A new mechanism for dynamical nonperturbative generation of elementary fermion masses

Petros Dimopoulos

Università di Roma "Tor Vergata"

HEP 2019 - Conference on Recent Developments in High Energy Physics and Cosmology NCSR "DEMOKRITOS", April 17-20, 2019

KORKA SERKER ORA

List of publications

- S. Capitani, P.D., M. Garofalo, R. Frezzotti, B. Kostrzewa, F. Pittler, G.C. Rossi, C. Urbach A novel mechanism for dynamical generation of elementary fermion mass: lattice evidence sub. to PRL, arXiv:1901.09872 [hep-th]

- R. Frezzotti and G.C. Rossi

Nonperturbative mechanism for elementary particle mass generation PRD 92 (2015) 054505

- R. Frezzotti. M. Garofalo and G.C. Rossi

Nonsupersymmetric model with unification of electroweak and strong interactions PRD 93 (2016) 105030

- S. Capitani, G.M. de Divitiis, P.D., M. Garofalo et al. Non-perturbative generation of elementary fermion masses: a numerical study PoS LATTICE2018, arXiv:1811.10327 [hep-lat]

- S. Capitani, G.M. de Divitiis, P.D., M. Garofalo et al. Testing a non-perturbative mechanism for elementary fermion mass generation: lattice setup EPJ Web Conf. 175 (2018) 08008

- S. Capitani, G.M. de Divitiis, P.D., M. Garofalo et al. Testing a non-perturbative mechanism for elementary fermion mass generation: Numerical results EPJ Web Conf. 175 (2018) 08009

KORKA SERKER ORA

- S. Capitani, P.D., M. Garofalo, R. Frezzotti et al. Check of a new non-perturbative mechanism for elementary fermion mass generation PoS LATTICE2016 (2016) 212

- R. Frezzotti and G.C. Rossi Dynamical mass generation PoS LATTICE2013 (2014) 354

Outline

- Motivation
- Dynamical generation of elementary fermion masses
- A toy-model
- Lattice study of the toy-model
- Numerical evidence giving support to the mechanism

KORK ERKER ADE YOUR

• Conclusions & Outlook

Motivation

- **•** The double face of the **SM**
	- successful, renormalisable quantum field theory, for description and predictions in the EW and strong interaction physics.
	- **incomplete**: several fundamental phenomena are not satisfactorily or not at all described by/within it:
	- neutrino masses and mixings
	- matter-antimatter asymmetry and need for stronger CP violation
	- dark matter & energy
	- Higgs mechanism trades masses for Yukawa couplings
	- masses are accomodated by fitting to experimental data
	- unnaturalness of the higgs mass
	- huge mass hierarchy e.g. $m_e \sim 10^{-6} m_t$
	- large number of input parameters $(O(20) +$ neutrino sector)

• our focus: a deeper insight into the elementary particle mass origin.

KORK ERKER ADE YOUR

Dynamical generation of elementary fermion mass

• Mechanism occurs in strongly coupled gauge fermion interactions.

Based on dynamical χ SB effects similar to those generating $\langle \bar{q}q \rangle \neq 0$.

• Under assumption of symmetry enhancement chiral breaking effects that are naively suppressed (irrelevant) trigger non-perturbative (NP) dynamical mass generation.

 \star Alternative to the Higgs mechanism.

[R. Frezzotti, G.C. Rossi PRD (2015)]

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Toy-model

- A simple toy-model where the mechanism can be realised:
	- $SU(N_f = 2)$ doublet of strongly $(SU(3))$ interacting fermions coupled to scalars via Yukawa and Wilson-like terms.
	- Enlarged chiral symmetry acting on fermions and scalars. Fermionic chiral symmetry explicitly broken.
	- Physics depends crucially on the phase (Wigner or NG).
	- Enhancement of symmetry (refers to naturalness concept by 't Hooft).
	- $\bullet\,$ leads to elementary fermion mass: $m_Q = O(\alpha_s)\Lambda_s,$ $(\Lambda_{\rm s}$ RGI strong scale).
- Intrinsic NP character of the mechanism:
- \rightarrow Numerical investigation employing lattice methods is necessary.

KORKAR KERKER EL VOLO

 \rightarrow The proposed BSM mechanism can be falsified.

