



## **NCSR 'Demokritos', Institute of Nuclear & Particle Physics**

**Staff** G. Anagnostou, P. Asenov G. Daskalakis, P. Assiouras A. Kyriakis, D. Loukas\*

**Ph.D. Students**  G. Paspalaki

**CMS Students**  A. Papadopoulos

**Engineers** I. Kazas

\* Institution Team Leader



### **CMS Tracker Phase II Αctivities at NCSR DEMOKRITOS**

- *Sensor & Process Quality Control for Outer Tracker*
- *Data Acquisition for the Pixel detector*
- *CMS Particle Telescope*



### The CMS experiment at the  $HL-LHC$



#### o *Instantaneous Lumi: up to 7 x 1034cm-2 s-1*



o *Integrated Lumi: 3000 fb-1*

- o *Radiation levels up to:*
- o *2 x 1016 neq cm-2*





## **CMS Phase II Upgrades**



### **Barrel EM calorimeter**

EndCap EM&Hadron Calorimeter - new FE/BE electronics (increased time resol.)

complete replacement with HGCal

- Lower operating temperature (8 deg.)

### /012230 45/**-DAQ**

- Hardware Track info in L1
- L1 Trigger latency 12.5 μs
- HLT output 7.5 KHz

### **MIP Timing Detector**

- 30 ps precision
- Just outside the Tracker
- -LySo:Ce readout by SiPMs

#### Hybrid Photodiodes (HPDs) -> SiPMs **SILICON TRACKER BRIL** & luminosty livels (100 x 150 um<sup>2</sup>) Luminosity Telescope: ~ 200k Si pixels (100 x 150 um<sup>2</sup>)  $~66M$  channels Beam Monitors: 80 diamond sensors, 40 quartz counters Microstrips (80-180um) & luminos **BRIL**  $200m^2$  ~9.6M channels **Pixels CRYSTAL ELECTROMAGNETIC Tracker CALORIMETER (ECAL) ECAL** 6k scintillating PbWO, crystals **HCAL** Solenoid **PRESHOWER Steel Yoke** licon strips (6cm x 2mm) Muons ~137k channels **Beam radiation** Beam radiation **STEEL RETURN YOKE**  $-13000$  tonnes SUPERCONDUCTING **SOLENOID** Niobium-titanium coi carrying ~18000 A **ORWARD CALORIMETER** Steel + quartz fibres -2k channels **HADRON CALORIMETER (HCAL)** : 14000 tonnes **Total weight** MION CHAMBERS Brass + plastic scintillator Overall diameter  $: 15.0 m$  $~\sim$ 7k channels Barrel: 250 Drift Tube & 480 Resistive Plate Chambers **Overall length** 28.7 m Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers **Magnetic field**  $: 3.8T$

### **New Tracker**

- Rad. tolerant increased granularity
- 40 MHz selective readout in Outer Layer
- Extended coverage to  $\eta$ =4

### **Muon System**

- New DT & CSC FE-BE electronics
- Extended RPC coverage 1.6 < η < 3

**Hadron Calorimter** 

- Muon tagging 2.4 < η <3

**Common system & Infrastructure**

system

Common

8

Infrastructure



#### $1.20$  expected performance with the upgraded  $\sim$ **EXPRESSED Highlights of expected performance CMS** Phase-2 tracker and the reduction of the material budget results in a significantly improved *p*<sup>T</sup>  $r_{\rm eff}$  is as shown in the figure resolution in the transverse impact parameter resolution is also improved by  $r_{\rm eff}$







## **The Phase 0 CMS Tracker**





*Sensor Technology : p-in-n Design occupancy* : *1-2% Outer cell size : ~20cm x 100-200µm Inner cell side : ~10 cm x 80 cm Pixel cell size:*  $100 \ \mu m^2 \ x \ 150 \ \mu m^2$  (66M)  $\mu m^2$  (66M)  $\frac{100}{2}$  athens 5

*Operation : -15 oC Signal / noise: ~20 (above 10 after radiation) Radiation tolerance:*  $\sim 1.5 \times 10^{14}$  *neg/cm<sup>2</sup>* 



### **The CMS Phase 1 Pixel**

*The Phase 0 pixel replaced during LHC winter shutdown 2016/2017*







The  $DC - DC$  Case ...





**Based on the FEAST2 ASIC**  $\boldsymbol{developed}$  by the CERN EP - ESE group

*"After one year of CMS PIXEL 1 operation 35% of the DC-DC converters were found by a damage mechanism that… did not prevent them to work correctly"\**



The problem is believed to be due to a transistor that develops a radiation induced leakage current, which is amplified by a current mirror by a factor of about 500 driving a 3.3 V capacitor to 12 V.



