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Motivation

• The double face of the SM:

• successful, renormalisable quantum field theory, for description
and predictions in the EW and strong interaction physics.

• incomplete: several fundamental phenomena are not
satisfactorily or not at all described by/within it:

– neutrino masses and mixings
– matter-antimatter asymmetry and need for stronger CP violation
– dark matter & energy

– Higgs mechanism trades masses for Yukawa couplings
– masses are accomodated by fitting to experimental data
– unnaturalness of the higgs mass
– huge mass hierarchy e.g. me ∼ 10−6mt

– large number of input parameters (O(20) + neutrino sector)

• our focus: a deeper insight into the elementary particle mass origin.



Dynamical generation of elementary fermion mass

• Mechanism occurs in strongly coupled gauge fermion interactions.

• Based on dynamical χSB effects similar to those generating 〈q̄q〉 6= 0.

• Under assumption of symmetry enhancement chiral breaking effects
that are naively suppressed (irrelevant) trigger non-perturbative (NP)
dynamical mass generation.

? Alternative to the Higgs mechanism.
[R. Frezzotti, G.C. Rossi PRD (2015)]



Toy-model

• A simple toy-model where the mechanism can be realised:

• SU(Nf = 2) doublet of strongly (SU(3)) interacting fermions
coupled to scalars via Yukawa and Wilson-like terms.

• Enlarged chiral symmetry acting on fermions and scalars.
Fermionic chiral symmetry explicitly broken.

• Physics depends crucially on the phase (Wigner or NG).

• Enhancement of symmetry
(refers to naturalness concept by ’t Hooft).

• leads to elementary fermion mass: mQ = O(αs)Λs ,
(Λs RGI strong scale).

• Intrinsic NP character of the mechanism:

→ Numerical investigation employing lattice methods is necessary.

→ The proposed BSM mechanism can be falsified.



Toy-model
• QCDNf =2 + Scalar field + Yukawa + (d = 6) Wilson-like

Ltoy = Lkin(Q,A,Φ) + V (Φ) + LY (Q,Φ) + LW (Q,A,Φ) :

Lkin(Q,A,Φ) =
1
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Tr
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aAa
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• an SU(3) gauge field Aa
µ, (a = 1, . . . , 8).

• one Dirac fermion doublet Q transforming as a colour triplet under SU(3).
• one complex scalar doublet (singlet under SU(3)) Φ = φ0 + iφjτj .
• Q coupled to gauge and scalar through Yukawa &

(d = 6) Wilson-like terms.
• b−1 ≡ ΛUV : UV cutoff.



Toy-model - symmetries

• Enlarged global chiral χL × χR transformations are symmetry of Ltoy:

χL : χ̃L ⊗ (Φ→ ΩLΦ) χR : χ̃R ⊗ (Φ→ ΩRΦ)

χ̃L : QL → ΩLQL, χ̃R : QR → ΩRQR ,

Q̄L → Q̄LΩ†L Q̄R → Q̄RΩ†R
ΩL ∈ SU(2)L ΩR ∈ SU(2)R

• Exact symmetry χ ≡ χL × χR acting on fermions and scalars
=⇒ (Q̄LQR + Q̄RQL) operator NOT invariant under χ ≡ χL × χR

=⇒ NO power divergent mass terms .

• Purely fermionic χ̃ ≡ χ̃L × χ̃R transformations are not a symmetry for
generic (non-zero) η and ρ:

=⇒ χ̃ ≡ χ̃L × χ̃R broken explicitly by Yukawa and Wilson-like terms.

• P, C , T , gauge invariance are symmetries & power counting
renormalisation.



Toy-model - properties

• The shape of V (Φ) determines crucially the physics of the model.

• When the scalar potential V (Φ) has one minimum

I χ ≡ χL × χR is realized à la Wigner
I No spontaneous χ-symmetry breaking

• The fermionic χ̃ ≡ χ̃L × χ̃R transformations generate
Schwinger-Dyson Equations.

• They can be renormalised taking in due account the operator
mixing procedure.



Critical Model

• In fact the renormalised SD equation reads:

∂µ〈Z̃J̃ J̃
L,i
µ (x)O(0)〉 = (η − η(η; g 2

s , ρ, λ0))〈[Q̄Lτ
i ΦQR − h.c.](x)O(0)〉+ O(b2)

(SDE renrm/tion here analogous to chiral SDE renormalisation as in

[Bochicchio et al. NPB 1985])

• Critical Model: χ̃-symmetry restoration occurs at η = ηcr

where the Yukawa term “compensates” the Wilson term.