Toy-model

 $\mathsf{QCD}_{N_c=2}$ + Scalar field + Yukawa + (d = 6) Wilson-like

$$
\mathsf{L}_{\mathsf{toy}} = \mathsf{L}_{\mathsf{kin}}(\mathsf{Q},\mathsf{A},\Phi) + \mathsf{V}(\Phi) + \mathsf{L}_\mathsf{Y}(\mathsf{Q},\Phi) + \mathsf{L}_\mathsf{W}(\mathsf{Q},\mathsf{A},\Phi) \; \cdot
$$

$$
L_{kin}(Q, A, \Phi) = \frac{1}{4}(F \cdot F) + \overline{Q}_L \gamma_\mu D_\mu Q_L + \overline{Q}_R \gamma_\mu D_\mu Q_R + \frac{1}{2} \text{Tr} \left[\partial \Phi^\dagger \partial \Phi \right]
$$

$$
V(\Phi) = \frac{1}{2} \mu_0^2 \text{Tr} \left[\Phi^\dagger \Phi \right] + \frac{1}{4} \lambda_0 \left(\text{Tr} \left[\Phi^\dagger \Phi \right] \right)^2
$$

$$
L_Y(Q, \Phi) = \eta \left(\overline{Q}_L \Phi Q_R + \overline{Q}_R \Phi Q_L \right)
$$

$$
\frac{L_W(Q, A, \Phi) = \rho \frac{b^2}{2} \left(\overline{Q}_L \overleftarrow{D}_\mu \Phi D_\mu Q_R + \overline{Q}_R \overleftarrow{D}_\mu \Phi^\dagger D_\mu Q_L \right)
$$

$$
\left[\overleftarrow{D}_\mu = \overleftarrow{\partial}_\mu + ig_s \lambda^a A_\mu^a, D_\mu = \partial_\mu - ig_s \lambda^a A_\mu^a \right]
$$

- an SU(3) gauge field A^a_μ , $(a = 1, \ldots, 8)$.
- one Dirac fermion doublet Q transforming as a colour triplet under SU(3).

- $\bullet\,$ one complex scalar doublet (singlet under SU(3)) $\Phi=\phi_0+i\phi_j\tau_j.$
- Q coupled to gauge and scalar through Yukawa & $(d = 6)$ Wilson-like terms.
- $b^{-1} \equiv \Lambda_{UV}$: UV cutoff.

Toy-model - symmetries

• Enlarged global chiral $\chi_L \times \chi_R$ transformations are symmetry of L_{tov} :

$$
\chi_{\bm{L}}: \tilde{\chi}_{\bm{L}} \otimes (\Phi \to \Omega_{\bm{L}} \Phi) \qquad \chi_{\bm{R}}: \tilde{\chi}_{\bm{R}} \otimes (\Phi \to \Omega_{\bm{R}} \Phi)
$$

- Exact symmetry $\chi \equiv \chi_L \times \chi_R$ acting on fermions and scalars \Longrightarrow $(\bar{Q}_LQ_R+\bar{Q}_RQ_L)$ operator <code>NOT</code> invariant under $\chi\equiv \chi_L\times \chi_R$ \implies NO power divergent mass terms.
- Purely fermionic $\tilde{\chi} \equiv \tilde{\chi}_L \times \tilde{\chi}_R$ transformations are *not* a symmetry for *generic* (non-zero) η and ρ :

 $\Rightarrow \tilde{\chi} \equiv \tilde{\chi}_L \times \tilde{\chi}_R$ broken explicitly by Yukawa and Wilson-like terms.

• P, C, T, gauge invariance are symmetries & power counting renormalisation.

Toy-model - properties

• The shape of $V(\Phi)$ determines crucially the physics of the model.

• When the scalar potential $V(\Phi)$ has one minimum

 $\triangleright \ \chi \equiv \chi_I \times \chi_R$ is realized à la Wigner

- \triangleright No spontaneous χ -symmetry breaking
- The fermionic $\tilde{\chi} \equiv \tilde{\chi}_I \times \tilde{\chi}_R$ transformations generate Schwinger-Dyson Equations.
- They can be renormalised taking in due account the operator mixing procedure.

