Chaotic Universe Theory

Ekrem Aydiner
İstanbul University

ekrem.aydiner@istanbul.edu.tr

Turkey and Iran
Joint Conference on LHC Physics

10-15 June 2019 - İstanbul
Some questions about Universe

The oldest questions

Why? -> Why was the Universe created?
How? -> How was the Universe created?
When? -> When was the Universe created?

New questions

Evolution? -> How did the Universe evolve?
Future? -> What will happen in the future?
The Content of My Talk

- Gravitation Theories
- Big-Bang Theory
- Problems in Big-Bang Theory
- Is the Matter alone in the Universe?
- What is the simple representation of Universe Dynamics?
- What is the Chaotic Universe Theory?
- Results and importance of the Chaotic Universe Theory?
What is the Gravitation?
Universe Models

- Static Universe Model (Einstein, 1917)
- Expanding Universe Models
- Kinematic Expanding Models
- Cyclic Universe Model
- Plasmic Universe Model
- Big-Bang Model \(\rightarrow\) Big-Bang Theory
The Big-Bang Theory?
Observational Evidences of the Big-Bang Theory

Kozmik arkaplan radyasyon
Penzias ve Wilson (1965)

Li, H, He, Be... gibi hafif elementlerin bolluğu

Kırmızıya kayma
E. Hubble (1929)
Problems in Big-Bang Theory

- Afterglow Light Pattern 400,000 yrs.
- Inflation
- Quantum Fluctuations
- Dark Ages
- Development of Galaxies, Planets, etc.
- Dark Energy Accelerated Expansion
- 1st Stars about 400 million yrs.
- Big Bang Expansion 13.7 billion years
- Big Rip?
- External Expansion?
- Big Crunch?
Some Anomalous in the Universe dynamics?
Is the matter alone in the Universe?
Big-Bang is not a good theory!

Is it possible to make a new theory?

We need a new theory instead of Big-Bang!
Interactions between Dark Energy - Dark Matter

\[\dot{\rho}_{de} + 3H(\rho_{de} + p_{de}) = -Q \]
\[\dot{\rho}_{dm} + 3H(\rho_{dm} + p_{dm}) = Q \]

\[Q = \gamma \rho_{de} \rho_{dm} \]

\[\frac{d\rho_{de}}{dt} = r_1 \rho_{de} - \gamma \rho_{de} \rho_{dm} \Rightarrow \frac{dx_1}{dt} = r_1 x_1 (1 - x_2) \]
\[\frac{d\rho_{dm}}{dt} = \gamma \rho_{dm} \rho_{de} - r_2 \rho_{dm} \Rightarrow \frac{dx_2}{dt} = r_2 x_2 (x_1 - 1) . \]
The simple representation of Universe Dynamics?

- Dark Energy: 73%
- Dark Matter: 23%
- Nonluminous Matter: 3.6%
- Luminous Matter: 0.4%
Interactions between Dark Energy - Dark Matter - Matter

$$\frac{dx_1}{dt} = r x_1 \left(1 - r' x_1 \right)$$ \hspace{1cm} (4a)

$$\frac{dx_1}{dt} = r x_1 \left(1 - \left(r' x_1 + r'' x_2 \right) \right)$$ \hspace{1cm} (4b)

$$\frac{dx_1}{dt} = r x_1 \left(1 - \left(r' x_1 + r'' x_2 + r''' x_3 \right) \right)$$ \hspace{1cm} (4c)

$$\frac{dx_i}{dt} = r_i x_i \left(1 - \sum_{j=1}^{N} \eta_{ij} x_j \right) \quad i = 1, ..., N$$ \hspace{1cm} (5)

$$\frac{dx_i}{dt} = x_i \sum_{j=1}^{3} \alpha_{ij} (1 - x_j)$$ \hspace{1cm} (6)

$$\alpha_{ij} = \begin{pmatrix} -0.5 & -0.1 & 0.1 \\ 0.5 & 0.5 & 0.1 \\ \mu & 0.1 & 0.1 \end{pmatrix}$$ \hspace{1cm} (7)
Interactions between Dark Energy - Dark Matter - Matter
More interactions

\[
\frac{dx_i}{dt} = x_i \sum_{j=1}^{4} \alpha_{ij}(1 - x_j), \quad \alpha_{ij} = \begin{pmatrix}
-0.5 & -0.1 & 0.1 & 0.1 \\
-0.5 & 0.5 & 0.1 & 0.2 \\
0.3 & 0.1 & 0.1 & -0.3 \\
0.1 & 0.1 & 0.1 & 0.1
\end{pmatrix}
\] (8)
Chaotic Oscillation of the Universe

