Higher Dimensional Operators, SSB and consistency of Reg's

Notation

Higher Dimensional Operator (HDO) Higher Derivative Operator (HDOp) Spontaneous Symmetry Breaking(SSB) Reparameterization Ghosts (Reg's) Ostrogradsky Ghosts (Og's) Dimensional Regularization (DR) degrees of freedom(d.o.f.)

Motivation

- Higgs Hierarchy Problem (Quadratic divergencies)
- Many solutions (SUSY, Composite Higgs, Extra dímensions,...)
- Focus on Non-Perturbative Gauge-Higgs Unification (Hint from: Nikos Irges and F.K. Nucl. Phys. B 937 (2018) 135–195)

Current work in progress with Nikos Irges (to appear)

- Main goal: SSB and Higgs mechanism including only HDOp's
- Toy model: ϕ^4 -theory plus dím=(6,8) operators

The Lagrangian is

$$\mathscr{L}^{(6,8)} = -\frac{1}{2} \left(\phi_0 \Box \phi_0 + \phi_0 m_0^2 \phi_0 \right) - \frac{\lambda_0}{4!} \phi_0^4$$

$$+\frac{c_{1,0}^{(6)}}{\Lambda^2}\phi_0^2 \Box \phi_0^2 + \frac{c_{2,0}^{(6)}}{\Lambda^2}\phi_0 \Box^2 \phi_0 + \frac{c_{3,0}^{(6)}}{\Lambda^2}\phi_0^6$$
$$+\frac{c_{1,0}^{(8)}}{\Lambda^4}\phi_0^3 \Box \phi_0^3 + \frac{c_{2,0}^{(8)}}{\Lambda^4}\phi_0^2 \Box^2 \phi_0^2 + \frac{c_{3,0}^{(8)}}{\Lambda^4}\phi_0 \Box^3 \phi_0 + \frac{c_{4,0}^{(8)}}{\Lambda^4}\phi_0^8$$

Performing a general field redefinition

Fotis Koutroulis

HDO and SSB

$$\phi_0 \rightarrow \phi_0 + \frac{x}{\Lambda^2} \Box \phi_0 + \frac{y}{\Lambda^2} \phi_0^3 + \frac{z}{\Lambda^4} \Box^2 \phi_0 + \frac{u}{\Lambda^4} \phi_0 \Box \phi_0^2 + \frac{w}{\Lambda^4} \phi_0^5$$

• The redefined Lagrangian is
 $\mathscr{L}^{(6,8)} = -\frac{1}{2} \phi_0 \Box \phi_0 - \frac{1}{2} F_1(x) m_0^2 \phi_0^2 - F_2(y) \frac{\lambda_0}{4!} \phi_0^4 + F_3(x, y, u) \frac{c_{1,0}^{(6)}}{\Lambda^2} \phi_0^2 \Box \phi_0^2$
 $+ F_4(x, z) \frac{c_{2,0}^{(6)}}{\Lambda^2} \phi_0 \Box^2 \phi_0 + F_5(y, w, x) \frac{c_{3,0}^{(6)}}{\Lambda^2} \phi_0^6 + F_6(w, x, y, u) \frac{c_{1,0}^{(8)}}{\Lambda^4} \phi_0^3 \Box \phi_0^3$
 $+ F_7(x, y, u, z) \frac{c_{2,0}^{(8)}}{\Lambda^4} \phi_0^2 \Box^2 \phi_0^2 + F_8(x, z) \frac{c_{3,0}^{(8)}}{\Lambda^4} \phi_0 \Box^3 \phi_0 + F_9(y, w) \frac{c_{4,0}^{(8)}}{\Lambda^4} \phi_0^8$

Freedom to eliminate any kind of operator

• Keep only HDO's without derivatives (ϕ^6, ϕ^8) • Focus on dim=6 case with $(x = c_{1,0}^{(6)}, y = c_{1,0}^{(6)} - \frac{\lambda}{6}c_{1,0}^{(6)})$ $\mathscr{L}^{(6)} = -\frac{1}{2}\phi_0 \Box \phi_0 - \frac{1}{2}\tilde{m}_0^2\phi_0^2 - \frac{\tilde{\lambda}_0}{44}\phi_0^4 + \frac{\tilde{c}_{3,0}^{(6)}}{64\Lambda^2}\phi_0^6$

Renormalization procedure, with ε-expansion, in

1-loop corrections to the $\mathscr{L}^{(6)}$

In massless límít:

The mass after SSB as a function of scale
Phase diagram of the theory in d = 3,4,5

• The scalar mass in this case runs as

• Same procedure for the case of dim = (6,8) in the massless limit with $\tilde{\lambda} \to 0$

• The Lagrangian is $\mathscr{L}^{(6,8)} = -\frac{1}{2}\phi_0 \Box \phi_0 + \frac{\tilde{c}_{3,0}^{(6)}}{6!\Lambda^2}\phi_0^6 + \frac{\tilde{c}_{4,0}^{(8)}}{8!\Lambda^4}\phi_0^6$ • The new potential is $V(\phi) = -\frac{\tilde{c}_{3,0}^{(6)}}{6!\Lambda^2}\phi_0^6 - \frac{\tilde{c}_{4,0}^{(8)}}{8!\Lambda^4}\phi_0^6$ • $\beta_{\tilde{c}_{3}^{(6)}} = -2\varepsilon \tilde{c}_{3}^{(6)} \ \beta_{\tilde{c}_{3}^{(6)}} = -3\varepsilon \tilde{c}_{4}^{(8)} + \frac{7(\tilde{c}_{3}^{(6)})^2}{16\pi^2}$

 Give polynomial HDO and HDOp's equivalent picture?

$$\mathscr{L}^{(6)} = -\frac{1}{2}\phi_0 \Box \phi_0 - \frac{1}{2}\tilde{m}_0^2\phi_0^2 - \frac{\tilde{\lambda}_0}{4!}\phi_0^4 + \frac{\tilde{c}_{3,0}^{(6)}}{6!\Lambda^2}\phi_0^6$$

- The answer through the Phase diagram
- An other field redefinition to go to the original basis is $\phi'_0 = \phi_0 + \frac{x}{\Lambda^2} \Box \phi_0 + \frac{y}{\Lambda^2} \phi_0^3$

• Illegal step unless considering the path integral $\mathscr{Z}'[0] = \int \mathscr{D}\phi_0 \frac{d\phi'_0}{d\phi_0} e^{iS[\phi_0 + \frac{x}{\Lambda^2} \Box \phi_0 + \frac{y}{\Lambda^2} \phi_0^3]}$

 $\mathscr{Z}'[0] = \int \mathscr{D}\phi_0 \mathscr{D}\bar{\chi}'_0 \mathscr{D}\chi'_0 e^{iS[\phi_0 + \frac{x}{\Lambda^2} \Box \phi_0 + \frac{y}{\Lambda^2} \phi_0^3] - i\int d^4x \bar{\chi}'_0 F(\phi_0)\chi'_0}$

Fotis Koutroulis

Insertions of Reg's and Og's

Outlook

 Alternative solution to Higgs Hierarchy through HDOp's

- Is it true that $HDOp's \equiv HDO's?$
- Are the HDO-basis (Warsaw-basis, etc) in Standard Model consistent with ghost insertions?

THANK YOU