Critical Model

• In fact the renormalised SD equation reads:

 $\partial_\mu \langle \tilde Z_j \tilde J^{L,i}_\mu(x) O(0) \rangle = (\eta - \overline \eta(\eta; g_s^2, \rho, \lambda_0)) \langle [\bar Q_L \tau^i \Phi Q_R - h.c.](x) O(0) \rangle + O(b^2)$ (SDE renrm/tion here analogous to chiral SDE renormalisation as in [Bochicchio et al. NPB 1985])

• Critical Model: $\tilde{\chi}$ -symmetry restoration occurs at $\eta = \eta_{cr}$ where the Yukawa term "compensates" the Wilson term.

► We get the current conservation at $\eta - \overline{\eta}(\eta; g_s^2, \rho, \lambda_0) = 0$ $\implies \eta_{cr}(g_s^2, \rho, \lambda_0).$

• η_{cr} is dimensionless parameter. Dependence on renormalised scalar mass only through cutoff effects $O(b^2\mu_\Phi^2)$. Hence η_{cr} identical in Wigner and Nambu-Goldstone (NG) phases.

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

Critical Model

Low-Energy Effective Lagrangian (Wigner phase)

$$
\Gamma_{\mu_{\Phi}^{2}>0}^{Wig} = \frac{1}{4} (F \cdot F) + \bar{Q} \, \mathcal{D} Q + (\eta - \eta_{cr}) (\bar{Q}_{L} \Phi Q_{R} + \text{h.c.}) + \frac{1}{2} \text{Tr} \left[\partial_{\mu} \Phi^{\dagger} \partial_{\mu} \Phi \right] + \hat{V}_{\mu_{\Phi}^{2}>0} (\Phi)
$$

• In the critical theory, $\eta = \eta_{cr}$, scalars decouple from quarks and gluons.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- Fermionic $\tilde{\chi}$ become a symmetry (up to $O(b^2)$ cutoff effects).
	- Need to determine η_{cr} .
	- We expect (and verify) no fermionic mass generation.
- Employ lattice methods.

Lattice computation

- Lattice discretization, L_{latt} with Dirac fermions and $d = 6$ Wilson term: unbroken χ -symmetry.
- We limit our first study to the quenched approximation
- Quenching allows independent generation of gauge (U) and scalar (Φ) configurations.

 \Rightarrow The mechanism under investigation, if exists, survives quenching.

• To avoid "exceptional configurations" (\rightarrow due to fermions zero modes) introduce twisted mass IR regulator $L_{latt.} + i\mu \bar{Q} \gamma_5 \tau^3 Q$. (Frezzotti, Grassi, Sint and Weisz, JHEP 2001) \Rightarrow at a cost of soft breaking of $\chi_L \times \chi_R$, symmetry recovered after an extrapolation to $\mu \to 0$.

Lattice computation

 \star We performed simulations at three values of the lattice spacing

 \star β = 5.75 (b = 0.15 fm), β = 5.85 (b = 0.12 fm) & β = 5.95 $(b = 0.10$ fm) Several lattice volumes corresponding to physical size of $L \sim 2.0 - 2.4$ fm, $T \sim 4.8$ fm. Extrapolation to the continuum limit exploiting $O(b^{2n})$ cutoff effects.

- \star Use the Sommer lattice scale $r_0 = 0.5$ fm (motivated from QCD, for illustration) to determine the gauge coupling.
- \star ρ : to check the existence of the mechanism it is sufficient to set it to some reasonable value $\neq 0$.

(Most of our numerical results obtained at $\rho = 1.96$ both in the Wigner & NG phase but also at $\rho = 2.94$.)

 \star Keep fixed physical scalar field parameters at all lattice spacings.

Determination of η_{cr} in the Wigner phase

• SD equation (similar for $\tilde{J}_{\mu}^{R,i}$):

 $\partial_\mu \langle \tilde Z_{\tilde{\jmath}} \tilde J^{L,i}_\mu(x) O(0) \rangle = (\eta - \overline{\eta}(\eta; g_s^2, \rho, \lambda_0)) \langle [\bar Q_L \tau^i \Phi Q_R - h.c.](x) O(0) \rangle + O(b^2)$

