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Outline

* PICOSEC Micromegas detector
* Signal
* Photocathodes
* A method to evaluate the photocathode yield
e Alignment
* Radial profile
* Estimation of the PICOSEC response to a single photoelectron (pe)
* Estimation of N by fitting charge distribution

* Conclusion



PICOSEC Micromegas
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atoms - ion — e - Avalanche of interactions - A AW 300v N\
detectable signal at the anode e e
« Combines most of the qualities required for a high- > MM Conversion/Drift Gap i \,, F Field
rate position-sensitive particle detector (Giomataris | \e  Micromesh
Y. et al., NIMA 376 (1996) 29) 28 um? Amplification Gap L ifie . e et Eredf T

* Limit to the time resolution of the detector...There is
no hope of improving this time resolution in a gas

counter (Principles of operation of multiwire e== Readout Strips m | |
proportional and drift chambers, Saouli, CERN, 1975) o= Resistive Strips \/ |
 Cherenkov Radiator above cathode Patticle
* Photons = e by using photocathode (Csl, DLC, etc)
* Photoelectrons traverse classic Micromegas Cherenkov
BUT Radiator i

* Smaller Drift gap =2 intense electric field SR Vi Cathode

Time Resolution Drift 100-300 pm 7 E-Field Mesh

ns > oS gt sy 1" G S Bk
HV2 noae

(micromegas) (PICOSEC Micromegas)

More: S. Tzamarias’ talk 19/4 "Recent Developments on Precision Timing with Preamplfier + DAQ

PICOSEC-Micromegas Detectors: Performance, Modeling and Applications "




Signal

0.051

e e-arrive faster than ions
* Signal produced from both
* ¢ :electron peak (0.5 ns) and ion tail(100 ns)
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Reminder: The resolution determined in test beam data

e SAT: Timing of PICOSEC waveform - Reference time (photodiode)
* Mean value 2 Mean SAT

* RMS = time resolution

* Dependence of SAT on e-peak charge

* Drift field (mostly)
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Robustness of photocathodes

* Precise timing capabilities (24 ps) = High electric field
* lons backflow (IBF) as a result of high electric field
e Crashing on photocathode
* Injuring Csl photocathode
* IBF > 60 % at high detector gain
* Robust photocathodes needed

Table 4.2.: Measurement of the IBF in a pion beam at different field
‘/anode [V] Vdrift [V] Ianode [mA] Idrift [mA] IBF

+450 -350 98.00 23.40 24
+450 -375 193.85 53.00 28
+450 -325 45.47 10.65 23
+425 -400 193.50 53.10 28
+425 -375 87.30 23.95 27
+425 -350 44.48 10.99 25
+400 -425 178.84 112.39 63
+400 -400 88.55 25.54 28
+400 -375 41.28 11.10 27
+400 -350 20.42 4.44 22

L. Sohl, “Progress of the PICOSEC Micromegas concept towards a robust particle detector with segmented readout”, 9th Symposium on large TPCs
for low-energy rare event detection 6



The best timing resolution is achieved for certain combination of voltages. In

principle high timing resolution is achieved at high fields.
In such case though you risk high lon Back-Flow which damages the

photocathode
On the other hand a sensitive photocathode provides many photoelectrons,

which results in improving the time resolution (~,/Npe))
The perfect photocathode should be resistant to damage but it must be also

able to provide high number of photoelectrons
We have developed a technique to estimate consistently the photoelectron

yield
The rest of this talk describes the application of this method to data selected

with Csl photocathode



e-peak charge and amplitude distribution

muon run with Csl (August 2018)
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1) The first step: Align the detector
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Symmetric shape = Parabolic fit

x =32.875 error =0.05
y =24.869 error =0.06

PICOSEC alignment
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Having aligned the detector, we select tracks that are passing through the center
of the PICOSEC (R< 3mm)
The Cherenkov ring of these tracks is fully contained in the effective area of the
detector

v /ndf 2652 /26
Constant 2573

i @ | Mean 2.726 Time resolution of fully
30 Sigma 0.2424E-01 .
- contained tracks (R<3mm)

25 —

20 —

2.5 2.55 2.6
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Radial Profile
However as the track passes further away from the

Muon

center, the detector sees fewer photoelectrons
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2) E-peak charge and amplitude distribution
from single photoelectrons




Single photoelectron and charge distribution

Special run with UV lamp: no lower
threshold on e-peak amplitude
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E-peak charge vs Amplitude for the selected pulses

Signal pulses should have correlation between e-peak
charge and amplitude

e—peak Charge (pC)

Trigger selects pulses with amplitude > 17 mV
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E-peak charge and amplitude distribution

Black: All
Red: Falling time > 1.5 ns
Blue: falling time >1.5 ns and 245 < appearance time < 255 ns
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Avoid trigger turn on: e-peak amplitude >20 mV e-peak charge > 1 pC .



