Status of (n)NNLO QCD for Dibosons

Marius Wiesemann

Max-Planck-Institut für Physik

Multi-Boson Interactions 2019

Thessaloniki (Greece), August 26th - 28th, 2019

Precision at the LHC

- * Production of vector bosons (γ, W, Z) and Higgs
 - → deep test of the fundamental laws of physics
 - → high **experimental precision** already now

Diboson Cross Section Measurements

LHC data:

Experiment demands O(1%) theoretical precision

SM predictions: what is there?

not in this talk: BSM effects

Importance of QCD corrections (example WZ)

NNLO crucial for accurate description of data

$$\sigma_{\rm NLO}^{\rm X+jet} = \int_{\Phi_{\rm RV}} d\sigma^{\rm RV} + \int_{\Phi_{\rm RV+1}} \left(d\sigma^{\rm RR} - d\sigma^{\rm S} \right) + \int_{\Phi_{\rm RV}} \left(d\sigma^{\rm RV} + \int_{1} d\sigma^{\rm S} \right)$$

${ m d}\sigma^{ m S}$: subtraction term

- → CS [Catani, Seymour '96]
- → FKS [Frixione, Kunszt, Signer '96]
- → Antenna [Gehrmann et al. '05]
- **→** ...

$$\sigma_{\rm NLO}^{\rm X+jet} = \left[\int_{\Phi_{\rm RV}} \mathrm{d}\sigma^{\rm RV} + \int_{\Phi_{\rm RV}+1} \left(\mathrm{d}\sigma^{\rm RR} - \mathrm{d}\sigma^{\rm S} \right) + \int_{\Phi_{\rm RV}} \left(\mathrm{d}\sigma^{\rm RV} + \int_{1} \mathrm{d}\sigma^{\rm S} \right) \right]_{\frac{q_T}{Q} \equiv r > r_{\rm cut}}$$
$$\xrightarrow{r_{\rm cut} \ll 1} \left[A \cdot \log^4(r_{\rm cut}) + B \cdot \log^3(r_{\rm cut}) + C \cdot \log^2(r_{\rm cut}) + D \cdot \log(r_{\rm cut}) \right] \otimes \mathrm{d}\sigma^{\rm B}$$

$$\sigma_{\rm NLO}^{\rm X+jet} = \left[\int_{\Phi_{\rm RV}} \mathrm{d}\sigma^{\rm RV} + \int_{\Phi_{\rm RV}+1} \left(\mathrm{d}\sigma^{\rm RR} - \mathrm{d}\sigma^{\rm S} \right) + \int_{\Phi_{\rm RV}} \left(\mathrm{d}\sigma^{\rm RV} + \int_{1} \mathrm{d}\sigma^{\rm S} \right) \right]_{\frac{q_T}{Q} \equiv r > r_{\rm cut}}$$

$$\xrightarrow{r_{\rm cut} \ll 1} \left[A \cdot \log^4(r_{\rm cut}) + B \cdot \log^3(r_{\rm cut}) + C \cdot \log^2(r_{\rm cut}) + D \cdot \log(r_{\rm cut}) \right] \otimes \mathrm{d}\sigma^{\rm B}$$

$$= \int_{r > r_{\rm cut}} \left[d\sigma^{\rm (res)} \right]_{\rm f.o.} \equiv \Sigma_{\rm NNLO}(r_{\rm cut}) \otimes \mathrm{d}\sigma^{\rm B}$$

[Collins, Soper, Sterman '85]

[Bozzi, Catani, de Florian, Grazzini '06]

$$\sigma_{\rm NLO}^{\rm X+jet} = \left[\int_{\Phi_{\rm RV}} \mathrm{d}\sigma^{\rm RV} + \int_{\Phi_{\rm RV}+1} \left(\mathrm{d}\sigma^{\rm RR} - \mathrm{d}\sigma^{\rm S} \right) + \int_{\Phi_{\rm RV}} \left(\mathrm{d}\sigma^{\rm RV} + \int_{1} \mathrm{d}\sigma^{\rm S} \right) \right]_{\frac{q_T}{Q} \equiv r > r_{\rm cut}}$$

$$\xrightarrow{r_{\rm cut} \ll 1} \left[A \cdot \log^4(r_{\rm cut}) + B \cdot \log^3(r_{\rm cut}) + C \cdot \log^2(r_{\rm cut}) + D \cdot \log(r_{\rm cut}) \right] \otimes \mathrm{d}\sigma^{\rm B}$$

$$= \int_{r > r_{\rm cut}} \left[d\sigma^{\rm (res)} \right]_{\rm f.o.} \equiv \Sigma_{\rm NNLO}(r_{\rm cut}) \otimes \mathrm{d}\sigma^{\rm B}$$

$$d\sigma_{\text{NNLO}}^{\text{X}} = \left[d\sigma_{\text{NLO}}^{\text{X+jet}} \Big|_{r > r_{\text{cut}}} - \Sigma_{\text{NNLO}}(r_{\text{cut}}) \otimes d\sigma^{\text{B}} \right]$$

MNLO (pp→X+jet)

$$d\sigma_{\text{NNLO}}^{X} = \left[d\sigma_{\text{NLO}}^{X+\text{jet}} \Big|_{r > r_{\text{cut}}} - \Sigma_{\text{NNLO}}(r_{\text{cut}}) \otimes d\sigma^{B} \right] +$$

LO (pp→X)

q_T subtraction

[Catani, Grazzini '07]

NLO (pp→X)

NNLO (pp→X

$$d\sigma_{\rm NNLO}^{\rm X} = \left[d\sigma_{\rm NLO}^{\rm X+jet} \Big|_{r > r_{\rm cut}} - \Sigma_{\rm NNLO}(r_{\rm cut}) \otimes d\sigma^{\rm B} \right] + \mathcal{H}_{\rm NNLO} \otimes d\sigma^{\rm B}$$