• Employ Schwinger-Dyson eqs on the lattice and consider the ratio of correlation functions:

$$
r_{AWI}(\eta) \equiv \frac{\partial_{\mu} \sum_{\mathbf{x}} \langle \tilde{J}_{\mu}^{A,i}(\mathbf{x}, x_{0}) \tilde{D}^{P,i}(0) \rangle}{\sum_{\mathbf{x}} \langle \tilde{D}^{P,i}(\mathbf{x}, x_{0}) \tilde{D}^{P,i}(0) \rangle},
$$

$$
\tilde{J}_{\mu}^{A,i}(\mathbf{x}) = \tilde{J}_{\mu}^{R,i}(\mathbf{x}) - \tilde{J}_{\mu}^{L,i}(\mathbf{x}), \quad \tilde{D}^{P,i}(y) = \bar{Q}_{L}(y) \left[\Phi, \frac{\tau^{i}}{2} \right] Q_{R}(y) - \bar{Q}_{R}(y) \left[\frac{\tau^{i}}{2}, \Phi^{\dagger} \right] Q_{L}(y)
$$

Compute $r_{AWI}(\eta)$ at several values of η before interpolating to η_{cr} .

• We expect: $r_{AWI}(\eta) \propto (\eta - \bar{\eta}(\eta;g_s^2,\lambda_0,\rho)) = (\eta - \eta_{cr}(g_s^2,\lambda_0,\rho))(1 - \frac{\partial \bar{\eta}}{\partial \eta}|_{\eta_{cr}}) + \ldots$ \bullet and find \dots

Determination of η_{cr} in the Wigner phase

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

- Red squares denote the values η_{cr} at which $r_{AWI} = 0$.
- Less than 1% error on η_{cr} determination.

Further investigation in the Wigner phase

- IR tm μ -regulator breaks softly χ -symmetry (\rightarrow at all η .)
- PS-bosons have mass vanishing linearly in μ (up to cutoff effects)
- & in the C.L. PS-mass $\rightarrow 0$
- In the Wigner phase no fermion mass generation no seed for $D\tilde{\chi}SB$.

 2990

NG phase: dynamical mass generation

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Properties of the toy-model in NG-phase

- $\bullet \;\; V(\Phi)$ has a mexican hat shape $<\Phi^{\dagger}\Phi>=\nu^2\neq 0.$
- $\chi_L \times \chi_R$ realised à la NG; it is natural to use the parametrisation: $\Phi = v + \sigma + i \vec{\tau} \vec{\pi}$
- Similar to the LQCD case (Wilson fermions): $L_W(Q, A, \Phi) = \frac{\rho b^2}{2}$ $\frac{b^2}{2} \left(\bar{Q}_L \overleftarrow{D}_\mu \Phi D_\mu Q_R + \text{h.c.} \right) \stackrel{\text{r} \leftrightarrow b \text{v} \rho}{\sim} L_W^{QCD}(Q,A) = -\frac{b \text{r}}{2} \left(\bar{Q}_L D^2 Q_R + \text{h.c.} \right).$ $\eta(\bar{Q}_L \Phi Q_R + \bar{Q}_R \Phi^\dagger Q_L) \;\; \stackrel{<\Phi>=\nu}{\longrightarrow} \;\; \eta {\bf v} \bar{Q} Q$
- In the *critical* theory, $\eta = \eta_{cr}$, where Yukawa term is compensated by the Wilson-like term:
	- \blacktriangleright Yukawa mass term, $\vee \overline{Q}Q$, gets cancelled;
	- \blacktriangleright hence, no "Higgs-like" fermion mass.
- Conjecture: $\tilde{\chi}$ breaking due to residual $O(b^2v)$ effects are expected to trigger dynamical χ SB.

Dynamically generated mass

Compute

- WTI quark mass: $m_{AWI}(\eta) = \frac{\sum_{x} \partial_0 \langle \tilde{J}_0^{A,i}(x) P^i(0) \rangle}{2 \sum_{x} \langle P^i(x) P^i(0) \rangle}$ $\frac{\partial^2 \mathbf{x} \partial \mathbf{0} \setminus \mathbf{0}}{2 \sum_{\mathbf{x}} \langle P^i(\mathbf{x}) P^i(\mathbf{0}) \rangle}$, $P^i = \overline{Q} \gamma_5 \tau^i Q$
- Mass M_{ps} of the lowest PS-meson contributing to $\sum_{\mathbf{x}} \langle P^i(x) P^i(0) \rangle$