Kaotik Evren Senaryosu

"Büyük Yırtmaç"

"Büyük Çöküş"

"Tekile Zaman"

"Kozmik Zaman"

← Bir Periyot →
Chaotic universe model
Ekrem Aydiner

In this study, we consider nonlinear interactions between components such as dark energy, dark matter, matter and radiation in the framework of the Friedman-Robertson-Walker space-time and propose a simple interaction model based on the time evolution of the densities of these components. By using this model, we show that these interactions can be given by Lotka-Volterra type equations. We numerically solve these coupling equations and show that interaction dynamics between dark energy-dark matter-matter or dark energy-dark matter-radiation has a strange attractor for $0 > w_\gamma > -1$, $w_\phi > 0$, $w_\Theta > 0$ and $w_\xi > 0$ values. These strange attractors with the positive Lyapunov exponent clearly show that chaotic dynamics appears in the time evolution of the densities. These results provide that the time evolution of the universe is chaotic. The present model may have potential to solve some of the cosmological problems such as the singularity, cosmic coincidence, big crunch, big rip, horizon, oscillation, the emergence of the galaxies, matter distribution and large-scale organization of the universe. The model also connects between dynamics of the competing species in biological systems and dynamics of the time evolution of the universe and offers a new perspective and a new different scenario for the universe evolution.

The formation, structure, dynamics and evolution of the universe has always been of interest. It is commonly accepted that modern cosmology began with the publication of Einstein's seminal article in 1917. Applying the general relativity to the entire universe, Einstein suggested that the universe was static and spatially curved. Following from this, to explain the structure and dynamics of the universe, many interesting models based on Einstein model have been proposed such as flat and expanding universe, expanding flat space model, spherical and hyperbolic expanding space, original big-bang model, expanding flat space, kinematic expanding models, oscillating or cyclic universe models, bubble universe and inflation bubble universe models, chaotic inflation model etc. Among these models, the big-bang model has been the most accepted one. This is due to the cosmic microwave background (CMB), and cosmic red shift discovered by Hubble observations as well as observations confirming the abundance of light elements in the universe supporting the big-bang scenario. However, new experimental findings such as Type Ia supernovae (SN1a) data, CMB anisotropy, and large scale structure (LSS) showing that the universe does not only expand but does this with an acceleration makes this cosmic scenario more exciting. There is no explanation to this expansion with an acceleration yet. Cosmologists are still working on new models and scenarios to address this situation. One of the best scenarios attempting this is the dark energy. Unfortunately, there is no confirmation of the physical source of this dark energy. Although the origin of the dark energy is not known yet, it is well known that matter is not the only ingredient of the universe. According to what is known today, the universe is composed of approximately 75% dark energy, 20% cold dark matter, 5% baryonic matter and negligible amount of radiation. To explain the nature of the dark energy, there are various dark energy models and mechanisms such as the cosmological constant Λ (vacuum or dark energy) proposed. The cosmological constant cold dark matter model (LCDM) works very well and is in agreement with a large number of recent observations. However, to state...
Main results of the Chaotic Universe Theory

- suggest a simple differential form to explain dynamic of the universe
- combine big-bang and cyclic universe models
- suggest a continuous universe
- suggest that the universe existed before "singularity"
- solve singularity, cosmic coincidence, big rip, big crunch, flatness, horizon problems
- suggest a simple and physical mechanism for emerging of galaxies
- explain large scale organization and formation of matter in the universe
- explain fractal formation of complex systems in the universe
New open questions!!