## *Limitations of Current CMS Tracker*





Apriul 20, 2019 HEP2019, Athens 8



## **Total Tracker Replacement**





### Phase II Tracker layout





*Red: Strip-Strip (2S) modules Blue: Pixel-Strip (PS) modules Green: pixel 200 μm thick sensors*

*Outer Tracker based on 2 type modules only* 2S strip-strip double-layers

~8400 modules ~34M channels  $^{\sim}$ 155 $^{\sim}$ 

PS strip-strixel double-layers ~7000 modules ~230M channels  $~^{\sim}62m^2$ 



## Principle of Pt Measurement in OT





 $r_1 \approx r_2 \approx r \approx 0.5$  m Typical Values:  $d \approx r_2 - r_1 \approx 1$  mm  $Δφ ≈$  $\Delta x$  $\boldsymbol{r}$  $cos\Delta\varphi \approx 1 \; sin\Delta\varphi \approx \Delta\varphi$ 







concept by Lutz<sub>,</sub>Feld











## The 2S Module : Two Strips (2S)







### The PS Module: Strip-Pixel (StriXel)







## Beam Test of 2S P, mini-modules



 $\frac{3.2}{p_T^2(GeV)}$ 

3





天照<br>天照<br>八月 **N16** IEK



## **Silicon Sensors for the CMS Phase II OT**



### *Unique provider : Hamamatsu !*

We are examining two options:

- FZ290 μm thick sensors
- FZ240 μm thinned sensors Decision to be taken by end of summer 2019

■ FZ290 material irradiated with neutrons and 23MeV protons Annealing study performed for most fluences:











## PHASE II UPGRADE OF THE CMS SILICON TRACKER

## **Activities of the Demokritos Group**

- Ø *Simulations*
- Ø *Electronics*
- Ø *Sensors*
- Ø *Beam Tests*







ü *3D Simulation of silicon & pixel capacitances\**



#### *Fast calculation by a technique that reduces the 3D Laplace equation to a 2D problem:*

**Discretization of the two dimensions that are parallel to the junction while keeping the vertical dimension continuous.** 



*\*For details see*: *S. Kavadias, K. Misiakos and D. Loukas IEEE Trans. Nucl. Sci., vol 41, no 2, p. 397, 1994*  April 2019, Athens 19, 2019 HEP2019, Athens 19, 2019 Here is a state of the sta



## **Electronics Test System**



### ü *Test setup for evaluation of the CBC2 VLSI Chip*



SLCG52Running Ph2\_ACF HEP2019, Athens 20



## **Electronics Test System**



*DEMOKRITOS" is contributing to the development of the firmware for the Inner Tracker μDTC, which is the CMS DAQ testing and development platform for the RD53A chip.*



#### RD53 chip



### *Test Bench system at Demokritos*





### *Phase II Pixel CMS Firmware*









#### *Phase II Pixel CMS Midlleware*







## *Sensor Quality & Process Quality Control*













#### **Sensor Quality & Process Quality Control (SQC), Sensor Quality & Process Quality Control** specifies at which state of the parameter  $\Gamma$  $\blacksquare$





 $\mathbf{F}$  -flow of sensors and test structures during the quality assurance program for the  $\mathbf{F}$ Flow of sensors and test structure control during the quality assurance program

#### $\overline{\phantom{a}}$ Table of electrical specifications for the sensors  $\blacksquare$ Table of electrical specifications for the sensors



<sup>1</sup> Only for a smaller sample of sensors, approximately 1% of the full quantity.



## *SCQ: Automatic Measurements*





**2S with reduced number of 127 strips.**

Apriul 20, 2019 **HEP2019**, Athens **HEP2019**, Athens **27** 



*Process Quality Control*



## PROCESS PARAMETERS





*Process Quality Control*



### Flute test structures





### *Process Quality Control*



## 4-Point Resistivity Measurements

(Infineon VE711408\_08\_16)











**A Geant4 Study of Residuals and Hit Multiplicity in Silicon Strip Sensors for the CMS Phase-II Upgrade**





### **1. Overview**

• Upgrade of the LHC to the HL-LHC: up to 3000 fb-1 integrated luminosity [1] • New silicon tracking devices, improved radiation hardness

Test beams: study the performance of silicon sensors, also under irradiation . A new beam line at cyclotron CYRCÉ (mid 2019, 25 MeV protons) at IPHC-Strasbourg: testing CMS tracker modules (performances and the DAQ system) with high rates of particles and for large energy depositions [2] <sup>l</sup> Studying the new setup is critical: performing a Geant4 simulation of the interaction between a 25 MeV proton beam and the silicon sensors [3], [4]



Ma



#### **2. The New CYRCÉ Beamline**

<sup>l</sup> Energy (fixed): 16-25 MeV; dispersion: ΔE = 100 keV <sup>l</sup> Particle: Protons  $\blacksquare$ Intensities: max 10<sup>12</sup> p/s, min 10<sup>2</sup> p/s

 $\cdot$  Time micro-structure: 11.75 ns  $\rightarrow$  85.085 MHz, just about twice the nominal LHC bunch collision rate = 40 MHz [2]; a "kicker" could be used to have exactly 85.085 MHz/2.

