Hadronic Resonance Production with ALICE at the LHC

Serpil Yalcin Kuzu*, Ayben Karasu Uysal
(for the ALICE Collaboration)
*KTO Karatay University

3rd International Iran-Turkey Joint Conference on LHC Physics
10-15 June, 2019
Outline

• Introduction
 – Motivation
 – Resonances

• ALICE Detector

• Hadronic Resonance Production with ALICE
 – Resonance Reconstruction
 – Resonance Results
 • \(\text{K}^*(892)^0 \) in pp, Pb-Pb at \(\sqrt{s_{\text{NN}}} = 2.76 \) TeV and Xe-Xe at \(\sqrt{s_{\text{NN}}} = 5.44 \) TeV
 • \(\phi \) in pp, Pb-Pb at \(\sqrt{s_{\text{NN}}} = 2.76 \) TeV and Xe-Xe at \(\sqrt{s_{\text{NN}}} = 5.44 \) TeV
 • Mean \(p_T \)
 • Baryon/Meson and Meson/Meson Ratios
 • Particle Ratio of \(\text{K}^*^0 / \text{K} \) and \(\phi / \text{K} \)
 • Nuclear Modification Factor \(R_{\text{AA}} \) and \(Q_{p\text{Pb}} \)

• Conclusions and Outlook
Introduction: Motivation

- Resonances are extremely short lived particles. ($\tau_{\text{resonance}} \sim \tau_{\text{fireball}}$)
- Due to this short lifetime they may decay between chemical and kinetic freeze-outs.

The medium may modify their properties as mass, yield and width.

- During the phase transition between partonic state to hadronic state resonances may
 - decay,
 - re-scatter,
 - regenerate.
Introduction: Resonances

- Decay between chemical and kinetic freeze-outs
 → information on hadronization.
- Particle ratios, modification of yield and mean p_T
 → hint of rescattering and regeneration in the hadronic phase.
- Nuclear modification factors
 → information about energy loss mechanism in the medium.
- Study on the mass and width
 → interactions of the resonances with the medium.
- Comparison of resonance production in different systems like pp, p-Pb and Pb-Pb
 → provide evidences for in-medium effects.
ALICE: A Large Ion Collider Experiment
ALICE: A Large Ion Collider Experiment

41 countries, 178 institutes, approx. 1800 members
ALICE: A Large Ion Collider Experiment

<table>
<thead>
<tr>
<th>Year</th>
<th>System</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>p-p</td>
<td>0.9 TeV</td>
</tr>
<tr>
<td>2010</td>
<td>p-p</td>
<td>7 TeV</td>
</tr>
<tr>
<td>2010</td>
<td>Pb-Pb</td>
<td>2.76 TeV</td>
</tr>
<tr>
<td>2011</td>
<td>p-p</td>
<td>2.76 TeV</td>
</tr>
<tr>
<td>2011</td>
<td>Pb-Pb</td>
<td>2.76 TeV</td>
</tr>
<tr>
<td>2013</td>
<td>p-Pb</td>
<td>5.02 TeV</td>
</tr>
<tr>
<td>2015</td>
<td>p-p</td>
<td>13 TeV</td>
</tr>
<tr>
<td>2015</td>
<td>Pb-Pb</td>
<td>5.02 TeV</td>
</tr>
<tr>
<td>2016</td>
<td>p-Pb</td>
<td>5.02 TeV</td>
</tr>
<tr>
<td>2016</td>
<td>p-Pb</td>
<td>8.16 TeV</td>
</tr>
<tr>
<td>2016</td>
<td>p-p</td>
<td>13 TeV</td>
</tr>
<tr>
<td>2017</td>
<td>p-p</td>
<td>13 TeV</td>
</tr>
<tr>
<td>2017</td>
<td>Xe-Xe</td>
<td>5.44 TeV</td>
</tr>
<tr>
<td>2018</td>
<td>p-p</td>
<td>13 TeV</td>
</tr>
</tbody>
</table>
ALICE

- 10000 tons
- 16 m long
- 16 m high
- 16 m wide
ALICE

- 10000 tons
- 16 m long
- 16 m high
- 16 m wide

Time Projection Chamber (TPC)
- primary vertex
- global tracking
- Particle identification via dE/dx in gas
ALICE