- definition of the interactions in particle physics theories
- observation of new particles which responsible interactions in LHC and others
- observation interaction in cosmological scale
- analysis observational data to detect chaotic dynamics of the universe
- definition of physical origin of the dark matter and dark energy
My Cosmology & Gravitation Research Group

- Prof. Dr. Tekin Dereli (Koç University)
- Doç. Dr. Mustafa Sarıșaman (İstanbul University)
- Dr. Işıl Başaran Öz (İstanbul University) Post-Doc
- Özgür Ökcü (İstanbul University)
- Prof. Dr. E Aydıner
- Dr. Derya Gemici Deveci
- Hoda Abdolalizadeh
- Seyit Deniz Han
- Erkan Yılmaz
- Özgür Sevinç
Observational Evidences of the Chaotic Universe Theory
Observational Evidences of the Chaotic Universe Theory
Observational Evidences of the Chaotic Universe Theory
Observational Evidences of the Chaotic Universe Theory
Observational Evidences of the Chaotic Universe Theory
Observational Evidences of the Chaotic Universe Theory
Observational Evidences of the Chaotic Universe Theory
Dr. Mustafa Sarışaman (İstanbul University)
Dr. İşıl Başaran Öz (İstanbul University) Post-Doc
Özgür Ökcü (İstanbul University)
Dr. Derya Gemici Deveci (İstanbul University)
Hoda Abdolalizadeh (İstanbul University)
Seyit Deniz Han (İstanbul University)
Erkan Yılmaz (İstanbul University)
Özgür Sevinç (İstanbul University)
Alper Tunga Aydın (İstanbul University)

Prof Tekin Dereli (Koç Üniversitesi)
Prof Ralf Metzler (Potsdam University)
Top 100 in Physics

Explore our most highly accessed physics articles in 2018. Featuring authors from around the World, these papers highlight valuable research within physics from an international community.

*According to nature.com web analytics, covering January-December 2018

1-25

ARTICLE
OPEN
4 OCT 2018
Scientific Reports

Quantum Artificial Life in an IBM Quantum Computer
U. Alvarez-Rodriguez, M. Sanz ··· E. Solano

ARTICLE
OPEN
15 JAN 2018
Scientific Reports

Chaotic universe model
Ekrem Aydiner
“Kaotik Evren Teorisi Fizikte Paradigma Değişimi Öngörüyor”
Türk bilim insanından yeni evren teorisi: Kaotik Evren
H. Gül KOLAYLI
Scientific Meetings: YEFAK

Yüksek Enerji Fiziği, Astrofizik ve Kozmoloji Çalıştayı 2019

YEFAK 2019
Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models

Ekrem Aydinera,*, Andrey G. Chestyovb, Ralf Metzlerb

a Department of Physics, Istanbul University, 34134 Istanbul, Turkey
b Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany

HIGHLIGHTS

- We examine both the closed and open agent-based kinetic exchange trading economic models.
- Wealth and person distributions are analyzed and the conditions for the Pareto law are determined.
- For open economic systems, a stretched exponential law for time evolution of total money is found.
- Time decay of total money does not depend on the density of trap agents, but on saving propensity.
- The relaxation exponents of the total money for fixed and distributed saving schemes are obtained.
Money distribution in agent-based models with position-exchange dynamics: the Pareto paradigm revisited

Ekrem Aydiner1,a, Andrey G. Cherstvy2, and Ralf Metzler2

1 Department of Physics, Istanbul University, 34134 Istanbul, Turkey
2 Institute for Physics \& Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany

Received 15 November 2018 / Received in final form 11 February 2019
Published online (Inserted Later)
© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature, 2019

Abstract. Wealth and income distributions are known to feature country-specific Pareto exponents for their long power-law tails. To propose a rationale for this, we introduce an agent-based dynamic model and use Monte Carlo simulations to unveil the wealth distributions in closed and open economical systems. The standard money-exchange scenario is supplemented with the position-exchange agent dynamics that vitally affects the Pareto law. Specifically, in closed systems with position-exchange dynamics the power law changes to an exponential shape, while for open systems with traps the Pareto law remains valid.
Quantum heat engine model of mixed triangular spin system as a working substance

Ekrem Aydiner*, Seyit Deniz Han

*Department of Physics, Istanbul University, Istanbul Tr-34134, Turkey

HIGHLIGHTS

- A quantum Otto heat engine is established.
- The work output and efficiency are calculated.
- The work and efficiency are discussed for all different magnetic phases.
Joule–Thomson expansion of Kerr–AdS black holes