Fitting the e-peak charge and amplitude distributions

Polya fit

on both
histograms

TR B SRR PO
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The Polya distribution is defined by the following (normalized to unity) function:

1 (6+1)*Y(0/0,)
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Fitting the e-peak charge and amplitude distributions

on both
histograms o
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3) E-peak charge and amplitude distribution
from muons




E-peak Charge dlstr|but|on for muons

Analysis for Csl photocathode

Photocathode properties for radial profile:
Reflection = 22%
Absorption = 20%

Polya parameters for single photoelectrons:
Mean = 1.0668
Error = 0.6433

A muon produces many of photoelectrons with
a mean value N

E-peak charge distribution is the sum of many
single p.e Polya.

Convolution of single p.e Polya and Poison :
* Poison for the number of actual number of
p.e’s when the mean is Ny

*the single p.e Polya to be used depends on
the track impact point which changes the
average charge as seen at the radial charge
profile

Fit result: Npe=11.65 photoelectrons producec
on average from each muon
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https://indico.cern.ch/event/676702/contributions/2769936/attachments/1574514/2485821/RD51-Paradigms-I.pdf

Systematic uncertainties on Npe: change radial profile and background rejection cuts
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Systematic uncertainties on Npe: change the

single pe Polya parameters

0.6433
0.6498
0.6452
0.6388
0.6398
0.64305
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1.1102
1.117
1.0786
1.028
1.0118
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12.6+0.4
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Npe estimate from e-peak amplitudes
(this is a biased estimation!)

Polya parameters:

Mean = 0.019967
Error =0.011734

10.5 photoelectrons produced

Estimations by fitting the e-peak amplitude distribution
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Assuming that the resolution is proportional to 1/\/1V and using the radial profile and the

estimated number of photoelectrons we can predict the dependence of the timing resolution

on the radial distance of the track

Resalution Prediction Assuming 1/sqrt{Npe) Dependence
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The prediction of the resolution vs radial distances agrees very well with the
data because the timing resolution depends on the e-peak charge as 1/\/5

Resolution Prediction Assuming 1/sqrt{Npe) Dependence

~0.14
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In conclusion, the timing resolution varies (almost) as 1/\/6 which can be expressed as a
1/,/Nye.dependence. Consequently, the timing resolution as a function of the track radial

distance can be expressed in terms of the above 1/\/’ dependence and the Cherenkov ring

geometrical acceptance. 28
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The variation of the timing resolution as a function of the e-peak amplitude is also consistent
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Conclusions

We have developed a statistical method to estimate the number of photoelectrons produced by a track
passing through the MgF, radiator using:

* The radial profile (mean e-peak charge/track vs radial distance),

* The Polya parameters for single photoelectron determined by special UV runs

* The charge (or amplitude) distribution of the PICOSEC response to muon tracks

We estimated the photoelectron yield of Csl photocathode per track as 11.5 + 0.4 (stat) £0.5 (syst)

Using the e-peak amplitude, the number of photoelectrons per track estimated was found to be less but,

this is a biased estimation due to the fact that the e-peaks related to different photoelectrons are not
synchronous.

The resolution vs the track radial distance found to be consistent with the assumption that the resolution

variesas 1/,/Npe

We are applying this technique to test beam data in order to evaluate the photoelectron yield of different
photocathodes and our results will soon be published
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Thank you



Systematic uncertainties on Npe: change
radial profile and sing

Diffenet Photocathode properties:

Csl Photocathode
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Number of photoelectrons

N(6+1) N(O+1)—1
A(QIN,Q.,0) = % (%) exp {— (6 + 1)%}
@i -1 325« a@i.000)

i=1 \ j=0

* Data from UV lamp test = signal from single photoelectrons
e Polya distribution

v S
[\ N
= N
—] W
R —
_._
—g——

e Minimize likelihood

[y

~

wn
T

Convolution Poisson with Polya
* N - mean number of photoelectrons / muon

Number of even

. [

[\°) n

(7] [—)

, -
'—.':_._

——

100 : 1 2 3 4 5 6 71 8
Electron Peak Charge (pC)

Npe =10.4 0.4 Ik f +
501 4

T

25|

I (]
00 510 15 20 25 30 35 40 45 30
Electron Peak Charge (pC)




