on ROOT classes for Lorentz vector operations and histograms

• ADL parsing by Lex & Yacc: relies on automatically generated

dictionaries and grammar.

CutLang framework: CutLang interpreter + tools and facilities

• Reads events from ROOT files, from multiple input formats like Delphes,

ATLAS & CMS open data, LVL0, CMSnanoAOD, FCC. 
More can be easily added.

• All event types converted into predefined particle object types.

• Includes many internal functions.

• Output in ROOT files. Analysis algorithms, cutflows and histograms for

each region in a separate directory.

GitHub link: https://github.com/unelg/CutLang

https://github.com/unelg/CutLang

• On the blackboard, we write
• When you type it in latex it is jet_1
• CL understands particleName_index notation:

• On the computer, we write
• CL understands particleName[index] notation:

 22particle notation
jet1

jet[3]

• Is pseudo rapidity or transverse momentum a property of a particle?
of the addition of many particles? is it an attribute? is it a function?

• DO I CARE? no.
• I only care about the result of my analysis

• However, when I speak or write I might say either of
• “the mass of a particle set” m ()
• “the particle set’s mass” { }m

• CL understands both notations

 23functions & attributes

more natural in Turkish

• Reconstruct Z from 2 electrons
• the Z candidate should be neutral (q=0)

 24A very simple example
Z → ℓℓ ℓ = e, μ

user’s ADL file

CL output

• Reconstruct Z from 2 electrons
• the Z candidate should be neutral (q=0)

 24A very simple example
Z → ℓℓ ℓ = e, μ

user’s ADL file

CL output
2 electron

combination is often used,
why not to give it a name

like Zreco?

• introducing definitions

 25A very simple example
Z → ℓℓ ℓ = e, μ

user’s ADL file

CL output Are these
electrons inside the

inner tracker?

• introducing derived objects
• Electron —> goodElectron

 26A simple example
Z → ℓℓ ℓ = e, μ

• introducing multiple regions or algorithms

• A user defined region can contain another one
• e.g. SignalRegion containing preselection

 27A simple example
Z → ℓℓ ℓ = e, μ

All regions are processed in
parallel and saved as
TDirectories in the output
ROOT file

 28

Output file

 29A search example Z → ℓℓ ℓ = e, μ

• Introducing optimizers
• if there are more than 2 electrons, search all

possible combinations to find the “best” candidate
• use negative indices to defer the identification

Negative indices are to be determined at run time, using a criterion, such as:~=

e1 e2
1 2
1 3
2 3
2 1
3 1
3 2

if we have 3
electrons in an event

 30

Z → ℓℓ ℓ = e, μ

• Taking a short cut
• e1 + e2 = e2 + e1 —> same Z, no need to calculate both
• repeating the same negative index (-1) tells CutLang to compute only one

• compute time reduced by 50%

e1 e2
1 2
1 3
2 3

if we have 3
electrons in an event

A search example

• User defined selection functions are somewhat difficult to
incorporate into an interpreter

• Currently we define a user function type and compile it in.
• CLv2 will provide the means to do this automatically
• Currently Razor functions are pre-integrated:

• Simple functions can be interpreted using CL math functions

 31User (external) functions

std::vector<TLorentzVector> fmegajets(std::vector<TLorentzVector> myjets);
double fMR(std::vector<TLorentzVector> j);
double fMTR(std::vector<TLorentzVector> j, TVector2 amet);
double fMTR2(std::vector<TLorentzVector> j, TLorentzVector amet);

 return sqrt(2 * lepton.Pt() * pfmet.Pt() * (1 - cos(pfmet.Phi() - lepton.Phi())));

 32

• An ADL would greatly facilitate analyses for the whole LHC community.
First target is the BSM studies type.

• Several prototypes have proven the feasibility of ADLs.

• CutLang is an ADL interpreter with additional features

• your can test is on JuPyter

• Work in progress. Still many intriguing problems to solve! 
New Gitter forum open to all for discussions: https://gitter.im/HSF/ADL

• This is a community effort. Please join!

To conclude

https://indico.cern.ch/event/769263/contributions/3406040/attachments/1838631/3013433/go
https://gitter.im/HSF/ADL

 33

Recent workshop to seriously start
community-wide discussions.

Participation by experimentalists,
phenomenologists, computer
scientists.