Özgür Ökcüa, Ekrem Aydinerb

Department of Physics, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Turkey

Received: 16 September 2017 / Accepted: 29 January 2018 / Published online: 10 February 2018
© The Author(s) 2018. This article is an open access publication

Abstract In this paper, we study Joule–Thomson expansion for Kerr–AdS black holes in the extended phase space. A Joule–Thomson expansion formula of Kerr–AdS black holes is derived. We investigate both isenthalpic and numerical inversion curves in the \(T–P \) plane and demonstrate the cooling–heating regions for Kerr–AdS black holes. We also calculate the ratio between minimum inversion and critical temperatures for Kerr–AdS black holes.

with conventional thermodynamic systems, studying the AdS black holes is another important reason for the AdS/CFT correspondence [10]. Considering the cosmological constant as thermodynamic pressure,

\[
P = -\frac{\Lambda}{8\pi},
\]

and its conjugate quantity as thermodynamic volume,
Joule–Thomson expansion of the charged AdS black holes

Özgür Ökcüa, Ekrem Aydinerb
Department of Physics, Faculty of Science, Istanbul University, Vezneciler 34134 Istanbul, Turkey

Received: 3 October 2016 / Accepted: 31 December 2016 / Published online: 13 January 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In this paper, we study Joule–Thomson effects for charged AdS black holes. We obtain inversion temperatures and curves. We investigate similarities and differences between van der Waals fluids and charged AdS black holes for the expansion. We obtain isenthalpic curves for both systems in the T–P plane and determine the cooling–heating regions.

\begin{equation}
P = -\frac{\Lambda}{8\pi},
\end{equation}

and thermodynamic volume $V = (\frac{\partial M}{\partial P})_{s, Q, J}$, this analogy gains more physical meaning. Particularly, in the extended phase space (including P and V terms in the first law of black hole thermodynamics), charged AdS black holes phase...
Investigation of Bose-Einstein Condensates in q-Deformed Potentials with First Order Perturbation Theory

Ferhat Nutku and Ekrem Aydiner*

Department of Physics, Faculty of Science İstanbul University, Vezneciler, İstanbul, 34134, Turkey

(Received October 9, 2017; revised manuscript received December 8, 2017)

Abstract The Gross-Pitaevskii equation, which is the governor equation of Bose-Einstein condensates, is solved by first order perturbation expansion under various q-deformed potentials. Stationary probability distributions reveal one and two soliton behavior depending on the type of the q-deformed potential. Additionally a spatial shift of the probability distribution is found for the dark soliton solution, when the q parameter is changed.

PACS numbers: 03.75.Lm, 67.85.Hj, 67.85.Jk DOI: 10.1088/0253-6102/69/2/154

Key words: Bose-Einstein condensates, solitons, q-deformed potential, perturbation theory

1 Introduction

Bose-Einstein condensation (BEC) of ultracold confined interacting dilute bosonic gases have attracted a lot of attention both theoretically and experimentally.[1–3] BEC in a 3D box is a second order phase transition, ground state populations and heat capacity values are investigated in Ref. [19]. Furthermore, in Ref. [19], T_c and condensate fraction expressions have been calculated for weakly interacting Bose gas in an effective external potential.
A simple model for non-exponential anelastic Snoek relaxation and internal-friction peak

Ekrem Aydiner

Department of Physics, Faculty of Science, İstanbul University, Tr-34134 İstanbul, Turkey

Key words: Stretched exponential, Non-Markovian processes, Anelastic relaxation

* Corresponding author: e-mail ekrem.aydiner@istanbul.edu.tr

In this study, we briefly introduce operator formalism which is used to model Debye-type Snoek relaxation with three-level jumping based on Markovian framework. We generalize this formalism to the non-Markovian process to model non-exponential KWW Snoek relaxation and internal friction of real bcc metals. By using this formalism we obtain KWW Snoek relaxation, frequency and temperature dependence of internal friction depend upon β parameter. For $\beta = 1$ we show that relaxation is exponential which obey to Debye law and frequency and temperature dependence of internal peak are represented by single Debye peak. However, for $0 < \beta < 1$ we show that relaxation is given by KWW form and internal friction deviates from single Debye peak. We conclude that β does not purely correspond to concentration of interstitial atoms, which represents...
Repulsive Casimir force in Bose-Einstein condensation for trapped Bose gas