I We get the current conservation at η − η(η; g2
s , ρ, λ0) = 0

=⇒ ηcr (g2
s , ρ, λ0).

• ηcr is dimensionless parameter. Dependence on renormalised scalar
mass only through cutoff effects O(b2µ2

Φ).
Hence ηcr identical in Wigner and Nambu-Goldstone (NG) phases.



Critical Model

• Low-Energy Effective Lagrangian (Wigner phase)

ΓWig
µ2

Φ>0
=

1

4
(F · F ) + Q̄ /DQ + (η − ηcr )(Q̄LΦQR + h.c.)

+
1

2
Tr

[
∂µΦ†∂µΦ

]
+ V̂µ2

Φ>0(Φ)

• In the critical theory, η = ηcr , scalars decouple from quarks and gluons.

• Fermionic χ̃ become a symmetry (up to O(b2) cutoff effects).

• Need to determine ηcr .
• We expect (and verify) no fermionic mass generation.

I Employ lattice methods.



Lattice computation

• Lattice discretization, Llatt. with Dirac fermions and d = 6
Wilson term: unbroken χ-symmetry.

• We limit our first study to the quenched approximation

• Quenching allows independent generation of gauge (U) and scalar
(Φ) configurations.
⇒ The mechanism under investigation, if exists, survives
quenching.

• To avoid “exceptional configurations” (→ due to fermions zero
modes) introduce twisted mass IR regulator Llatt.+iµQ̄γ5τ

3Q.
(Frezzotti, Grassi, Sint and Weisz, JHEP 2001)
⇒ at a cost of soft breaking of χL × χR , symmetry recovered
after an extrapolation to µ→ 0.



Lattice computation

? We performed simulations at three values of the lattice spacing

? β = 5.75 (b = 0.15 fm), β = 5.85 (b = 0.12 fm ) & β = 5.95
(b = 0.10 fm )
Several lattice volumes corresponding to physical size of
L ∼ 2.0− 2.4 fm, T ∼ 4.8 fm.
Extrapolation to the continuum limit exploiting O(b2n) cutoff
effects.

? Use the Sommer lattice scale r0 = 0.5 fm (motivated from
QCD, for illustration) to determine the gauge coupling.

? ρ: to check the existence of the mechanism it is sufficient to set
it to some reasonable value 6= 0.

(Most of our numerical results obtained at ρ = 1.96 both in the Wigner & NG

phase but also at ρ = 2.94.)

? Keep fixed physical scalar field parameters at all lattice spacings.



Determination of ηcr in the Wigner phase

• SD equation (similar for J̃R,i
µ ):

∂µ〈Z̃J̃ J̃
L,i
µ (x)O(0)〉 = (η − η(η; g 2

s , ρ, λ0))〈[Q̄Lτ
i ΦQR − h.c.](x)O(0)〉+ O(b2)

• Employ Schwinger-Dyson eqs on the lattice and consider the ratio of
correlation functions:

rAWI (η) ≡
∂µ

∑
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µ (x, x0)D̃P,i (0)〉∑

x〈D̃P,i (x, x0)D̃P,i (0)〉
,

J̃A,i
µ (x) = J̃R i

µ (x)− J̃L i
µ (x), D̃P,i (y) = Q̄L(y)

[
Φ, τ

i

2

]
QR (y)− Q̄R (y)

[
τ i

2
,Φ†

]
QL(y)

Compute rAWI (η) at several values of η before interpolating to ηcr .

• We expect:

rAWI (η) ∝ (η − η̄(η; g2
s , λ0, ρ)) = (η − ηcr (g2

s , λ0, ρ))(1− ∂η̄

∂η
|ηcr ) + . . .

• and find ...



Determination of ηcr in the Wigner phase
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• Red squares denote the values ηcr at which rAWI = 0.

• Less than 1% error on ηcr determination.



Further investigation in the Wigner phase
• IR tm µ-regulator breaks softly χ-symmetry (→ at all η.)
• PS-bosons have mass vanishing linearly in µ (up to cutoff effects)
& in the C.L. PS-mass → 0

• In the Wigner phase no fermion mass generation - no seed for Dχ̃SB.