Learned about other ADL efforts:

• Query ADLs (G. Watts)

• YAML as ADL (B. Krikkler)

• NAIL (A. Rizzi)

• TTreeFormula / RDataFrame  

(P. Canal)

• AEACUS & RHADAMANTUS  

(J. Walker - talk in this session)

Extensive discussions towards a
unified ADL. Extensive notes and
vidyo recordings on indico:

https://indico.cern.ch/event/769263/

In this workshop
(for experimentalists, phenomenologists and
computing experts)
‣ The ADL concept
‣ Current examples: CutLang and LHADA
‣ Hands on exercises
‣ Language structure
‣ Parsing and interpreting methods
‣ Feasibility for experimental analyses
‣ Analysis preservation

Organizing committee:
Steve Mrenna (Fermilab)

Jim Pivarski (Princeton U.)  
Harrison Prosper (Florida State U.)  

Sezen Sekmen (Kyungpook Nat. U.)
Gökhan Ünel (U.C. Irvine)

LPC coordinators:
Cecilia Gerber (UIC)

Sergo Jindariani (Fermilab)

https://indico.cern.ch/event/769263/

Local organization:
Gabriele Benelli (Brown U.)
Alexx Perloff (U. Colorado Boulder)
Marc Weinberg (Carnegie Mellon U.)
LPC events committee:
Gabriele Benelli (Brown U.)
Ben Kreis (Fermilab) 
Kevin Pedro (Fermilab)

mass

ev
en

ts

An analysis description language (ADL) is a human
readable declarative language that unambiguously
describes the contents of an analysis in a standard way,
independent of any computing framework.

Adopting ADLs would bring numerous benefits for the
LHC experimental and phenomenological communities,
ranging from analysis preservation beyond the lifetimes
of experiments or analysis software to facilitating the
abstraction, design, visualization, validation,
combination, reproduction, interpretation and overall
communication of the contents of LHC analyses.

Several attempts were made recently to develop ADLs,
and tools to use them, and an effort is underway to
arrive at the core of a unified ADL.

Analysis Description Languages
for the LHC

6-8 May 2019, Fermilab LPC

Workshop on

https://indico.cern.ch/event/769263/

thank you for your attention

backup slides

 34

• reference guide
• ttbar reconstruction
• example analyses
• speed issues

• The Objects

• Functions

• The ternary function in C notation

 35reference guide

 Reconstruction example
 36

tt̄

tt̄
jb

W
j
jjb

W
j
j

 Reconstruction example
 36

tt̄

t → Wb → j j jb
tt̄

jb

W
j
jjb

W
j
j

 Reconstruction example
 36

tt̄

t → Wb → j j jb
tt̄

jb

W
j
jjb

W
j
j

There are 6 jets in the event of which 2 can be b-tagged
+ LOTS of other jets from spectator quarks and QCD effects

 Reconstruction example
 36

tt̄

t → Wb → j j jb
tt̄

jb

W
j
jjb

W
j
j

There are 6 jets in the event of which 2 can be b-tagged
+ LOTS of other jets from spectator quarks and QCD effects

Which one is which?

 Reconstruction example
 36

tt̄

t → Wb → j j jb
tt̄

jb

W
j
jjb

W
j
j

There are 6 jets in the event of which 2 can be b-tagged
+ LOTS of other jets from spectator quarks and QCD effects

Which one is which?

 Reconstruction example
 37

tt̄

 38

hmTop1
Entries 4800
Mean 198.5
Std Dev 81.32

0 100 200 300 400 500 600 7000

50

100

150

200

250

300

350

400

hmTop1
Entries 4800
Mean 198.5
Std Dev 81.32

"Hadronic top reco (GeV)"hmWH1
Entries 4800
Mean 81.71
Std Dev 11.91

50 60 70 80 90 100 110 120 130 140 1500

100

200

300

400

500

hmWH1
Entries 4800
Mean 81.71
Std Dev 11.91

"Hadronic W reco (GeV)"

reconstructed W bosons reconstructed top quarks

 39

Razor boost example 1/2

 40

Razor boost example 2/2

 41Compatibility
#evt total eff. rel. eff.
31250 1.000 -
28431 0.91 0.91

28430 0.91 1.00

16661 0.53 0.59

16381 0.52 0.98

8159 0.26 0.50

8156 0.26 1.00

31250 1.000 -
28301 0.91 0.91

28300 0.91 1.00

22441 0.72 0.79

22441 0.72 1.00

10043 0.32 0.45

9896 0.32 0.99

31250 1.000 -
28431 0.91 0.91

28430 0.91 1.00

16661 0.53 0.59

16381 0.52 0.98

4375 0.14 0.27

4132 0.13 0.94

CutLang

 42Debugging & speeding

For example, the one step and two step top quark reconstructions
requiring one line and two lines to implement in the CutLang
language take about 40 to 70 lines of standard analysis code in C++.