KORK STRAIN A BAR SHOP

Dynamically generated mass

Compute

- WTI quark mass: $m_{AWI}(\eta) = \frac{\sum_{x} \partial_0 \langle \tilde{J}_0^{A,i}(x) P^i(0) \rangle}{2 \sum_{x} \langle P^i(x) P^i(0) \rangle}$ $\frac{\partial^2 x}{\partial x^2}\frac{\partial^2 y}{\partial x^2}(\mathbf{r}^i(\mathbf{x})P^i(0))$, $P^i = \overline{Q}\gamma_5 \tau^i Q$
- Mass M_{ps} of the lowest PS-meson contributing to $\sum_{\mathbf{x}} \langle P^i(x) P^i(0) \rangle$

- Continuum limit (linear) extrapolation of m_{AWI} and M_{PS} .
- (Very) small cutoff effects towards the C.L.
- At η_{cr} the C.L. estimates of quark mass and PS-meson mass do not vanish!**KORK STRAIN A BAR SHOP**

The toy-model in NG-phase

- Symmetries dictate the form of Γ^{NG} .
- **NP** mass term has to be $\chi_1 \times \chi_R$ invariant. Note that a term like $m[\bar Q_L Q_R + \bar Q_R Q_L]$ is not $\chi_L \times \chi_R$ invariant.
- At *generic η*, two $\tilde{\chi}$ -breaking operators are expected to arise:

 $|Y$ ukawa induced + dynamically generated $($ \leftarrow conjecture) • $\Gamma^{NG} = \ldots + (\eta - \eta_{cr})(\bar{Q}_L \Phi Q_R + \text{h.c.}) + c_1 \Lambda_s (\bar{Q}_L U Q_R + \text{h.c.})$ where $\mathcal{U} = \frac{\Phi}{\sqrt{2\pi}}$ Φ†Φ $=\frac{(v+\sigma)\mathbb{1}+i\vec{\tau}\vec{\varphi}}{\sqrt{2\pi i}}$ $\frac{(v+\sigma) 1\!\!1 + i\vec{\tau}\vec{\varphi}}{\sqrt{v^2 + 2v\sigma + \sigma^2 + \vec{\varphi}\vec{\varphi}}} \simeq 1\!\!1 + i\frac{\vec{\tau}\vec{\varphi}}{v}$ $\frac{\gamma}{v} + \ldots$ and $\Lambda_s \equiv RGI NP$ mass scale.

- U is a non-analytic function of Φ , but transforms like Φ under $\chi_L \times \chi_R$; obviously U can not be defined in the Wigner phase ($\langle \Phi \rangle = 0$)
- Note that (from the χ -inv. term):

 $c_1\Lambda_s(\bar{Q}_L\mathcal{U}Q_R + \text{h.c.}) \simeq c_1\Lambda_s\bar{Q}Q + O(\nu^{-1})$.
K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 시 할 → 10 Q Q

Further checks - I

- For generic value of η : $m_{AWI} = (\eta \eta_{cr})v + c_1 \Lambda_s \xrightarrow{\eta = \eta_{cr}} m_{AWI} = c_1 \Lambda_s$
- Moreover there is (and can be determined numerically) a certain $\eta = \eta^*$ where m_{AWI} vanishes. Namely $\left|\begin{array}{l} \eta^*=\eta_{\textsf{\scriptsize{cr}}} -\epsilon_1\Lambda_{\textsf{\scriptsize{s}}} / \textsf{v} \Rightarrow \eta_{\textsf{\scriptsize{cr}}} \neq \eta^* \leftrightarrow \textsf{\scriptsize{c}}_1\Lambda_{\textsf{\scriptsize{s}}} \neq 0 \end{array}\right.$
- Hence check whether $(\eta_{cr} \eta^*) \neq 0$ in the C.L.
- But $(\eta_{cr} \eta^*)$ has to be renormalised:
- define the renormalised quantity:

$$
\mathcal{D}_{\eta} \equiv \frac{d(r_0 M_{PS})}{d\eta}\big|_{\eta_{cr}} (\eta_{cr} - \eta^*) \equiv Z_{\eta} (\eta_{cr} - \eta^*)
$$

and evaluate it (through extrapolation) in the C.L.