#### **3. Simulated Geometry and Physics Processes**

. 2S module DUT and Phase-I BPIX modules as part of the telescope [1]

. 25 MeV proton beam in z-direction. Origin: Center of World. Scintillator: z = -10 cm. Particle gun: (-1, 0, -20)

#### cm <sup>l</sup> Run: 100000 events

<sup>l</sup> Physics processes included in the simulation: 1) Ionizations, 2)Bremsstrahlung, 3) Pair production, 4) Annihilation, 5)Photoelectric effect, 6) γ production, 7) Compton scattering, 8) Rayleigh scattering, 9) Klein-Nishina model for the differential cross section [4]



#### **6. Estimation of the Resolution of 2S Sensors**  $\bullet$  Impact points  $Q_{pixel} = A$ , D;  $Q_{strip} = B$ , C, where A, B, C, D defined above Weight wpi for each pixel with a hit = charge collected in the current pixel over the total

charge collected in all pixels of the current module that have counted a hit in the current event; weight ws for each strip with a hit = 1 over the total number of strips of the current sensor that have counted a hit in the current event (no charge info from CMS Binary Chip)

. Noixels: the total number of pixels with a hit in the current module. Poi: the geometric center of the front surface (in the way of the beam) of the i-th pixel that has counted a hit; Nstrips: the total number of strips with a hit in the current sensor, Psi: the geometric center of the front surface (in the way of the beam) of the i-th strip that has counted a hit



*y-residuals' distribution is a superposition of two effects: discrete positions due to the signal from the strips (B and C positions), and continuous positions from the track extrapolation through the DUT (B' and C' positions). Multiple scattering accounting for the differences between B/C and B'/C', respectively.*



#### **7. Hit Multiplicities of Simulation Components**

<sup>l</sup> Hit multiplicity = the number of strips/pixels per sensor/module, respectively, with a hit in a single event ( + cluster size for strips) **.** For each of the sensors of the 2S module and the pixel modules of the telescope: hit multiplicity computed for a run of 100000



14.

<sup>l</sup> Small deflection angle in the proposed telescope system (< 0.3 rad) for 25 MeV protons <sup>l</sup> Similar hit multiplicities for sensors regardless of energy

<sup>l</sup> A novel simulation algorithm for the estimation of multiple scattering angles, residuals and energy deposition per strip/pixel for any test beam system and telescope containing pixel and

**References** (1) CMS collaboration, 2017 The phase-2 upgrade of the CMS tracker, CERN-LHCC-2017-009, CERN, Geneva Switzerland, |CMS-TDR-17-001]<br>IZI P. Marchand. A. Ouadi. M. Pelicioli. D. Brasse. Cvrcé. un cvclotron gour la recherche e

[3] S. Agostinelli et. al., Geant4: A sim ulation toolkit, Nucl. Instrum . Meth. A , vol. 506, no. 3, pp. 250-303, 2003.

[4] Allison, John et al., Geant4 developments and applications - IEEE Trans.Nucl.Sci. 53 (2006) 270 SLAC-PUB-11870<br>[5] H. Bethe und J. Ashkin in "Experimental Nuclear Physics, ed. E. Segré, J. Wiley, New York, 1953, p. 253

#### **4. Energy Deposition in Silicon Sensors**

- Energy lost by primary protons: a) deposited energy in the material of the detectors; b) kinetic energy of secondary (newly created by physics processes) particles
- . 25 MeV protons: stopped by about 3 mm of silicon (as expected from Bethe formula [5]) and deposit large amounts of energy [6] <sup>l</sup> Goal: To collect info regarding the deposited energy per sensor of DUT/pixel module
- <sup>l</sup> 5σ noise threshold: at 5000 e- for 2S strips and at 1000 e- for pixels
- <sup>l</sup> For each event: stored energy in each strip/pixel, respectively, calculated; when dividing this energy by the energy required for a single electron-hole production in silicon (= 3.67 eV) charge collected in each strip/pixel (measured in electrons) obtained
- . If this charge exceeds the threshold of 5000/1000 electrons, for a strip/pixel respectively, we consider that we have got a hit in the examined strip/pixel in the current event

*Energy deposited in silicon material and energy of secondaries for Sensor 1 for* 



Left: Energy stored in the volume of Sensor 1 from the passage of a proton (blue) and the amount of energy transformed to kinetic energy of newly produced<br>secondaries due to the physics processes (red). Right: The sum of t made between the 25 MeV beam of the beam line at IPHC and an MIP beam of 50 GeV protons (inset). On all the vertical axes: Number of entries for a run of<br>100000 events.