NNLO (pp→X

q_T subtraction

[Catani, Grazzini '07]

 $\rightarrow d\sigma^{V}$

r_{cut}→0 extrapolation in MATRIX

[Grazzini, Kallweit, MW '17]

automatically computed in every single MATRIX NNLO run

$$d\sigma_{\text{NNLO}}^{X} = \left[d\sigma_{\text{NLO}}^{X+\text{jet}} \Big|_{r > r_{\text{cut}}} - \Sigma_{\text{NNLO}}(r_{\text{cut}}) \otimes d\sigma^{B} \right] + \mathcal{H}_{\text{NNLO}} \otimes d\sigma^{B}$$

r_{cut}→0 extrapolation in MATRIX

[Grazzini, Kallweit, MW '17]

simple quadratic fit (A * r_{cut}^2 + B * r_{cut} + C) to extrapolate to r_{cut} =0

$$d\sigma_{\text{NNLO}}^{X} = \left[d\sigma_{\text{NLO}}^{X+\text{jet}} \Big|_{r > r_{\text{cut}}} - \Sigma_{\text{NNLO}}(r_{\text{cut}}) \otimes d\sigma^{B} \right] + \mathcal{H}_{\text{NNLO}} \otimes d\sigma^{B}$$

r_{cut}→0 extrapolation in MATRIX

[Grazzini, Kallweit, MW '17]

$$d\sigma_{\text{NNLO}}^{X} = \left[d\sigma_{\text{NLO}}^{X+\text{jet}} \Big|_{r > r_{\text{cut}}} - \Sigma_{\text{NNLO}}(r_{\text{cut}}) \otimes d\sigma^{B} \right] + \mathcal{H}_{\text{NNLO}} \otimes d\sigma^{B}$$

r_{cut}→0 extrapolation in MATRIX [Grazzini, Kallweit, MW'17]

example: WZ production

example: WZ production (on-shell)

example: WZ production (off-shell)

• EW decays of heavy bosons (W, Z, γ^*) \checkmark (only isolated photons in the final state)

example: WZ production (off-shell)

- EW decays of heavy bosons (W, Z, γ^*) \checkmark (only isolated photons in the final state)

example: WZ production (off-shell)

- EW decays of heavy bosons (W, Z, γ^*) (only isolated photons in the final state)
- $^{ ext{@}}$ all topologies to same leptonic final state (with spin correlations & off-shell effects) \checkmark
 - \rightarrow access to triple gauge couplings (TGCs) \rightarrow high relevance for BSM physics

example: WZ production (off-shell)

- EW decays of heavy bos
- all topologies to same le
 - → access to triple gauge Loupings (10cs) → mgn relevance for BSM physics
- loop-induced gg channel enters NNLO for charge-neutral processes
 (eg, for ZZ)

photons in the final state)

tions & off-shell effects) 🗸

example: WZ production (off-shell)

- EW decays of heavy bosons (W, Z, γ^*) \checkmark (only isolated photons in the final state)
- all topologies to same leptonic final state (with spin correlations & off-shell effects) 🗸
 - \rightarrow access to triple gauge couplings (TGCs) \rightarrow high relevance for BSM physics
- loop-induced gg channel enters NNLO for charge-neutral processes $\sqrt{}$ (eg, for ZZ)
- important background for Higgs measurements (H→VV) and BSM searches

Marius Wiesemann (MPI Munich)

NNLO QCD corrections vor VV

All VV processes known through NNLO QCD:

- → inclusive/on-shell Z,W & differential/off-shell Z,W (leptonic)
- inclusive and differential [Catani, Cieri, de Florian, Ferrera, Grazzini '12], [Campbell, Ellis, Li, Williams '16], [Grazzini, Kallweit, MW '17]
- **Zγ** inclusive/on-shell and differential/off-shell [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]; see also: [Campbell et al. '17]
- Wγ inclusive/on-shell and differential/off-shell
 [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]
- **TZ** inclusive/on-shell [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs '14]; see also: [Heinrich et al. '17]
 - differential/off-shell [Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]
- WW inclusive/on-shell [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, et al. '14]
 - differential/off-shell [Grazzini, Kallweit, Pozzorini, Rathlev, MW '15]
- WZ inclusive/on-shell [Grazzini, Kallweit, Rathley, MW '16]
 - differential/off-shell [Grazzini, Kallweit, Rathlev, MW '17]

yy - inclusive and differential

[Catani, Cieri, de Florian, Ferrera, Grazzini '12], [Campbell, Ellis, Li, Williams '16], [Grazzini, Kallweit, MW '17]

- known only with slicing techniques
- photon processes quite delicate dependence on slicing parameter due to photon isolation
- well under control in state-of-the-art tools like MATRIX (see plot on the right)
- systematic uncertainties still larger than for other diboson processes, but few permille possible
- agreement among computation within respective uncertainties

Zγ - inclusive/on-shell and differential/off-shell

[Grazzini, Kallweit, Rathlev '15]

[Campbell, Neumann, Williams '17]

Grazzini,	Kallweit.	MW	113
	ranivicit,		

	L	,	
<pre>process (\${process_id})</pre>	$\sigma_{ m NNLO}^{ m extrapolated}$	$K_{ m NLO}$	$K_{ m NNLO}$
$pp o \gamma \gamma$ (ppaa02)	$40.28(30)^{+8.7\%}_{-7.0\%} \mathrm{pb}$	+361%	+56.4%
$pp ightarrow e^- e^+ \gamma \ ext{(ppeexa03)}$	$2316(5)^{+1.1\%}_{-1.2\%}$ fb	+44.3%	+9.29%
$pp o u_ear u_e\gamma$ (ppnenexa03)	$113.5(6)^{+2.9\%}_{-2.4\%}$ fb	+55.2%	+15.0%
$pp o e^- \bar{\nu}_e \gamma$ (ppenexa03)	$2256(15)^{+3.7\%}_{-3.5\%}$ fb	+155%	+22.0%
$pp \to e^+ \nu_e \gamma$ (ppexnea03)	$2671(35)^{+3.8\%}_{-3.6\%}$ fb	+154%	+22.1%