Further checks - II

- Check behaviour of the fermion mass breaking $\tilde{\chi}_L \times \tilde{\chi}_R$ as ρ varies.
- For $\rho \to 0$ also $\eta_{cr} \to 0$ for which ...
- $\tilde{\chi}_L \times \tilde{\chi}_R$ transformations become exact symmetry: m_{AWI} , $M_{PS} \rightarrow 0$.
- Hence it is expected that m_{AWI} , M_{PS} should be increasing functions of ρ .
- Compute m_{AWI} at $\rho = 2.94$ and compare with $\rho = 1.96$.

Test of no mechanism hypothesis

• It can be shown that in case of no mechanism i.e. $c_1\Lambda_s = 0$, then $M_{\rm PS} \sim O(b^4)$.

No mechanism hypothesis is not supported by the data $(5\sigma - 7\sigma)$ away from zero).

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 2990

Conclusions

- We have presented a toy-model where a *novel* NP mechanism for elementary fermion mass generation, alternative to the Higgs mechanism is in action.
- The toy model is a non-Abelian gauge model with an $SU(N_f = 2)$ -doublet of strongly interacting fermions coupled to scalars through Yukawa and Wilson-like terms: at the critical point, where (fermion) $\tilde{\chi}$ invariance is recovered the model gives rise in the NG phase to a dynamical $\tilde{\chi}$ -SSB and the generation of a non-perturbative elementary fermion mass.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

• This pattern has been shown to occur in explicit numerical simulations.

Conclusions

- A first principles study of the model has been performed at three values of the lattice spacing (\sim 0.10, 0.12 and 0.15 fm).
- We have shown that the Yukawa coupling where the fermionic $\tilde{\chi}$ symmetry gets restored can be accurately determined.
- The effects of dynamical SSB of the (restored) $\tilde{\gamma}$ -symmetry in the NG phase look very well compatible with the generation of non-zero elementary fermion (quark) mass and PS-meson mass $\sim O(\Lambda_s)$.

KID KA KERKER E VOOR

Outlook

- These findings will be further checked with more simulations (finer lattice spacings, $\Lambda_s/v \to 0$ etc).
- Dynamically generated "NP anomaly" opens discussion on revised framework concerning the concept of universality.
- Towards a realistic model: since masses are conjectured to be parametrically of order of the RGI scale, this has to be much larger than Λ_{QCD} in order for the heavier particle masses (e.g. m_t) can be reproduced.
- This points to the existence of a new non-Abelian interaction with scale $\Lambda_T \gg \Lambda_{QCD}$ and to new elementary fermionic particles with NP mass of $O(\Lambda_T)$.
- The mechanism can be extended to include EW interactions (χ_L is gauged).

KID KA KERKER E VOOR

Thank you for your attention!

K ロ X K 메 X K B X X B X X D X O Q Q O

Extra slides

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @

Wilson fermions case

• In (massless) LQCD with Wilson term Non-Perturbative contribution $(\propto \Lambda_{QCD})$ is accompanied by an $1/a$ divergent term.

• Axial WTI:
$$
\partial_{\mu} \langle \hat{J}_{5\mu}(x) \hat{O}(0) \rangle = 2(m_0 - \bar{M}(m_0)) \langle \hat{P}(x) \hat{O}(0) \rangle + O(a)
$$

• where:
$$
\bar{M}(m_0) = \frac{c_0(1-d_1)}{a} + c_1(1-d_1)\Lambda_{\text{QCD}} + d_1 m_0 + O(a)
$$

• If we could set

$$
m_0 = c_0/a \quad \rightarrow \quad \partial_\mu \langle \hat{J}_{5\mu}(x) \hat{O}(0) \rangle = c_1(1-d_1) \Lambda_{\rm QCD} \langle \hat{P}(x) \hat{O}(0) \rangle + O(a)
$$

KORK ERKER ADE YOUR

• Separation of the two effects requires an infinite fine tuning $(\rightarrow$ naturalness problem).

