Reduction of Couplings in Finite Unified Theories

Gregory Patellis

Physics Department, NTUA

HEP 2019 - NCSR "Demokritos", Athens

April 19, 2019

Physics Department, NTUA

₹

4 B > 4 B > 4 E > 4 E >

G. Patellis

Reduction of Couplings in Finite Unified Theories

The ad hoc Yukawa and Higgs sectors of the Standard Model induce \sim 20 free parameters. How can they be related to the gauge sector in a more *fundamental* level?

The straightforward way to induce relations among parameters is to add more symmetries.

ightarrow i.e. GUTs.

Another approach is to look for renormalization group invariant (RGI) relations among couplings at the GUT scale that hold up to the Planck scale.

ightarrow less free parameters ightarrow more predictive theories

▲□▶ ▲@▶ ▲ 差▶ ▲ 差 ▶ . 差 . のへで

Physics Department. NTUA

Reduction of Couplings & Finiteness		
	00000000	00000
Reduction of Couplings & Finiteness		

Reduction of Couplings

About dimensionless couplings: an RGI expression among couplings

$$\mathcal{F}(g_1,...,g_N)=0$$

must satisfy the pde

$$\mu \frac{d\mathcal{F}}{d\mu} = \sum_{\alpha=1}^{N} \beta_{\alpha} \frac{\partial \mathcal{F}}{\partial g_{\alpha}} = 0$$

There are (N-1) independent $\mathcal{F}s$ and finding them is equivalent to solve the ode

$$\beta_g \left(\frac{dg_a}{dg}\right) = \beta_a, \qquad a = 1, ..., N$$

where g is considered the primary coupling. The above equations are the so-called reduction equations (RE). Zimmermann (1985)

Using all (N-1) $\mathcal{F}s$ to impose RGI relations, all other couplings can be expressed in terms of one (primary) coupling g.

G. Patellis

Sac

Physics Department. NTUA

Reduction of Couplings & Finiteness		
0000000	00000000	00000
Reduction of Couplings & Finiteness		

Ansatz: assume power series solutions to the REs (which are motivated by and preserve perturbative renormalizability):

$$g_a = \sum_n \rho_a^{(n)} g^{2n+1}$$

Examining in one-loop sufficient for uniqueness to all loops

Oehme, Sibold, Zimmermann (1984); (1985)

4 🗆 🕨 4 🗐 🕨 4 🚍 🕨

For some models the *complete reduction* can prove to be too restrictive \rightarrow use fewer $\mathcal{F}s$ as RGI constraints (partial reduction).

The reduction of couplings scheme is necessary for finiteness!

Sac

4

Reduction of Couplings in Finite Unified Theories

G Patellis

Finiteness

 $\label{eq:SM} \begin{array}{l} SM \rightarrow \mbox{quadratic divergences} \\ SUSY \rightarrow \mbox{only logarithmic divergences} \\ \mbox{Finite theories} \rightarrow \mbox{no divergences} \end{array}$

For a chiral, anomaly free, N = 1 theory the superpotential is:

$$W = \frac{1}{2}m^{ij}\Phi_i\Phi_j + \frac{1}{6}C^{ijk}\Phi_i\Phi_j\Phi_k$$

N = 1 non-renormalization theorem \rightarrow no mass and cubic-interaction-terms infinities \rightarrow only wave-function infinities.

The one-loop gauge β -functions are given by

$$\beta_{g}^{(1)} = \frac{g^{3}}{16\pi^{2}} \left[\sum_{i} T(R_{i}) - 3C_{2}(G)\right]$$

The Yukawa β -functions are related to the anomalous dimensions of the matter fields:

$$\beta_{ijk}^{(1)} = C_{ijl}\gamma_k^{\prime} + C_{ikl}\gamma_j^{\prime} + C_{jkl}\gamma_i^{\prime} \qquad \gamma_j^{i(1)} = \frac{1}{32\pi^2} \begin{bmatrix} C^{ikl}C_{jkl} - 3g^2C_2(R)\delta_j^i \end{bmatrix}$$

G. Patellis

Physics Department, NTUA

Reduction of Couplings & Finiteness	
Reduction of Couplings & Finiteness	

In one-loop, all β -functions of the theory vanish if the one-loop gauge β -functions and the anomalous dimensions of all superfields vanish, imposing the conditions:

$$\sum_{i} T(R_{i}) = 3C_{2}(G) \ , \qquad C_{ikl}C^{ikl} = 2\delta_{j}^{l}g^{2}C_{2}(R_{i})$$

 \rightarrow The gauge and Yukawa sectors of the theory are now related (Gauge-Yukawa Unification - GYU).