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '15]

$\mu^+e^-\nu_{\mu}\bar{\nu}_{e}$ (inclusive)@LHC 8 TeV dσ/dm_{WW} [fb/GeV] 10¹ 10⁰ 10^{-1} 10⁻² LO 10⁻³ **NLO NNLO** 10⁻⁴ $d\sigma/d\sigma_{NLO}$ NLO'+gg 1.2 1.1 500 200 250 300 350 450 400 150 m_{WW} [GeV]

WZ - differential/off-shell

[Grazzini, Kallweit, Rathlev, MW '17]

 $ZZ \rightarrow 4\ell$

[Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]

NEW: $ZZ/WW \rightarrow \ell\ell + E_{T,miss}$ [Kallweit, MW '18]

mixes ZZ and WW topologies:

 $(pp \rightarrow ZZ/\gamma *Z/WW \rightarrow \ell\ell \nu\nu)$

 $(pp \rightarrow Z/\gamma * \rightarrow \ell\ell Z/\ell \vee W \rightarrow \ell\ell \vee \nu)$

 $ZZ \rightarrow 4\ell$

[Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]

NEW: $ZZ/WW \rightarrow \ell\ell + E_{T,miss}$

[Kallweit, MW '18]

channel	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m ATLAS}$ [fb]
$e^+e^-\nu\nu$	$5.558(0)_{-0.5\%}^{+0.1\%}$	$4.806(1)_{-3.9\%}^{+3.5\%}$	$5.083(8)_{-0.6\%}^{+1.9\%}$	$5.0^{+0.8}_{-0.7}(\mathrm{stat})^{+0.5}_{-0.4}(\mathrm{syst}) \pm 0.1(\mathrm{lumi})$
$\mu^+\mu^-\nu\nu$	$5.558(0)_{-0.5\%}^{+0.1\%}$	$4.770(4)_{-4.0\%}^{+3.6\%}$	$5.035(9)_{-0.5\%}^{+1.8\%}$	$4.7^{+0.7}_{-0.7}(\mathrm{stat})^{+0.5}_{-0.4}(\mathrm{syst}) \pm 0.1(\mathrm{lumi})$
total rate	$4982(0)^{+1.9\%}_{-2.7\%}$	$6754(2)_{-2.0\%}^{+2.4\%}$	$7690(5)^{+2.7\%}_{-2.1\%}$	$7300^{+400}_{-400}(\text{stat})^{+300}_{-300}(\text{syst})^{+200}_{-100}(\text{lumi})$

 $ZZ \rightarrow 4\ell$

[Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]

NEW: $ZZ/WW \rightarrow \ell\ell + E_{T,miss}$

[Kallweit, MW '18]

channel	σ_{LO} [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m ATLAS} \ [{ m fb}]$
				$5.0^{+0.8}_{-0.7}(\text{stat})^{+0.5}_{-0.4}(\text{syst}) \pm 0.1(\text{lumi})$
$\mu^+\mu^-\nu\nu$	$5.558(0)_{-0.5\%}^{+0.1\%}$	$4.770(4)_{-4.0\%}^{+3.6\%}$	$5.035(9)_{-0.5\%}^{+1.8\%}$	$4.7^{+0.7}_{-0.7}(\text{stat})^{+0.5}_{-0.4}(\text{syst}) \pm 0.1(\text{lumi})$
total rate	$4982(0)^{+1.9\%}_{-2.7\%}$	$6754(2)^{+2.4\%}_{-2.0\%}$	$7690(5)^{+2.7\%}_{-2.1\%}$	$7300^{+400}_{-400}(\text{stat})^{+300}_{-300}(\text{syst})^{+200}_{-100}(\text{lumi})$
	·		·	

Excellent agreement between NNLO and data

 $ZZ \rightarrow 4\ell$

[Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]

NEW: $ZZ/WW \rightarrow \ell\ell + E_{T,miss}$

[Kallweit, MW '18]

channel	σ_{LO} [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m ATLAS}$ [fb]
$e^+e^-\nu\nu$				$5.0^{+0.8}_{-0.7}(\mathrm{stat})^{+0.5}_{-0.4}(\mathrm{syst}) \pm 0.1(\mathrm{lumi})$
$\mu^+\mu^- u u$	$5.558(0)_{-0.5\%}^{+0.1\%}$	$4.770(4)_{-4.0\%}^{+3.6\%}$	$5.035(9)_{-0.5\%}^{+1.8\%}$	$4.7^{+0.7}_{-0.7}(\text{stat})^{+0.5}_{-0.4}(\text{syst}) \pm 0.1(\text{lumi})$
total rate	$4982(0)^{+1.9\%}_{-2.7\%}$	$6754(2)^{+2.4\%}_{-2.0\%}$	$7690(5)^{+2.7\%}_{-2.1\%}$	$7300^{+400}_{-400}(\text{stat})^{+300}_{-300}(\text{syst})^{+200}_{-100}(\text{lumi})$

Excellent agreement between NNLO and data

(better than comparison to MC [JHEP 1701 (2017) 099])

NNLO QCD corrections vor VV

All VV processes known through NNLO QCD:

- → inclusive/on-shell Z,W & differential/off-shell Z,W (leptonic)
- inclusive and differential [Catani, Cieri, de Florian, Ferrera, Grazzini '12], [Campbell, Ellis, Li, Williams '16], [Grazzini, Kallweit, MW '17]
- **Zγ** inclusive/on-shell and differential/off-shell [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]; see also: [Campbell et al. '17]
- Wγ inclusive/on-shell and differential/off-shell
 [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]
- **TZ** inclusive/on-shell [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs '14]; see also: [Heinrich et al. '17]
 - differential/off-shell [Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]
- WW inclusive/on-shell [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, et al. '14]
 - differential/off-shell [Grazzini, Kallweit, Pozzorini, Rathlev, MW '15]
- WZ inclusive/on-shell [Grazzini, Kallweit, Rathlev, MW '16]
 - differential/off-shell [Grazzini, Kallweit, Rathlev, MW '17]

NNLO QCD corrections vor VV

All VV processes known through NNLO QCD:

- → inclusive/on-shell Z,W & differential/off-shell Z,W (leptonic)
- inclusive and differential [Catani, Cieri, de Florian, Ferrera, Grazzini '12],
 [Campbell, Ellis, Li, Williams '16], [Grazzini, Kallweit, MW '17]
- Zγ inclusive/on-shell and differential/off-shell
 [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]; see also: [Campbell et al. '17]
- Wγ inclusive/on-shell and differential/off-shell
 [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]
- **TZ** inclusive/on-shell [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs '14]; see also: [Heinrich et al. '17]
 - differential/off-shell [Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]
- WW inclusive/on-shell [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, et al. '14]
 - differential/off-shell [Grazzini, Kallweit, Pozzorini, Rathlev, MW '15]
- WZ inclusive/on-shell [Grazzini, Kallweit, Rathlev, MW '16]
 - differential/off-shell [Grazzini, Kallweit, Rathlev, MW '17]

all publicly available within MATRIX

August 26th, 2019

process	status	comment
pp→ Z/γ *(→ℓℓ/νν)	√	validated analytically + FEWZ
$pp \rightarrow W(\rightarrow \ell \nu)$ single be processed	J	validated with FEWZ, NNLOjet
рр→ Н	√	validated analytically (by SusHi)
pp→γγ	√	validated with 2YNNLO
pp→ Z γ→ℓℓγ photon	√	[Grazzini, Kallweit, Rathlev '15]
pp→ Z γ→ννγ processe	es 🗸	[Grazzini, Kallweit, Rathlev '15]
pp→ W γ→ <i>ℓ</i> νγ	✓	[Grazzini, Kallweit, Rathlev '15]
pp →ZZ	√	[Cascioli et al. '14]
pp→ ZZ →ℓℓℓℓ	√	[Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]
pp→ ZZ →ℓℓℓ'ℓ'	√	[Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]
pp→ ZZ →ℓℓν'ν'	√	[Kallweit, MW '18]
pp→ZZ/WW→ℓℓvv massi	•	[Kallweit, MW '18]
pp→ WW dibos proce		[Gehrmann et al. '14]
pp→ ww →ℓν ℓ'v'	√	[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]
pp →WZ	√	[Grazzini, Kallweit, Rathlev, MW '16]
pp→ WZ →ℓνℓℓ	✓	[Grazzini, Kallweit, Rathlev, MW '17]
pp→ WZ →ℓ'ν'ℓℓ	✓	[Grazzini, Kallweit, Rathlev, MW '17]
рр→ нн	(_	not in public release

The MATRIX framework

[Grazzini, Kallweit, MW '17]

https://matrix.hepforge.org/

Amplitudes

OPENLOOPS (COLLIER, CUTTOols, ...)

Munich

MUlti-chaNnel Integrator at Swiss (CH) precision

 q_{T} subtraction $\iff q_{\mathrm{T}}$ resummation

MATRIX

Munich Automates qT Subtraction and Resummation to Integrate X-sections.

Recent developments for VV at the QCD front

$gg \rightarrow 4\ell$ (ZZ) and $gg \rightarrow 2\ell 2\nu$ (WW) at NLO

[Grazzini, Kallweit, MW, Yook '18] and [Grazzini, Kallweit, MW, Yook 'to appear]

$gg \rightarrow 4\ell$ (ZZ) and $gg \rightarrow 2\ell 2\nu$ (WW) at NLO

[Grazzini, Kallweit, MW, Yook '18] and [Grazzini, Kallweit, MW, Yook 'to appear]

virtuals:

reals:

see also:

[Caola, Melnikov, Röntsch, Tancredi '15 '16]

$gg \rightarrow 4\ell$ (ZZ) at NLO

[Grazzini, Kallweit, MW, Yook '18]

\sqrt{s}	8 TeV	$13\mathrm{TeV}$	8 TeV	$13\mathrm{TeV}$
	σ	[fb]	$\sigma/\sigma_{ m N}$	_{LO} – 1
LO	$8.1881(8)_{-3.2\%}^{+2.4\%}$	$13.933(7)^{+5.5\%}_{-6.4\%}$	-27.5%	-29.8%
NLO	$11.2958(4)_{-2.0\%}^{+2.5\%}$	$19.8454(7)_{-2.1\%}^{+2.5\%}$	0%	0%
$q\bar{q}$ NNLO	$12.08(3)_{-1.1\%}^{+1.1\%}$	$21.54(2)_{-1.2\%}^{+1.1\%}$	+6.9%	+8.6%
	σ [fb]		$\sigma/\sigma_{ m gg}$	$_{\rm LO}-1$
ggLO	$0.79354(8)_{-20.9\%}^{+28.2\%}$	$2.0054(2)_{-17.9\%}^{+23.5\%}$	0%	0%
$ggNLO_{gg}$	$1.4810(9)_{-13.2\%}^{+16.0\%}$	$3.627(3)_{-12.8\%}^{+15.2\%}$	+86.6%	+80.9%
ggNLO	$1.3901(9)^{+15.4\%}_{-13.6\%}$	$3.423(3)_{-12.0\%}^{+13.9\%}$	+75.2%	+70.7%
	σ	[fb]	$\sigma/\sigma_{ m N}$	LO-1
NNLO	$12.87(3)_{-2.1\%}^{+2.8\%}$	$23.55(2)_{-2.6\%}^{+3.0\%}$	+13.9%	+18.7%
nNNLO	$13.47(3)_{-2.2\%}^{+2.6\%}$	$24.97(2)^{+2.9\%}_{-2.7\%}$	+19.2%	+25.8%