Lattice formulation

$$
S_{\text{toy}}^{\text{lat}} = b^4 \sum_{x} \left\{ \mathcal{L}_{\text{kin}}^{\text{YM}} [U] + \mathcal{L}_{\text{kin}}^{\text{scal}}(\Phi) + \mathcal{V}(\Phi) + \bar{q} D_{\text{lat}} [U; \Phi] q \right\}
$$
\n
$$
\mathcal{L}_{\text{kin}}^{\text{YM}} [U] : \text{SU(3) plaquette action}
$$
\n
$$
\mathcal{L}_{\text{kin}}^{\text{scal}}(\Phi) + \mathcal{V}(\Phi) = \frac{1}{2} \text{Tr} [\Phi^{\dagger}(-\partial_{\mu}^{*}\partial_{\mu})\Phi] + \frac{m_{0}^{2}}{2} \text{Tr} [\Phi^{\dagger}\Phi] + \frac{\lambda_{0}}{4} (\text{Tr} (\Phi^{\dagger}\Phi])^{2}
$$
\nwhere in terms of the 2 × 2 matrix-field Φ and the 8 × 8 matrix-field F
\n
$$
\Phi = \varphi_{0} \text{1} \text{1} + i\varphi_{j} \tau^{j} \qquad \text{and} \qquad F(x) \equiv [\varphi_{0} \text{1} \text{1} + i\gamma_{5} \tau^{j} \varphi_{j}](x)
$$
\nwe have\n
$$
\bullet (D_{\text{lat}} [U, \Phi] q)(x) = \gamma_{\mu} \widetilde{\nabla}_{\mu} q(x) + \eta F(x) q(x) - b^{2} \rho \frac{1}{2} F(x) \widetilde{\nabla}_{\mu} \widetilde{\nabla}_{\mu} q(x) +
$$

$$
-b^2 \rho \frac{1}{4} \Big[(\partial_{\mu} F)(x) U_{\mu}(x) \widetilde{\nabla}_{\mu} q(x+\hat{\mu}) + (\partial_{\mu}^* F)(x) U_{\mu}^{\dagger}(x-\hat{\mu}) \widetilde{\nabla}_{\mu} q(x-\hat{\mu}) \Big]
$$

\n• $\widetilde{\nabla}_{\mu} f(x) \equiv \frac{1}{2} (\nabla_{\mu} + \nabla_{\mu}^*) f(x)$
\n• $b \nabla_{\mu} f(x) \equiv U_{\mu}(x) f(x+\hat{\mu}) - f(x), \quad b \nabla_{\mu}^* f(x) \equiv f(x) - U_{\mu}^{\dagger}(x-\hat{\mu}) f(x-\hat{\mu})$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q ·

SDE mixing-renormalisation

• Bare $\tilde{\chi}_L \times \tilde{\chi}_R$ SDEs read [Bochicchio *et al.* 1985]

•
$$
\partial_{\mu}\langle \tilde{J}_{\mu}^{L,i}(x) \hat{O}(0)\rangle = \langle \tilde{\Delta}_{L}^{i} \hat{O}(0)\rangle \delta(x) - \eta \langle O_{\text{VA}}^{L,i}(x) \hat{O}(0)\rangle - b^{2} \langle O_{\text{VA}}^{L,i}(x) \hat{O}(0)\rangle
$$

\n• $\tilde{J}_{\mu}^{L,i} = \bar{q}_{L}\gamma_{\mu}\frac{\tau^{i}}{2}q_{L} - \frac{b^{2}}{2}\rho\left(\bar{q}_{L}\frac{\tau^{i}}{2}\Phi D_{\mu}q_{R} - \bar{q}_{R}\overleftarrow{D}_{\mu}\Phi^{\dagger}\frac{\tau^{i}}{2}q_{L}\right)$
\n• $O_{\text{VA}}^{L,i} = \left[\bar{q}_{L}\frac{\tau^{i}}{2}\Phi q_{R} - \text{h.c.}\right]$ • $O_{\text{WA}}^{L,i} = \frac{\rho}{2}\left[\bar{q}_{L}\overleftarrow{D}_{\mu}\frac{\tau^{i}}{2}\Phi D_{\mu}q_{R} - \text{h.c.}\right]$

- Mixing & Renormalization
- $b^2 O_{WW}^{L,i} = (Z_{\tilde{l}} 1) \partial_u \tilde{J}_{\mu}^{L,i} \bar{\eta}(\eta; g_s^2, \rho, \lambda_0) O_{Wuk}^{L,i} + \ldots + O(b^2)$ • $\partial_u \langle Z_i \tilde{J}_u^{l,i}(x) \hat{O}(0) \rangle = \langle \tilde{\Delta}_l^i \hat{O}(0) \rangle \delta(x) - \langle \eta - \bar{\eta}(\eta) \rangle \langle O_{\mathsf{W},k}^{l,i}(x) \hat{O}(0) \rangle + \dots + \mathcal{O}(\mathbf{b}^2)$