- One-loop finiteness is sufficient for two-loop finiteness Parkes, West (1984)
 - 2-loop corrections for matter fields vanish if one-loop finite \rightarrow sufficient for $\beta_g^{(2)} = 0 = \beta_{ijk}^{(2)}$
- $C_2[U(1)] = 0
 ightarrow$ finiteness cannot be achieved in the MSSM ightarrow GUT
- $C_2[singlet] = 0 \rightarrow$ supersymmetry can be broken only softly.

6

G Patellis

4 🗆) (A 🖓) (A 🚍)

All-loop Finiteness

Theorem

Lucchesi, Piguet, Sibold (1988)

4 回 > 4 個 > 4 差 > 4 差 > …

Consider an N=1 supersymmetric Yang-Mills theory with simple gauge group. If:

- There is no gauge anomaly
- 2 The gauge β -function vanishes at one-loop $\beta_q^{(1)} = 0$
- ② All superfield anomalous dimensions vanish at one-loop $\gamma_i^{\prime(1)}=0$
- The *REs* admit uniquely determined power series solution that in lowest order is a solution of the vanishing anomalous dimensions
 - $C_{ijk} = \rho_{ijk}g$
 - these solutions are isolated and non-degenerate when considered as solutions of vanishing one-loop Yukawa β-functions

then the associated Yang-Mills models depend on the single coupling constant g with a β -function which vanishes at all orders.

Sac

э.

Physics Department. NTUA

Soft supersymmetry breaking terms

What about *dimensionful* parameters?

The soft supersymmetry breaking sector introduces more than 100 new free parameters.

Reduction can be extended to the dimensionful sector.

Kubo, Mondragon, Zoupanos (1996)

 \rightarrow Consider a N = 1 supersymmetric gauge theory with soft terms:

$$-\mathcal{L}_{SSB}=rac{1}{6}h^{jjk}\phi_i\phi_j\phi_k+rac{1}{2}b^{jj}\phi_i\phi_j+rac{1}{2}(m^2)^j_i\phi^{*i}\phi_j+rac{1}{2}M\lambda\lambda+h.c.$$

In addition to $\beta_{\alpha}^{(1)} = 0 = \gamma_i^{i(1)}$, one-loop finiteness can be achieved if we demand:

$$h^{ijk} = -MC^{ijk} \qquad (m^2)^j_i = \frac{1}{3}MM^*\delta^j_i$$

Jones, Mezincescu, Yao (1984)

Like in the dimensionless case, the above one-loop conditions are also sufficient for two-loop finiteness. Jack, Jones (1994) (a)

Physics Department, NTUA

G Patellis

Reduction of Couplings in Finite Unified Theories

Sar

Reduction of Couplings & Finiteness	
00000000	
Reduction of Couplings & Finitoness	

However, the soft scalar masses universal rule leads to phenomenological problems:

- charge and colour breaking vacua
- Incompatible with radiative electroweak breaking

Assuming

- one-loop finiteness in the dimensionless sector
- the REs $eta_C^{\it ijk}=eta_g rac{dC^{\it ijk}}{da}$ admit power series solutions
- the soft scalar masses satisfy the diagonality relation $(m^2)_i^i = m_i^2 \delta_i^i$

Kobayashi, Kubo, Mondragon, Zoupanos (1998)

 $\beta_{a}^{(1)} = \gamma_{i}^{i(1)} = 0$

 $C^{ijk} = g \sum \rho^{ijk}_{(n)} g^{2n}$

based on Martin, Vaughn, Yamada, Jack, Jones (1994)

then the universal rule can be "relaxed" to a (two-loop) soft scalar mass sum rule,

$$(m_i^2+m_j^2+m_k^2)/MM^\dagger=1+rac{g^2}{16\pi^2}\Delta^{(2)}$$

where the two-loop correction

$$\Delta^{(2)} = -2 \sum_{i} \left[(m_i^2 / M M^{\dagger}) - (1/3) \right] I(R_i)$$

vanishes for the N = 1 SU(5) FUTs.