[β = 5.75]

η = −1.367
η = −1.190
η = −1.150

β = 5.75

bµ

(r
0
M

P
S
)2

0.050.040.030.020.010.00

5.0

4.0

3.0

2.0

1.0

0.0

[β = 5.85]

η = −1.294
η = −1.137
η = −1.098

β = 5.85

bµ

(r
0
M

P
S
)2

0.040.030.020.010.00

5.0

4.0

3.0

2.0

1.0

0.0

[β = 5.95]

η = −1.077
η = −1.035
η = −0.976

β = 5.95

bµ

(r
0
M

P
S
)2

0.040.030.020.010.00

5.0

4.0

3.0

2.0

1.0

0.0

C.L.

(b/r0)
2

(r
0
M

P
S
)2

0.120.100.080.060.040.020.00

0.5

0.4

0.3

0.2

0.1

0.0

-0.1



NG phase:

dynamical mass generation



Properties of the toy-model in NG-phase

• V (Φ) has a mexican hat shape - < Φ†Φ >≡ v2 6= 0.

• χL × χR realised à la NG; it is natural to use the parametrisation:
Φ = v + σ + i~τ~π

• Similar to the LQCD case (Wilson fermions):

LW (Q,A,Φ) = ρb2

2

(
Q̄L
←−
D µΦDµQR + h.c.

)
r↔bvρ∼ LQCD

W (Q,A) = − br
2

(
Q̄LD

2QR + h.c.
)
.

η(Q̄LΦQR + Q̄R Φ†QL)
<Φ>=v−→ ηvQ̄Q

• In the critical theory, η = ηcr , where Yukawa term is compensated
by the Wilson-like term:

I Yukawa mass term, vQ̄Q, gets cancelled;
I hence, no “Higgs-like” fermion mass.

• Conjecture: χ̃− breaking due to residual O(b2v) effects are expected to
trigger dynamical χSB.



Dynamically generated mass

Compute

• WTI quark mass: mAWI (η) =

∑
x ∂0〈J̃A,i

0 (x)P i (0)〉
2
∑

x〈P i (x)P i (0)〉
, P i = Q̄γ5τ

iQ

• Mass Mps of the lowest PS-meson contributing to
∑

x〈P i (x)P i (0)〉



Dynamically generated mass
Compute

• WTI quark mass: mAWI (η) =

∑
x ∂0〈J̃A,i

0 (x)P i (0)〉
2
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• Continuum limit (linear) extrapolation of mAWI and MPS .
• (Very) small cutoff effects towards the C.L.
• At ηcr the C.L. estimates of quark mass and PS-meson mass do not

vanish!



The toy-model in NG-phase

• Symmetries dictate the form of ΓNG .

• NP mass term has to be χL × χR invariant.
Note that a term like m[Q̄LQR + Q̄RQL] is not χL × χR invariant.

• At generic η, two χ̃-breaking operators are expected to arise:

Yukawa induced + dynamically generated (← conjecture)

• ΓNG = . . .+ (η − ηcr )(Q̄LΦQR + h.c.) + c1Λs(Q̄LUQR + h.c.)

where U =
Φ√
Φ†Φ

=
(v + σ)11 + i~τ ~ϕ√

v2 + 2vσ + σ2 + ~ϕ~ϕ
' 11 + i

~τ ~ϕ

v
+ . . .

and Λs ≡ RGI NP mass scale.

• U is a non-analytic function of Φ, but transforms like Φ under χL × χR ;
obviously U can not be defined in the Wigner phase (〈Φ〉 = 0)

• Note that (from the χ-inv. term):

c1Λs(Q̄LUQR + h.c.) ' c1ΛsQ̄Q + O(v−1)



Further checks - I
• For generic value of η: mAWI = (η − ηcr )v + c1Λs

η = ηcr−−−−→ mAWI = c1Λs

• Moreover there is (and can be determined numerically) a certain η = η∗ where mAWI

vanishes. Namely η∗ = ηcr − c1Λs/v ⇒ ηcr 6= η∗ ↔ c1Λs 6= 0

• Hence check whether (ηcr − η∗) 6= 0 in the C.L.

• But (ηcr − η∗) has to be renormalised:

• define the renormalised quantity:

Dη ≡
d(r0MPS )

dη

∣∣
ηcr

(ηcr − η∗) ≡ Zη(ηcr − η∗)

and evaluate it (through extrapolation) in the C.L.
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Further checks - II

• Check behaviour of the fermion mass breaking χ̃L × χ̃R as ρ varies.