- 10000 tons
- 16 m long
- 16 m high
- 16 m wide

Time Of Flight (TOF)
- PID via time of flight measurement

Time Projection Chamber (TPC)
- primary vertex
- global tracking
- Particle identification via dE/dx in gas
ALICE

- 10000 tons
- 16 m long
- 16 m high
- 16 m wide

VZERO Scintillator Detectors (V0)
- Centrality definition in Pb-Pb (V0A and V0C)
- Multiplicity event class in p-Pb (V0A, V0C)

Time Of Flight (TOF)
- PID via time of flight measurement

Time Projection Chamber (TPC)
- primary vertex
- global tracking
- Particle identification via dE/dx in gas

TOF
V0A
V0C
TPC
Resonance Reconstruction in ALICE

- Decay products as π, K, p identified via PID detectors (TOF, TPC).
Resonance Reconstruction in ALICE

- Decay products as π, K, p identified via PID detectors (TOF, TPC).

- Resonances are reconstructed by calculation of the invariant mass spectrum via the identified decay products.

\[m_{inv} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2} \]

- Combinatorial background is identified by various techniques:
 - Like sign technique,
 - Mixed event technique.
Resonance Reconstruction in ALICE

- Decay products as π, K, p identified via PID detectors (TOF, TPC).

- Resonances are reconstructed by calculation of the invariant mass spectrum via the identified decay products.

\[m_{\text{inv}} = \sqrt{(E_1 + E_2)^2 - (p_1 + p_2)^2} \]

- Combinatorial background is identified by various techniques:
 - Like sign technique,
 - Mixed event technique.

- Mass, width and yield values are extracted from the background subtracted spectrum.

Reconstruction Example: $K^* \rightarrow K^\pm + \pi^\pm$
Resonance Results in ALICE: $K^*\!\!\!^0$

- Production of $K^*(892)^0$ in pp and Pb-Pb collisions.

$K^*\!\!\!^0 \to K^\pm + \pi^\mp$

PHYSICAL REVIEW C 95, 064606 (2017)

S. Yalcin Kuzu 3rd International Iran-Turkey Joint Conference on LHC Physics

8
Resonance Results in ALICE: K^{*0}

- Production of $K^*(892)^0$ in pp, Pb-Pb and Xe-Xe collisions.

pp at $\sqrt{s} = 2.76$ TeV

Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV

Xe-Xe at $\sqrt{s_{NN}} = 5.44$ TeV
Resonance Results in ALICE: ϕ

- Production of $\phi(1020)$ in pp and Pb-Pb collisions.

\[\phi \rightarrow K^+ + K^- \]

pp at $\sqrt{s} = 2.76$ TeV

Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV

(Images of plots showing data and fits for the production of ϕ in pp and Pb-Pb collisions.)
Resonance Results in ALICE: ϕ

- Production of $\phi(1020)$ in pp, Pb-Pb and Xe-Xe collisions.

pp at $\sqrt{s} = 2.76$ TeV

Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV

Xe-Xe at $\sqrt{s_{NN}} = 5.44$ TeV

PHYSICAL REVIEW C 95, 064606 (2017)
Nuclear Physics A, Volume 982, February 2019, Pages 427-430
Resonance Results in ALICE: Mean p_T

pp at $\sqrt{s} = 7$ TeV

- increase from lowest to highest multiplicity event class.

PRC 91, 024609 (2015)
Nuclear Physics A, Volume 982, February 2019, Pages 427-430
Resonance Results in ALICE: Mean $\langle p_T \rangle$

pp at $\sqrt{s} = 7$ TeV

- Increase from lowest to highest multiplicity event class.

- Similar behavior with pp.

p-Pb at $s_{NN} = 5.02$ TeV

PRC 91, 024609 (2015)
Nuclear Physics A, Volume 982, February 2019, Pages 427-430
Resonance Results in ALICE: Mean p_T

- Increase from lowest to highest multiplicity event class.

- Similar behavior with pp.

- Central: Mass ordering of K^{*0}, p and ϕ.