KORKAR KERKER EL VOLO

• Critical theory $\rightarrow \eta - \bar{\eta}(\eta; g_s^2, \rho, \lambda_0) = 0 \implies \eta_{cr}(g_s^2, \rho, \lambda_0) = O(g_s^2)$

•
$$
\partial_{\mu} \langle Z_{\tilde{J}} \tilde{J}_{\mu}^{L,i}(x) \hat{O}(0) \rangle_{\eta_{cr}} = \langle \tilde{\Delta}_{L}^{i} \hat{O}(0) \rangle_{\eta_{cr}} \delta(x) + O(b^2) + \dots
$$

• All the same with $[L \leftrightarrow R \& \Phi \leftrightarrow \Phi^{\dagger}]$

parameters listing

From several simulations of the $\lambda_0(\Phi^\dagger \Phi)^2$ theory with 12 $\lt L/b$ $\lt 24$ and $T = 2L \Rightarrow$ scalar sector parameters matching renorm. conditions in NG phase & $\beta \leftrightarrow r_0/b$ [SU(3)-YM data for $\beta \leftrightarrow r_0/b$ from Necco and Sommer, Nucl. Phys. B622 (2002) 328-346]

 κ : code hopping parameter, s.t. $\kappa^{-1} - 2\kappa\lambda_0 - 8 = b^2 m_0^2$, $\eta_{code} = \eta \sqrt(2\kappa)$, $\rho_{code} = \rho \sqrt(2\kappa)$

Values of $\mu_{\rm cr}^2$ & μ_{0}^2 , λ_0 parameters for simulations in Wigner phase at fixed $\mu_{\rm cr}^2 \hbar_0^2 > 0$

	r_0/b $\left \left(\mu_0^2 - \mu_{cr}^2 \right) b^2 \right $	$b^{\epsilon} \mu_{cr}^{\epsilon}$	$b^2\mu_0^2$	λ_0	
	5.75 3.29 0.1119(12)	\vert -0.5269(12) \vert -0.4150 0.5807 \vert 0.129280			
	5.85 4.06 0.0742(11)	\vert -0.5357(11) \vert -0.4615 0.5917 0.130000			
	5.95 4.91 0.0504(10)	$-0.5460(10)$ -0.4956 0.6022 0.130521			

KORK ERKER ADE YOUR

Alternative determination of η_{cr}

イロン イ伊ン イヨン イヨン

÷

 $2Q$

K ロ ト K 個 ト K 差 ト K 差 ト È 299 \bullet simultaneous polynomial fits for M_PS^2 and m_{AWI} in η and in μ (example: $\beta = 5.85$).

イロメ 不優 メイ君メ イ君メー 君

 2990

• similar for $M_{\rm PS}$.

Determination of m_{AWI}^{ren}

- RCs UV quantities: can be calculated either in Wigner of in NG phases
- \bullet 1/Z $^{had}_{P}=\langle 0|\bar{Q}\gamma_{5}\frac{\tau^{1}}{2}$ $\frac{r^1}{2}Q|P^1_{meson}\rangle|_{\eta_{cr},\mu\to 0+}$ $r_0^2\equiv G^{Wig}_{PS}$ r_0^2 eval. in Wigner phase
- $Z_{\widetilde{V}}$: $Z_{\widetilde{V}}\langle 0|\partial_0 \widetilde{V}_0^2|P^1_{\rm meson}\rangle|_{\eta_{cr},\mu\to 0+} = 2\mu\langle 0|\bar{Q}\gamma_5\frac{\tau^1}{2}\rangle$ $\frac{r^2}{2} Q |P^1_{\text{meson}}\rangle|_{\eta_{cr},\mu\to 0+}$

evaluated in NG phase

KORKAR KERKER EL VOLO

• $Z_{\widetilde{V}} = Z_{\widetilde{A}}$ (at η_{cr})

•
$$
m_{AWI}^{ren} = \frac{Z_{\tilde{V}}}{Z_P^{had}} m_{AWI}
$$

 μr_0

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q^

► Check for finite size effects ($\beta = 5.85$)

E LIZER KENNED K

 2990