+5-6% effect due to NLO correction to gg compared to NNLO

$gg \rightarrow 4\ell$ (ZZ) at NLO

[Grazzini, Kallweit, MW, Yook '18]

\sqrt{s}	8 TeV	$13\mathrm{TeV}$	8 TeV	$13\mathrm{TeV}$
	σ	[fb]	$\sigma/\sigma_{ m N}$	$_{\rm LO}-1$
LO	$8.1881(8)_{-3.2\%}^{+2.4\%}$	$13.933(7)_{-6.4\%}^{+5.5\%}$	-27.5%	-29.8%
NLO	$11.2958(4)_{-2.0\%}^{+2.5\%}$	$19.8454(7)_{-2.1\%}^{+2.5\%}$	0%	0%
$q\bar{q}$ NNLO	$12.08(3)_{-1.1\%}^{+1.1\%}$	$21.54(2)_{-1.2\%}^{+1.1\%}$	+6.9%	+8.6%
	σ	σ [fb]		$_{\rm LO}-1$
ggLO	$0.79354(8)_{-20.9\%}^{+28.2\%}$	$2.0054(2)_{-17.9\%}^{+23.5\%}$	0%	0%
$ggNLO_{gg}$	$1.4810(9)_{-13.2\%}^{+16.0\%}$	$3.627(3)_{-12.8\%}^{+15.2\%}$	+86.6%	+80.9%
ggNLO	$1.3901(9)^{+15.4\%}_{-13.6\%}$	$3.423(3)_{-12.0\%}^{+13.9\%}$	+75.2%	+70.7%
	σ	[fb]	$\sigma/\sigma_{ m N}$	LO-1
NNLO	$12.87(3)_{-2.1\%}^{+2.8\%}$	$23.55(2)_{-2.6\%}^{+3.0\%}$	+13.9%	+18.7%
nNNLO	$13.47(3)_{-2.2\%}^{+2.6\%}$	$24.97(2)_{-2.7\%}^{+2.9\%}$	+19.2%	+25.8%

+5-6% effect due to NLO correction to gg compared to NNLO

NLO gg correction large+not flat; moves nNNLO outside uncertainty band of NNLO

huge NLO gg K-factor (~2 & more); impact of newly computed fermionic channels clearly visible

[Grazzini, Kallweit, MW, Yook 'to appear]

$\sqrt{s} = 13 \text{ TeV}$	jet veto	no jet veto	jet veto	no jet veto
	σ [:	fb]	σ/σ	$_{ m NLO}-1$
LO	$284.2(2)_{-6.5\%}^{+5.6\%}$	$284.2(2)_{-6.5\%}^{+5.6\%}$	-15.6%	-43.7%
NLO	$336.6(4)_{-2.0\%}^{+1.6\%}$	$504.6(4)_{-3.3\%}^{+4.1\%}$	0%	0%
$q\bar{q}$ NNLO	$337.0(2)_{-0.5\%}^{+0.7\%}$	$559.0(4)_{-2.0\%}^{+2.1\%}$	+1.2%	+10.8%
	σ [:	fb]	$\sigma/\sigma_{ m g}$	$_{\rm ggLO} - 1$
ggLO	$21.96(2)^{+25.7\%}_{-18.4\%}$	$21.96(2)^{+25.7\%}_{-18.4\%}$	0%	0%
$gg{ m NLO}_{gg}$	$31.70(2)^{+10.8\%}_{-10.6\%}$	$38.4(1)_{-13.3\%}^{+15.8\%}$	+44.4%	+74.7%
ggNLO	$28.76(4)_{-9.0\%}^{+7.8\%}$	$37.42(4)_{-12.9\%}^{+15.2\%}$	+31.0%	+70.4%
	σ [3	fb]	σ/σ	$_{\rm NLO}-1$
NNLO	$359.0(2)_{-0.9\%}^{+1.2\%}$	$581.0(4)_{-2.6\%}^{+2.9\%}$	+6.7%	+15.1%
nNNLO	$365.8(2)_{-0.6\%}^{+0.4\%}$	$596.6(4)_{-2.7\%}^{+2.8\%}$	+8.7%	+18.2%

+2(3)% effect due to NLO correction to gg compared to NNLO with(out) jet veto

[Grazzini, Kallweit, MW, Yook 'to appear]

shape of nNNLO and NLO gg K-factor strongly affected by jet veto; large impact of newly computed fermionic channels clearly visible

[Grazzini, Kallweit, MW, Yook 'to appear]

good agreement between nNNLO and recent 13 TeV ATLAS data; tails could further improve due to EW corrections (Jonas Lindert's talk)

<u>NLO+PS (~10%):</u> long-standing issue → groundbreaking ~15 years; standard today <u>NNLO+PS(~1%)</u>: extremely challenging; no general application to involved processes