Ekrem Aydiner*

Department of Physics, Faculty of Science Istanbul University, 34134, Istanbul, Turkey
(Dated: January 3, 2019, Moda)

We study the Casimir force for ideal Bose gas trapped with harmonic potential between two parallel plates with Zarembo and a-periodic boundary conditions. We show that Casimir force of harmonically trapped Bose gas for these boundary conditions is repulsive in Bose-Einstein condensation contrary to periodic, Dirichlet or Neumann boundary conditions where Casimir force is attractive.

I. INTRODUCTION

Casimir force is a non-classical attractive force caused by quantum vacuum fluctuations in the electromagnetic field between two uncharged parallel conducting plates [1]. Casimir effect has been extensively studied for various types of geometries and boundary conditions in field theoretical framework [2, 3]. On the other hand, Casimir like force due to thermal fluctuation in quantum gases was first reported in the seminal work of Martin and Zagrebnov in the statistical mechanics framework [5]. This force is different type of the Casimir force, however, it also appears depend upon presence of the boundary conditions like field theoretical Casimir force. After this seminal work, it has been thoroughly studied [4–6, 8, 19, 23][5-10] in statistical mechanics formalism.
Particle creation in FRW with variable q, G and Λ

Özgür Sevinç · Ekrem Aydiner

Received: date / Accepted: date

Abstract In this study, the mechanism of particle creation using varying gravitational and cosmological constants and deceleration parameter has been studied for Friedman-Robertson-Walker at high dimensions to explain early deceleration and present accelerating phases. In order to investigate the dynamics of two phases, we have considered two different ansatz for the scale factor of the form $a(t) = \sqrt{t^a e^t}$ and $a(t) = \sqrt{\sin h(kt)}$ which are general form of power law expansions. Firstly we modified d-dimensional field equations depend on time introduce general formulation of particle creation and entropy generation mechanisms. We investigate time dependence of the several cosmological constant and quantities such as particle creation ϕ and entropy S.
Holographic Dark Energy and Dark Matter Interaction in Anisotropic Bianchi V-Type Universe

Derya Gemici-Deveci • Ekrem Aydiner

Abstract In this Letter, we considered a cosmological model of Holographic Dark Energy (HDE) interacting with Dark Matter (DM) in the case of anisotropic Bianchi Type-V universe model. As the Universes expansion factor as called scale factor is used the stretched exponential form that is proposed recently by Silva [Progress in Physics, 10(2), (2014), 93-97]. The corresponding cosmological parameters are calculated and the effective equation of states (EoS) are calculated with anisotropic additions. The results are analyzed to explain the evolution of the Universe at the matter dominated era and DE dominated era and then the results are compared with the observational results and theoretical studies in the literature.

2003), baryon acoustic oscillations, measurements of the large scale structure of the universe, the Hubble constant and the Sloan Digital Sky Survey. Following the major results of the mentioned studies, the universe is dominated by DE at present and this situation is causing cosmic acceleration with positive energy density but negative pressure that violates the strong energy conditions and the violation brings a reverse gravitational effect. However, the exotic nature of DE is still unknown. Therefore modified gravitation theories have taken significant location as alternative to DE to explain the early inflation and late time acceleration of the universe. Some of them are a cosmological constant model (Cadwell 2003), quintessence
GUP-Corrected van der Waals Black Holes

Özgür Ökçü

Department of Physics, Faculty of Science,
İstanbul University, İstanbul, 34134, Turkey

(Dated: May 14, 2019)

Abstract

In this paper, we study the generalized uncertainty principle (GUP) effects for the van der Waals (vdW) black holes. We use the GUP-corrected black hole temperature to obtain the modified vdW black hole solution. We also study the thermodynamics and phase transition of GUP-corrected vdW black holes. We show that small black holes are unstable when GUP is taken into account.