#### **5. Multiple Scattering of Protons**

<sup>l</sup> A, B, C, D points defined as entrance points of primary protons in the first pixel module, the first 2S sensor, the second **8. Outlook** 2S sensor and the second pixel module, respectively; they all lie on the front surfaces of each compnent in the way of the beam

. Geant4 returns the real (extrapolated) entrance positions An attempt made to perform a local reconstruction: the reconstructed entrance points correspond to those that could be measured in reality

Apriul 20, 2019 Preasured in reality and the calculation of reconstructed entrance points to estimate the detector and  $9$ , Atherity sensors of reconstructed entrance points to estimate the detector  $20.19$ , Atherity

*This work has received financial support by the Hellenic Foundation for Research & Innovation.*





# particle

Level of deposited energy  $\Box$  .

## Historic Data Quality Monitor

ØThe Historic Data Quality Monitor (HDQM) of the CMS experiment is a framework developed by the Tracker group of the CMS collaboration that permits a web-based monitoring of the time evolution of interesting quantities (i.e. signal to noise ratio, cluster size) in the Tracker Silicon micro-strip and pixel.

 $\triangleright$ The tool run smoothly during 2018 data taking period and was documented as an internal note and also presented in CHEP2018, Sofia Bulgaria

Available on CMS information server

**CMS IN -2018/004** 

Available on CMS information server

**CMS** Internal Note

The content of this note is intended for CMS internal use and distribution only

14 December 2017 (v5, 23 May 2018)

#### Historic Data Quality Monitor (HDQM) Tool for the **CMS Tracker**

Daniel Duggan<sup>a</sup>, Francesco Fiori<sup>b</sup>, Hassan Halil<sup>c</sup>, Tomas Hreus<sup>d</sup>, Aristotelis Kyriakis<sup>e</sup>, Dimitrios Loukas<sup>e</sup>, Alkis Papadopoulos<sup>e</sup>, Alessandro Rossi<sup>f</sup>, Uridah Sami Ahmed<sup>c</sup>

<sup>a</sup> Fermi National Accelarator Laboratory (USA), <sup>b</sup> National Taiwan University (TW), <sup>c</sup> National University of Sciences and Technology (PK), d Universitaet Zuerich (CH), e Nat. Cent. for Sci. Res. Demokritos (GR), f Universita e INFN, Perugia (IT)

#### **Abstract**

Monitoring the time evolution of sensitive quantities is fundamental to LHC experiments. It permits keeping control on data quality during LHC running and also effectively checking the influence on data of any detector calibration performed during the year. The Historic Data Quality Monitor (HDQM) of the CMS experiment is a framework developed by the Tracker group of the CMS collaboration that permits a web-based monitoring of the evolution of measurements (S/N ratio, cluster size) in the Tracker Silicon micro-strip and pixel detectors. The framework provides a way to build and deploy trend plots based on two steps of actions. In the first step data are retrieved from the offline DQM data base periodically via a cron scheduled job and a list of datasets is produced. In the second step, the web interface dynamically and interactively produces the trend plots from the datasets. The overall organization of the tool will be presented along with its internal structure and representative examples. Finally the istelled of or the fluxible implementation of the HDQM in the other sub-detectors of the HEP2019, Athens<br>CMS experiments will be described.

#### A Historic Data Quality Monitor (HDQM) tool for the CMS Tracker Detector

**The Compact Muon Solenoid Experiment** 

**Conference Report** 

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Aristotelis Kyriakis for the CMS Collaboration

#### **Abstract**

Monitoring the time evolution of data related observables is important for the successful operation of the LHC experiments. It permits keeping control on data quality during LHC running and also effectively checking the influence on data of any detector calibration performed during the year. The Historic Data Quality Monitor (HDQM) of the CMS experiment is a framework developed by the Tracker group of the CMS collaboration that permits a web-based monitoring of the time evolution of interesting quantities (i.e. signal to noise ratio, cluster size) in the Tracker Silicon micro-strip and pixel.

#### **CMS CR -2018/285**



17 October 2018 (v3, 29 October 2018)



# *Greek Core Contribution*



*The Phase II CMS Tracker Upgrade* :

- *10 years of R&D*
- *Over 100 MCHF core cost*
- *1.4 M CHF foreseen Greek contribution*





# *Backups*



#### *Tracker Material Budget*



Figure 6.2: Material budget inside the tracking volume estimated in units of radiation lengths, comparing the Phase-1 (left) and the Phase-2 (right) detectors. The material in front of the Inner Tracker sensors is shown in brown, that inside the Inner Tracker tracking volume in yellow, that between IT and OT sensors in green, and that inside the Outer Tracker tracking volume in blue. The histograms are stacked.