- Peripheral: Split of $\langle p_T \rangle$ for proton and ϕ.

For small systems the violation of mass ordering of $\langle p_T \rangle$ may indicate different behavior for baryons vs. mesons.
Resonance Results in ALICE: Mean p_T

- Increase from lowest to highest multiplicity event class.

- Similar behavior with pp.

- Similar results with Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV.

- Split of $\langle p_T \rangle$ for proton and ϕ at low multiplicity.

For small systems the violation of mass ordering of $\langle p_T \rangle$ may indicate different behavior for baryons vs. mesons.
Baryon/meson and meson/meson ratios have similar trend in central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV.

- p/ϕ ratio is flat in central Pb-Pb as a function of p_T for $p_T < 3-4$ GeV/c.
- Slope of the p/ϕ ratio changes from flat (central) to strong decrease (peripheral collisions, p-Pb and pp).
• Baryon/meson and meson/meson ratios have similar trend in central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV.

• p/ϕ ratio is flat in central Pb-Pb as a function of p_T for $p_T < 3-4$ GeV/c.

• Slope of the p/ϕ ratio changes from flat (central) to strong decrease (peripheral collisions, p-Pb and pp).

• From low to high multiplicity ϕ/π ratio shows similar trend in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV and 5.02 TeV and Xe-Xe at $\sqrt{s_{NN}} = 5.44$ TeV.
Resonance Results in ALICE: Particle Ratios of K^{*0}/K and ϕ/K

K^{*0}/K
- Significant suppression going from p-Pb and peripheral Xe–Xe/Pb–Pb collisions to most central Xe–Xe/Pb–Pb collisions.
- Suppression in central Xe–Xe/Pb–Pb collisions interpreted as due to rescattering of K^{*0} daughters.

ϕ/K
- No significant system-size dependence.
- Due to its long lifetime ϕ yield is not affected as K^{*0}.

Nuclear Physics A, Volume 982, February 2019, Pages 427-430
Resonance Results in ALICE: R_{AA} and Q_{pPb}

For R_{AA}

- No significant energy dependence of $K^{*0} R_{AA}$ in Xe–Xe and Pb–Pb collisions (consistent within uncertainties).
- At high p_T for resonances as well as stable hadrons a strong suppression is observed in most central Pb-Pb collisions.
Resonance Results in ALICE: \(R_{AA} \) and \(Q_{pPb} \)

For \(R_{AA} \):
- No significant energy dependence of \(K^*0 \) \(R_{AA} \) in Xe–Xe and Pb–Pb collisions (consistent within uncertainties).
- At high \(p_T \) for resonances as well as stable hadrons a strong suppression is observed in most central Pb-Pb collisions.

For \(Q_{pPb} \):
- At high \(p_T \) no suppression is observed in p-Pb at \(\sqrt{s_{NN}} = 5.02 \) TeV.
Conclusions and Outlook

Resonances are measured for different collision systems with ALICE at the LHC for large p_T intervals and as a function of multiplicity and centrality.

pp spectra are compared with MC models for K^*0 and ϕ:
- low p_T (<2 GeV/c): all models do not describe data well.
- intermediate p_T: PHOJET is in good agreement with K^*0 data and D6T and ATLAS-CSC tunes of PYTHIA are in good agreement with ϕ data.
- high p_T (>8 GeV/c): all models agree with the data.

A relative increase of $<p_T>$ with multiplicity and mass ordering in central/high multiplicity class of Pb-Pb and Xe-Xe.

p/ϕ: Different than pp and p-Pb, the ratio is flat in central Pb-Pb.

K^*0/K: Suppression going from p-Pb and peripheral Xe–Xe/Pb–Pb collisions to most central Xe–Xe/Pb–Pb collisions, which is a hint of re-scattering effects.

R_{AA}: In central Pb-Pb collisions resonances are strongly suppressed at high p_T and central Xe-Xe results show similar behavior.

Q_{pPb}: No suppression is observed at high p_T in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

More resonances have been studied to probe the properties of the hadronic phase.
Thank you!

This work is supported by TAEK under contract of CERN-A.5.H6.F2-10.