PACS numbers: 04.60.Bc, 04.70.s, 05.70.a
<table>
<thead>
<tr>
<th>Topic</th>
<th>Location</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>My Recent Talks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bose-Einstein Fazında itici Casimir Etkisi, Kuantum Teknolojileri Çalıştayı, Koç ve İzzet Baysal Üniversitesi, Bolu, Davetli Konuşmacı,</td>
<td>Türkiye, 2019</td>
<td></td>
</tr>
<tr>
<td>Kuantum Fizği ve KuantumTeknolojileri, Araştırma Kültür Vakfı, Ankara, Davetli Konuşmacı,</td>
<td>Türkiye, 2019</td>
<td></td>
</tr>
<tr>
<td>Konuşmacı,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeni Fizik Arayış: Kaotik Evren Teorisi, Doğu Akdeniz Üniversitesi, KKTC, Davetli Konuşmacı,</td>
<td>KUZEY KIBRIS TÜRK CUM., 2019</td>
<td></td>
</tr>
<tr>
<td>Yoğun madde fiziğinden ekonomi fiziğine: Gelir dağılmının modellenmesi - İstanbul Yoğun Madde Fiziği Toplantısı 13-14 Mayıs 2019 İstanbul</td>
<td>Türkiye, 2019</td>
<td></td>
</tr>
<tr>
<td>Üniversitesi, Davetli Konuşmacı,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evren hakkında bildiklerimiz - IELEV 10 Ocak 2018, Davetli Konuşmacı,</td>
<td>Türkiye, 2018</td>
<td></td>
</tr>
<tr>
<td>KAOTİK EVREN MODELİ, EVRİM AĞACI YOUTUBE KANALI 24 Kasım 2018 https://www.youtube.com/watch?v=ik4cCBc0qo, Davetli</td>
<td>Türkiye, 2018</td>
<td></td>
</tr>
<tr>
<td>Konuşmacı,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kozmolojinin derin problemleri ve Kaotik Evren Teorisi - The deep problems of the cosmology and chaotic universe theory -- Disordered System</td>
<td>Türkiye, 2018</td>
<td></td>
</tr>
<tr>
<td>Sympozym, Davetli Konuşmacı,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaotik evren modeli, Yüksek Enerji Fiziği İstanbul Toplantısı (YEFIST2018), Mimar Sinan Güzel Sanatlar Üniversitesi İstanbul 27-28 Nisan 2018, Davetli</td>
<td>Türkiye, 2018</td>
<td></td>
</tr>
<tr>
<td>Konuşmacı,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veri Biliminde Karmaşıkliğin Fiziksel Doğası . Karmaşık Sistemler ve Veri Bilimi Çalıştayı- Bilgi Üniversitesi 26 Mayıs 2018, Davetli Konuşmacı,</td>
<td>Türkiye, 2018</td>
<td></td>
</tr>
<tr>
<td>Türkiye, 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetik Nanoparçacıkların Relaksasyon Dinamiği . VII. Yoğun Madde Fiziği İzmir Toplantısı- İYTE İzmir 13 Nisan 2018, Davetli Konuşmacı,</td>
<td>Türkiye, 2018</td>
<td></td>
</tr>
<tr>
<td>Türkiye, 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaotik evren modeli. YEFAK 2018 İstanbul Ü. 8-9 Şubat 2018. Yüksek Enerji Fiziği, Astrofizik ve Kozmoloji Çalıştayı, Davetli Konuşmacı,</td>
<td>Türkiye, 2018</td>
<td></td>
</tr>
<tr>
<td>Türkiye, 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekrem Aydın'ın Kaotik Evren Modeli: Parçacık Fiziği ve Kozmoloji Bağlamında Tartışmalar, II. Yıldız Fizik Günleri, Yıldız Teknik Üniversitesi</td>
<td>Türkiye, 2018</td>
<td></td>
</tr>
<tr>
<td>İstanbul 10-11 Mayıs 2018, Davetli Konuşmacı,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Türkiye, 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaotik Evren Modeli (Özgen Berkol Doğan Küpühanesi), Davetli Konuşmacı,</td>
<td>Türkiye, 2018</td>
<td></td>
</tr>
</tbody>
</table>
Thank you for your attention!