G. Patellis

Reduction of Couplings in Finite Unified Theories

All-loop Finiteness in the soft sector

• It is possible to find all-loop RGI relations between the β -functions of dimensionless and soft parameters (in both finite and non-finite theories).

Hisano, Shifman (1997); Kazakov (1999); Jack, Jones, Pickering (1998)

Assuming that

- the REs $\beta_C^{\textit{ijk}} = \beta_g \frac{dC^{\textit{ijk}}}{dg}$ hold
- an RGI surface exists on which $h^{ijk} = -M \frac{dC(g)^{ijk}}{d\log g}$ hold in all orders

then, since the dimensionless sector is already finite to all loops, the soft sector is also all-loop finite.

• The following relations are also shown to hold to all loops:

$$\begin{split} M &= M_0 \frac{\beta_g}{g} \\ h^{ijk} &= -M_0 \beta_{\mu}^{ijk} \\ b^{ij} &= -M_0 \beta_{\mu}^{ij} \\ (m_i^2 + m_j^2 + m_k^2) &= M M^{\dagger} \end{split}$$

Kobayashi, Kubo, Zoupanos (1998); Kobayashi, Kubo, Mondragon, Zoupanos (2000)

	The SU(5) Finite Model ●○○○○○○○○	
The SU(5) Finite Model		

The SU(5) Finite Model

1+2-loop finiteHamidi, Schwarz; Jones, Raby (1984); Leon, Perez-Mercader, Quiros (1985);all-loop finiteKapetanakis, Mondragon, Zoupanos (1993)

We study an all-loop finite N = 1 supersymmetric SU(5) model with content:

$3\bar{5} + 310 + 4(5 + \bar{5}) + 24$

Heinemeyer, Mondragon, Zoupanos (2008)

4 🗆 X 4 🗐 X 4 🖻 X 4 🖻 X

Under GUT scale: broken $SU(5) \rightarrow MSSM$; no longer finite.

In order for the model to become predictive, it should also have the following properties:

- Fermions do not couple to the adjoint rep 24
- The two Higgs doublets of the MSSM are mostly made out of a pair of Higgs $(5+\bar{5})$ which couple to the third generation

Physics Department. NTUA

Sac

	The SU(5) Finite Model	
	00000000	
The SU(E) Finite Medel		

We can enhance the symmetry so that the superpotential will be:

$$W = \sum_{i=1}^{3} \left[\frac{1}{2} g_{i}^{u} \mathbf{10}_{i} \mathbf{10}_{i} H_{i} + g_{i}^{d} \mathbf{10}_{i} \overline{\mathbf{5}}_{i} \overline{H}_{i} \right] + g_{23}^{u} \mathbf{10}_{2} \mathbf{10}_{3} H_{4}$$

$$+ g_{23}^{d} \, \mathbf{10}_{2} \overline{\mathbf{5}}_{3} \, \overline{H}_{4} + g_{32}^{d} \, \mathbf{10}_{3} \overline{\mathbf{5}}_{2} \, \overline{H}_{4} + g_{2}^{f} \, H_{2} \, \mathbf{24} \, \overline{H}_{2} + g_{3}^{f} \, H_{3} \, \mathbf{24} \, \overline{H}_{3} + \frac{g^{\Lambda}}{3} \, (\mathbf{24})^{3}$$

The isolated and non-degenerate solutions to $\gamma_i^{(1)} = 0$ then give:

$$(g_1^u)^2 = \frac{8}{5} g^2 , \ (g_1^d)^2 = \frac{6}{5} g^2 , \ (g_2^u)^2 = (g_3^u)^2 = \frac{4}{5} g^2 ,$$

$$(g_2^d)^2 = (g_3^d)^2 = \frac{3}{5} g^2 , \ (g_{23}^u)^2 = \frac{4}{5} g^2 , \ (g_{23}^d)^2 = (g_{32}^d)^2 = \frac{3}{5} g^2 ,$$

$$(g^\lambda)^2 = \frac{15}{7} g^2 , \ (g_2^t)^2 = (g_3^t)^2 = \frac{1}{2} g^2 , \ (g_1^t)^2 = 0 , \ (g_4^t)^2 = 0$$

Since our theory is supersymmetric, we could remove terms that are not needed by hand in order to obtain the solutions. This method is equivalent to imposing the extra symmetry.