NNLO+PS approaches

* **MiNLO+reweighting** [Hamilton, Nason, Zanderighi '12] $pp \rightarrow H \quad [\text{Hamilton, Nason, Re, Zanderighi '13}]$ $pp \rightarrow \ell\ell \quad (Z) \quad [\text{Karlberg, Hamilton, Zanderighi '14}]$ $pp \rightarrow \ell\ell\ell \quad (ZH/WH) \quad [\text{Astill, Bizoń, Re, Zanderigh '16 '18}]$ $pp \rightarrow \ell\nu\ell'\nu' \quad (WW) \quad [\text{Re, MW, Zanderighi '18}]$

* Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi '13]

 $pp \rightarrow \ell\ell$ (Z) [Alioli, Bauer, Berggren, Tackmann, Walsh '15]

* UNNLOPS [Höche, Prestel '14]

$$pp \rightarrow H$$
 [Höche, Prestel '14]

 $pp \rightarrow \ell\ell$ (Z) [Höche, Prestel '14]

MiNLO+reweighting

	X	X+jet	X+2jets	X+nj (n>2)
XJ (NLO)		NLO	LO	
XJ-MiNLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	
X@NNLOPS	NNLO	NLO	LO	PS

I. merge

$$pp \rightarrow WW$$

and

 $pp \rightarrow WW+jet$ (both at NLO+PS)

MiNLO+reweighting

	X	X+jet	X+2jets	X+nj (n>2)
XJ (NLO)		NLO	LO	
XJ-MiNLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	
X@NNLOPS	NNLO	NLO	LO	PS

Marius Wiesemann (MPI Munich)

1. merge
$$pp \rightarrow WW$$
 and

$$pp \rightarrow WW+jet$$
 (both at NLO+PS)

2. reweight to NNLO in born phase space

$$W(\Phi_B) = \frac{\left(\frac{d\sigma}{d\Phi_B}\right)_{\text{NNLO}}}{\left(\frac{d\sigma}{d\Phi_B}\right)_{\text{XJ-MiNLO'}}} = \frac{c_0 + c_1\alpha_{\text{S}} + c_2\alpha_{\text{S}}^2}{c_0 + c_1\alpha_{\text{S}} + d_2\alpha_{\text{S}}^2} \simeq 1 + \frac{c_2 - d_2}{c_0}\alpha_{\text{S}}^2 + \mathcal{O}(\alpha_{\text{S}}^3)$$

NNLO+PS for WW

[Re, MW, Zanderighi '18]

Jet veto

p⊤ of dilepton system

- \rightarrow NNLOPS physical down to $p_T = 0$
- → NNLOPS cures perturbative instabilities (p^{miss}

August 26th, 2019

→ NNLOPS induces additional shape effects

Marius Wiesemann

NNLO+PS for WW

[Re, MW, Zanderighi '18]

p⊤ of dilepton system

 \rightarrow NNLOPS physical down to $p_T = 0$

Marius Wiesemann

- → NNLOPS cures perturbative instabilities (p_T cu
- → NNLOPS induces additional shape effects

The problem with reweighting

→ 9D Born phase space:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{B}}} = \frac{\mathrm{d}^{9}\sigma}{\mathrm{d}p_{T,W^{-}}\mathrm{d}y_{WW}\mathrm{d}\Delta y_{W^{+}W^{-}}\mathrm{d}\cos\theta_{W^{+}}^{\mathrm{CS}}\mathrm{d}\phi_{W^{+}}^{\mathrm{CS}}\mathrm{d}\cos\theta_{W^{-}}^{\mathrm{CS}}\mathrm{d}\phi_{W^{-}}^{\mathrm{CS}}\mathrm{d}m_{W^{+}}\mathrm{d}m_{W^{-}}}$$

→ approximation: m_W flat & CS angles [Collins, Soper '77] to convert to 81 3D moments

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{B}}} = \frac{9}{256\pi^{2}} \sum_{i=0}^{8} \sum_{j=0}^{8} AB_{ij} \, f_{i}(\theta_{W^{-}}^{\mathrm{CS}}, \phi_{W^{-}}^{\mathrm{CS}}) \, f_{j}(\theta_{W^{+}}^{\mathrm{CS}}, \phi_{W^{+}}^{\mathrm{CS}}) \\ f_{j}(\theta_{W^{+}}^{\mathrm{CS}}, \phi_{W^{+}}^{\mathrm{CS}}) = \frac{f_{0}(\theta, \phi) = (1 - 3\cos^{2}\theta)/2}{f_{3}(\theta, \phi) = \sin^{2}\theta\cos\phi}, \quad f_{1}(\theta, \phi) = \sin^{2}\theta\cos\phi, \quad f_{2}(\theta, \phi) = (\sin^{2}\theta\cos^{2}\phi)/2}, \\ f_{3}(\theta, \phi) = \sin^{2}\theta\sin\phi, \quad f_{4}(\theta, \phi) = \cos\theta, \quad f_{5}(\theta, \phi) = \sin^{2}\theta\sin\phi, \\ f_{6}(\theta, \phi) = \sin^{2}\theta\sin\phi, \quad f_{7}(\theta, \phi) = \sin^{2}\theta\sin^{2}\phi, \quad f_{8}(\theta, \phi) = 1 + \cos^{2}\theta.$$

$$AB_{ij}(p_{T,W^{-}}, y_{WW}, \Delta y_{W^{+}W^{-}}) = \int \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{P}} \, g_{i}(\theta_{W^{-}}^{\mathrm{CS}}, \phi_{W^{-}}^{\mathrm{CS}}) \, g_{j}(\theta_{W^{+}}^{\mathrm{CS}}, \phi_{W^{+}}^{\mathrm{CS}}) \, d\cos\theta_{W^{-}}^{\mathrm{CS}} \, d\phi_{W^{-}}^{\mathrm{CS}} \, d\phi_{W^{+}}^{\mathrm{CS}} \, d\phi_{W^{+}}^{\mathrm{CS}}.$$

 discrete binning limits applicability in less populated regions

 $p_{T,W^-}: [0., 17.5, 25., 30., 35., 40., 47.5, 57.5, 72.5, 100., 200., 350., 600., 1000., 1500., \infty];$