• For ρ→ 0 also ηcr → 0 for which . . .

• χ̃L × χ̃R transformations become exact symmetry: mAWI ,MPS → 0.

• Hence it is expected that mAWI ,MPS should be increasing functions of ρ.

• Compute mAWI at ρ = 2.94 and compare with ρ = 1.96.
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Test of no mechanism hypothesis
• It can be shown that in case of no mechanism i.e. c1Λs = 0, then
MPS ∼ O(b4).
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No mechanism hypothesis is not supported by the data
( 5σ − 7σ away from zero).



Conclusions

• We have presented a toy-model where a novel NP mechanism for
elementary fermion mass generation, alternative to the Higgs
mechanism is in action.

• The toy model is a non-Abelian gauge model with an
SU(Nf = 2)-doublet of strongly interacting fermions coupled to
scalars through Yukawa and Wilson-like terms: at the critical point,
where (fermion) χ̃ invariance is recovered the model gives rise in the
NG phase to a dynamical χ̃-SSB and the generation of a
non-perturbative elementary fermion mass.

• This pattern has been shown to occur in explicit numerical
simulations.



Conclusions

• A first principles study of the model has been performed at three
values of the lattice spacing (∼ 0.10, 0.12 and 0.15 fm).

• We have shown that the Yukawa coupling where the fermionic χ̃
symmetry gets restored can be accurately determined.

• The effects of dynamical SSB of the (restored) χ̃-symmetry in the
NG phase look very well compatible with the generation of non-zero
elementary fermion (quark) mass and PS-meson mass ∼ O(Λs).



Outlook

• These findings will be further checked with more simulations (finer
lattice spacings, Λs/v → 0 etc).

• Dynamically generated “NP anomaly” opens discussion on revised
framework concerning the concept of universality.

• Towards a realistic model: since masses are conjectured to be
parametrically of order of the RGI scale, this has to be much larger
than ΛQCD in order for the heavier particle masses (e.g. mt) can be
reproduced.

• This points to the existence of a new non-Abelian interaction with
scale ΛT � ΛQCD and to new elementary fermionic particles with
NP mass of O(ΛT ).

• The mechanism can be extended to include EW interactions (χL is
gauged).



Thank you for your attention!



Extra slides



Wilson fermions case

• In (massless) LQCD with Wilson term Non-Perturbative contribution
(∝ ΛQCD) is accompanied by an 1/a divergent term.

• Axial WTI: ∂µ〈Ĵ5µ(x)Ô(0)〉 = 2(m0 − M̄(m0))〈P̂(x)Ô(0)〉+ O(a)

• where: M̄(m0) =
c0(1− d1)

a
+ c1(1− d1)ΛQCD + d1m0 + O(a)

• If we could set

m0 = c0/a → ∂µ〈Ĵ5µ(x)Ô(0)〉 = c1(1− d1)ΛQCD〈P̂(x)Ô(0)〉+ O(a)

• Separation of the two effects requires an infinite fine tuning
(→ naturalness problem).



Lattice formulation



SDE mixing-renormalisation



parameters listing



Alternative determination of ηcr

r alt
AWI (η; g 2
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β = 5.85; η = −1.207; bµ = 0.0070
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• simultaneous polynomial fits for M2
PS and mAWI in η and in µ

(example: β = 5.85).
• extra/interpolation to ηcr (at µ→ 0).
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• similar for MPS.



I Determination of mren
AWI

• RCs UV quantities: can be calculated either in Wigner of in NG phases

• 1/Z had
P = 〈0|Q̄γ5

τ1

2
Q|P1

meson〉|ηcr ,µ→0+ r2
0 ≡ G Wig

PS r2
0 eval. in Wigner phase

• Z
Ṽ

: Z
Ṽ
〈0|∂0Ṽ 2

0 |P1
meson〉|ηcr ,µ→0+ = 2µ〈0|Q̄γ5

τ1

2
Q|P1

meson〉|ηcr ,µ→0+

evaluated in NG phase

• Z
Ṽ

= Z
Ã

(at ηcr )

• mren
AWI =

Z
Ṽ

Z had
P

mAWI



I Determination of mren
AWI



I Check for finite size effects (β = 5.85)