From the sum rule we obtain:

$$m_{H_d}^2 + 2m_{10}^2 = M^2$$
, $m_{H_d}^2 - 2m_{10}^2 = -\frac{M^2}{3}$, $m_{\overline{5}}^2 + 3m_{10}^2 = \frac{4M^2}{3}$

Only two free parameters (m_{10} and M) in the dimensionful sector.

Sac

	The SU(5) Finite Model ○○●○○○○○○	
The SU(5) Finite Model		

Phenomenology

Gauge symmetry broken \rightarrow MSSM \rightarrow boundary conditions at M_{GUT} remain of the form:

- (a) $C_i = \rho_i g$
- (b) h = -MC
- (c) sum rule

One-loop β -functions for the soft sector, everything else in two loops.

Input: The only value fixed is the one of m_{τ} .

Output:

- solutions that satisfy m_t , m_b , m_h experimental constraints
- solutions that satisfy B physics observables
- neutral LSP
- no fast proton decay
- SUSY breaking scale and full SUSY spectrum

4 🗆 🕨 4 🗐 🕨 4 🚍 🕨

	The SU(5) Finite Model ○○○●○○○○○	
The SU(5) Finite Model		

Flavour Constraints

Four types of flavour constraints, where supersymmetry has significant impact:

•
$$\begin{split} &\frac{BR(b \rightarrow s\gamma)^{\text{exp}}}{BR(b \rightarrow s\gamma)^{\text{SM}}} = 1.089 \pm 0.27 \\ &\frac{BR(B_u \rightarrow \tau\nu)^{\text{exp}}}{BR(B_u \rightarrow \tau\nu)^{\text{SM}}} = 1.39 \pm 0.69 \\ &\text{BR}(B_s \rightarrow \mu^+ \mu^-) = (2.9 \pm 1.4) \times 10^{-9} \\ &\frac{\Delta M_{B_s}^{\text{exp}}}{\Delta M_{B_s}^{\text{SM}}} = 0.97 \pm 0.2 \end{split}$$

Uncertainties: linear combination of experimental error and twice the theoretical MSSM uncertainty.

4 □ ▶ 4 @ ▶ 4 E ▶ 4 E ▶

	The SU(5) Finite Model	
The SU(5) Finite Model		

Bottom and Top Quark Mass

 \hat{m}_t , $m_b(M_Z)$ as a function of the unified gaugino mass M for $\mu < 0$ and $\mu > 0$.

Only $\mu < 0$ phenomenologically acceptable choice.

Physics Department, NTUA

< □

G. Patellis

Reduction of Couplings in Finite Unified Theories

	The SU(5) Finite Model ○○○○○●○○○	
The SU(5) Finite Model		

Lightest Higgs Mass

FeynHiggs: Hybrid approach of fixed-order diagrammatic calculations and EFT resummation of large logarithmic contributions.

Reduction of Couplings in Finite Unified Theories

G. Patellis

	The SU(5) Finite Model ○○○○○○●○○	
The SU(5) Einite Model		

Supersymmetric Spectrum

SUSY spectrum for $M_h = 125.1 \pm 3.1$ GeV (left) and $M_h = 125.1 \pm 2.1$ GeV (right)