 $y_{WW}: [-\infty, -3.5, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.5, \infty];$

 $\Delta y_{W^+W^-}: \quad [-\infty, -5.2, -4.8, -4.4, -4.0, -3.6, -3.2, -2.8, -2.4, -2.0, -1.6, -1.2, \\ -0.8, -0.4, 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, \infty] \, .$

-> reweighting still numerically intensive

→ thorough validation required

event production of experiments already for DY

[Monni, Nason, Re, MW, Zanderighi '19]

	X	X+jet	X+2jets	X+nj (n>2)
XJ (NLO)		NLO	LO	
XJ-MiNLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	
X@NNLOPS	NNLO	NLO	LO	PS

I. merge
$$pp \rightarrow WW$$

and

$$pp \rightarrow WW+jet$$
 (both at NLO+PS)

2. reweight to NNLO in born phase space

$$W(\Phi_B) = \frac{\left(\frac{d\sigma}{d\Phi_B}\right)_{\text{NNLO}}}{\left(\frac{d\sigma}{d\Phi_B}\right)_{\text{XJ-MiNLO'}}} = \frac{c_0 + c_1\alpha_{\text{S}} + c_2\alpha_{\text{S}}^2}{c_0 + c_1\alpha_{\text{S}} + d_2\alpha_{\text{S}}^2} \simeq 1 + \frac{c_2 - d_2}{c_0}\alpha_{\text{S}}^2 + \mathcal{O}(\alpha_{\text{S}}^3)$$

[Monni, Nason, Re, MW, Zanderighi '19]

	X	X+jet	X+2jets	X+nj (n>2)
XJ (NLO)		NLO	LO	
XJ-MiNLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	
X@NNLOPS	NNLO	NLO	LO	PS

I. merge

$$pp \rightarrow WW$$

and

$$pp \rightarrow WW+jet$$
 (both at NLO+PS)

2. reweight to NNLO in born phase space

$$W(\Phi_B) = rac{\left(rac{d\sigma}{d\Phi_B}
ight)_{
m NNLO}}{\left(rac{d\sigma}{a\Phi_B}
ight)_{
m XJ-MiNLO'}}$$

$$\frac{c_0 + c_1 \alpha_{\rm S} + c_2 \alpha_{\rm S}^2}{c_0 + c_1 \alpha_{\rm S} + d_2 \alpha_{\rm S}^2} \simeq 1 + \frac{c_2 - d_2}{c_0} \alpha_{\rm S}^2 + \mathcal{O}(\alpha_{\rm S}^3)$$

[Monni, Nason, Re, MW, Zanderighi '19]

	X	X+jet	X+2jets	X+nj (n>2)
XJ (NLO)		NLO	LO	
XJ-MiNLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	
X@NNLOPS	NNLO	NLO	LO	PS

I. merge
$$pp \rightarrow WW$$

and

$$pp \rightarrow WW+jet$$
 (both at NLO+PS)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{B}}\mathrm{d}p_{\mathrm{T}}} = \frac{\mathrm{d}}{\mathrm{d}p_{\mathrm{T}}} \left\{ \exp[-S(p_{\mathrm{T}})]\mathcal{L}(\Phi_{\mathrm{B}}, p_{\mathrm{T}}) \right\} + R_f(p_{\mathrm{T}}) \\ = \exp[-S(p_{\mathrm{T}})] \left\{ D(p_{\mathrm{T}}) + \frac{R_f(p_{\mathrm{T}})}{\exp[-S(p_{\mathrm{T}})]} \right\}$$

[Monni, Nason, Re, MW, Zanderighi '19]

	X	X+jet	X+2jets	X+nj (n>2)
XJ (NLO)		NLO	LO	
XJ-MiNLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	
X@NNLOPS	NNLO	NLO	LO	PS

I. merge
$$pp \rightarrow WW$$

and

$$pp \rightarrow WW+jet$$
 (both at NLO+PS)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{B}}\mathrm{d}p_{\mathrm{T}}} = \frac{\mathrm{d}}{\mathrm{d}p_{\mathrm{T}}} \left\{ \exp[-S(p_{\mathrm{T}})]\mathcal{L}(\Phi_{\mathrm{B}}, p_{\mathrm{T}}) \right\} + R_f(p_{\mathrm{T}}) = \exp[-S(p_{\mathrm{T}})] \left\{ D(p_{\mathrm{T}}) + \frac{R_f(p_{\mathrm{T}})}{\exp[-S(p_{\mathrm{T}})]} \right\}$$

$$= \exp[-S(p_{\rm T})] \left\{ \frac{\alpha_s(p_{\rm T})}{2\pi} \left[\frac{{\rm d}\sigma_{FJ}}{{\rm d}\Phi_{\rm F} {\rm d}p_{\rm T}} \right]^{(1)} \left(1 + \frac{\alpha_s(p_{\rm T})}{2\pi} [S(p_{\rm T})]^{(1)} \right) + \left(\frac{\alpha_s(p_{\rm T})}{2\pi} \right)^2 \left[\frac{{\rm d}\sigma_{FJ}}{{\rm d}\Phi_{\rm F} {\rm d}p_{\rm T}} \right]^{(2)} + \left(\frac{\alpha_s(p_{\rm T})}{2\pi} \right)^3 [D(p_{\rm T})]^{(3)} + \text{regular terms} \right\}$$

[Monni, Nason, Re, MW, Zanderighi '19]

	X	X+jet	X+2jets	X+nj (n>2)
XJ (NLO)		NLO	LO	
XJ-MiNLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	
X@NNLOPS	NNLO	NLO	LO	PS