• $\tan\beta\sim$ 44 – 46

SUSY spectrum > 600 GeV

G. Patellis

< □

	The SU(5) Finite Model ○○○○○○○●○	
The SU(5) Finite Model		

Supersymmetric Spectrum

$\delta M_h = 2.1$	M_h	M_H	M_A	$M_{H^{\pm}}$	$m_{\tilde{t}_1}$	$m_{\tilde{t}_2}$	$m_{\tilde{b}_1}$	$m_{\tilde{b}_2}$	mğ
lightest	123.1	1533	1528	1527	2800	3161	2745	3219	4077
heaviest	127.2	4765	4737	4726	10,328	11,569	10,243	11,808	15,268
	$m_{\tilde{\tau}_1}$	$m_{\tilde{t}_2}$	$m_{\tilde{\chi}_1^\pm}$	$m_{\tilde{\chi}^{\pm}_2}$	$m_{\tilde{\chi}^0_1}$	$m_{\tilde{\chi}^0_2}$	$m_{\tilde{\chi}^0_3}$	$m_{\widetilde{\chi}_4^0}$	tan β
lightest	983	1163	1650	2414	900	1650	2410	2414	45
heaviest	4070	5141	6927	8237	3920	6927	8235	8237	46
$\delta M_h = 3.1$	M_h	M_H	M_A	$M_{H^{\pm}}$	$m_{\tilde{t}_1}$	$m_{\tilde{t}_2}$	$m_{\tilde{b}_1}$	$m_{\tilde{b}_2}$	mg
lightest	122.8	1497	1491	1490	2795	3153	2747	3211	4070
heaviest	127.9	4147	4113	4103	10,734	12,049	11,077	12,296	16,046
	$m_{\tilde{ au}_1}$	$m_{\tilde{\tau}_2}$	$m_{\tilde{\chi}_1^\pm}$	$m_{\tilde{\chi}^{\pm}_2}$	$m_{\tilde{\chi}^0_1}$	$m_{\tilde{\chi}^0_2}$	$m_{\tilde{\chi}^0_3}$	$m_{{\widetilde \chi}^0_4}$	tan β
lightest	1001	1172	1647	2399	899	647	2395	2399	44
heaviest	4039	6085	7300	8409	4136	7300	8406	8409	45

G. Patellis

Physics Department, NTUA

Reduction of Couplings in Finite Unified Theories

99C

	The SU(5) Finite Model ○○○○○○○○●	
The SU(5) Finite Model		

CDM Relic Density Constraints

We have a neutralino LSP \rightarrow CDM candidate.

Most sensitive constraint \rightarrow Relic Density

Calculation with MicrOMEGAs 5.0 \rightarrow large exclusions (but still viable results)

Our LSP is \sim 97% Bino-like, \sim 3% Higgsino-like.

The SU(3) \otimes SU(3) \otimes SU(3) Finite Model

Ways to get N = 1 SU(3) \otimes SU(3) \otimes SU(3)

• We start from a 10D, N = 1 theory with a E_8 gauge group on a $M^4 \times B$ space.

If we reduce over the nearly-Kaehler space $B = SU(3)/U(1) \times U(1)$, then the surviving gauge group is $E_{\delta} \times U(1)_A \times U(1)_B$.

Kapetanakis, Zoupanos (1992); Manousselis, Zoupanos (2002)

This can be further reduced via the Wilson flux mechanism if instead we consider a reduction over $B = SU(3)/U(1) \times U(1) \times \mathbb{Z}_3$.

Then, the surviving group will be $SU(3)_c imes SU(3)_L imes SU(3)_R$

Hosotani (1983); Irges, Zoupanos (2011)

• We start from a 4D, N = 4 theory with a SU(3N) gauge group on M^4 .

Orbifolding by embedding \mathbb{Z}_3 in the SU(3) subgroup of $SU(4)_R \to$ the projected theory is a N = 1 $SU(N)^3$.

By adding SSB terms \rightarrow we get vacua that can be described by 3 fuzzy spheres. Theory breaks down to $SU(3)_c \times SU(3)_L \times SU(3)_R$ + finite Kaluza-Klein towers Aschieri, Grammatikopoulos, Steinacker, Zoupanos (2006); Chatzistavrakidis, Steinacker, Zoupanos (2010) The SU(3) \otimes SU(3) \otimes SU(3) Finite Model 00000

The SU(3) \otimes SU(3) \otimes SU(3) Finite Model

The N = 1 SU(3)_c × SU(3)_L × SU(3)_R Model

The supermultiplets are given as:

$$q^{c} = \begin{pmatrix} d_{R}^{1} & u_{R}^{1} & D_{R}^{1} \\ d_{R}^{2} & u_{R}^{2} & D_{R}^{2} \\ d_{R}^{3} & u_{R}^{3} & D_{R}^{3} \end{pmatrix} \rightarrow (\bar{3}, 1, 3) \qquad q = \begin{pmatrix} d_{L}^{1} & d_{L}^{2} & d_{L}^{3} \\ u_{L}^{1} & u_{L}^{2} & u_{L}^{3} \\ D_{L}^{1} & D_{L}^{2} & D_{L}^{3} \end{pmatrix} \rightarrow (3, \bar{3}, 1)$$
$$L = \begin{pmatrix} H_{d}^{0} & H_{u}^{+} & \nu_{L} \\ H_{d}^{-} & H_{u}^{0} & e_{L} \\ \nu_{R} & e_{R} & S \end{pmatrix} \rightarrow (1, 3, \bar{3})$$

The 1-loop β -functions for each gauge group are given by:

$$\beta_i = (16\pi^2)^{-1} a_i g_i^3, \qquad a_i = T(R_1) d(R_2) - 3C_2(G_1)$$

However, $a_i = 3n_G - 9$, where n_G is the number of fermionic families.

 $\rightarrow \beta_{a} = 0$ in 1-loop

G. Patellis

Ma, Mondragon, Zoupanos (2007)

4 🗆 🕨 4 🖓 🕨 4 🖻 🕨 4 🖻 🕨

э Physics Department, NTUA

Reduction of Couplings in Finite Unified Theories

	The SU(3) \otimes SU(3) \otimes SU(3) Finite Model
	00000
The SU(3) 🛇 SU(3) 🛇 SU(3) Finite Model	

For one fermionic family, the trinilear invariant terms of the superpotential are:

$$fTr(Lq^{c}q) + \frac{1}{6}f'\epsilon_{ijk}\epsilon_{abc}(L_{ia}L_{jb}L_{kc} + q_{ia}^{c}q_{jb}^{c}q_{kc}^{c} + q_{ia}q_{jb}q_{kc})$$

Then, the vanishing condition of the anomalous dinemsions becomes:

$$rac{1}{2}(3|f|^2+2|f'|^2)=2\Big(rac{4}{3}g^2\Big)$$

If f' vanish, then the above relation has an isolated solution:

$$f^2 = \frac{16}{9}g^2$$

and the model becomes finite in all loops.

However \rightarrow without f' there are no lepton masses!

Alternatively: we keep 2-loop finiteness and allow lepton masses

$$f^2 = \frac{16}{9}g^2$$
 $f'^2 = (1-r)\frac{8}{3}g^2$

AR & A TH &

G Patellis

	The SU(3) \otimes SU(3) \otimes SU(3) Finite Model OOO $igodol O$
The SU(3) \otimes SU(3) \otimes SU(3) Finite Model	

Bottom and Top Quark Mass

Boundary conditions at M_{GUT} (a) $f^2 = 16/9g^2$, $f'^2 = (1 - r)8/3g^2$ (b) h = -MC(c) sum rule

One-loop β -functions for the soft sector, everything else in two loops. For $\mu < \mathbf{0}$

G. Patellis

Physics Department, NTUA

Reduction of Couplings in Finite Unified Theories

an

Summary

- Reduction of Couplings: powerful tool that implies Gauge-Yukawa Unification
- Finiteness: old dream of HEP, very predictive models
- ullet completely finite theories ightarrow both in dimensionless and dimensionful sector

SU(5):

- past analysis predicted the lightest Higgs boson mass
- Re-examined in two-loop (one-loop for the SSB sector) and with the new FeynHiggs code
- $\mu <$ 0 survives phenomenological constraints (including relic density)
- heavy SUSY spectrum, probably eludes present and next-gen accelerators

 $SU(3)\otimes SU(3)\otimes SU(3)$:

- "low-energy" remnant of larger symmetries
- $\bullet~$ 1-loop β functions vanish for 3 fermionic families
- $\mu <$ 0 survives phenomenological constraints (at least for top and bottom quarks)
- ${\scriptstyle \bullet}\,$ promising analysis \rightarrow to be extended to Higgs mass, SUSY spectrum and relic density

G. Patellis

Physics Department. NTUA

4 (1) + 4 (2) (2) + 4 (2) +