I. merge

$$pp \rightarrow WW$$

and

$$pp \rightarrow WW+jet$$
 (both at NLO+PS)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{B}}\mathrm{d}p_{\mathrm{T}}} = \frac{\mathrm{d}}{\mathrm{d}p_{\mathrm{T}}} \left\{ \exp[-S(p_{\mathrm{T}})]\mathcal{L}(\Phi_{\mathrm{B}}, p_{\mathrm{T}}) \right\} + R_f(p_{\mathrm{T}}) = \exp[-S(p_{\mathrm{T}})] \left\{ D(p_{\mathrm{T}}) + \frac{R_f(p_{\mathrm{T}})}{\exp[-S(p_{\mathrm{T}})]} \right\}$$

$$= \exp[-S(p_{\mathrm{T}})] \left\{ \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}} \mathrm{d}p_{\mathrm{T}}} \right]^{(1)} \left(1 + \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} [S(p_{\mathrm{T}})]^{(1)} \right) + \left(\frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \right)^2 \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}} \mathrm{d}p_{\mathrm{T}}} \right]^{(2)} + \left(\frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \right)^3 [D(p_{\mathrm{T}})]^{(3)} + \text{regular terms} \right\}$$

[Monni, Nason, Re, MW, Zanderighi '19]

	X	X+jet	X+2jets	X+nj (n>2)
XJ (NLO)		NLO	LO	
XJ-MiNLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	
X@NNLOPS	NNLO	NLO	LO	PS

I. merge

$$pp \rightarrow WW$$

and

$$pp \rightarrow WW+jet$$
 (both at NLO+PS)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{B}}\mathrm{d}p_{\mathrm{T}}} = \frac{\mathrm{d}}{\mathrm{d}p_{\mathrm{T}}} \left\{ \exp[-S(p_{\mathrm{T}})]\mathcal{L}(\Phi_{\mathrm{B}}, p_{\mathrm{T}}) \right\} + R_f(p_{\mathrm{T}}) = \exp[-S(p_{\mathrm{T}})] \left\{ D(p_{\mathrm{T}}) + \frac{R_f(p_{\mathrm{T}})}{\exp[-S(p_{\mathrm{T}})]} \right\}$$

$$= \exp[-S(p_{\mathrm{T}})] \left\{ \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}} \mathrm{d}p_{\mathrm{T}}} \right]^{(1)} \left(1 + \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} [S(p_{\mathrm{T}})]^{(1)} \right) + \left(\frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \right)^2 \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}} \mathrm{d}p_{\mathrm{T}}} \right]^{(2)} + \left(\frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \right)^3 [D(p_{\mathrm{T}})]^{(3)} + \text{regular terms} \right\}$$

MiNNLO_{PS} results

[Monni, Nason, Re, MW, Zanderighi '19]

Conclusions

Diboson theory predictions under excellent control:

- **NNLO QCD done!** → publicly available within **MATRIX**
- $\ell\ell$ +ET,miss signature studied at NNLO, mixes ZZ and WW resonances
- NLO QCD corrections for loop-induced gg contribution
- first NNLO+PS computation for a $2\rightarrow 4$ process (WW)

MiNNLO_{PS}: New NNLO+PS approach (no reweighting)

Open issues/ongoing work for dibosons:

- best way to combine NNLO, NLO EW and NLO gg
- NLO gg Higgs interference for ZZ and WW
- combination of NNLO QCD with state-of-the-art (N3LL) resummation
- MiNNLO_{PS} for diboson processes

Marius Wiesemann (MPI Munich)

August 26th, 2019

```
BAND:

| Color | Color
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ""| 15 | H15 | 79, wholl if M o haling took is constructed in the construction of the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C/ OArs:..."JA.f\)xd8\c>BoPOFWY-1.50WKILWESTEDNUM: «AA+'100 "CHECK, which ended from the construction of t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        h troos
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              g-711149
| 5-71149
| 5-71149
ROUYET II HALLEN I E "EV-EN, KEOZ"911-GINUTII HALLEN I E "E "EV-EN, KEOZ"911-GINUTIPOE.O.

IV# C U- u... Kd ] 7am Y E@tl]|| t C & "...a" SIGA! NO"do AU*YJSHU CHI
[! ] A Bo-m G Gad? ... G4 = Olfua Bo IúaE "POGXISMEABAÚ (311)
[! ] A Bo-m G Gad? ... G4 = Olfua Bo IúaE "POGXISMEABAÚ (311)
[! ] A Bo-m G Gad? ... ISAArDEGBADEKCEI ANA - t 6 "S[111] ( E 11 A] uide Q
!&@GGw@OK GGIGùe(; 'gofioUo6. Il-EZA) | C VEZA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          S″O∏ ¥~∢óÖ ∂/å°\oZ îm
-iG″>5Sfe;{≈ ii∑DÜ"ce
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ™T NA 1 b -f.éëE le¢Å
H, +L 1 ...L p -fiÅ-
,E'≈ ap 'å∂≈Eß' jYÅlnÖPÖ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         å@ óM/ r>@(e ĕā<0A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ·Ta*tK 12'(17*c) A covy2yay<
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       > °01Ä á.¥
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    b Gö5°¥köAr∂w/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0 barnewshix /30
0x SALT 43 d6 3 APO 11 x/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1K9Y60 6#1 1L4
Hu¶ an6)1055?___
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ĕ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    . logS c
. theS cax1≠tne access
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         A, 2ff; > .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                This a company was
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  「美華和学なの多Mをリリロ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1800$A; X+ 11;6" 5 1.0 (DX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Sa×5 OSAO h. P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          +T1.>) ®°C SKMI
```

Thank You !

Back Up

[Grazzini, Kallweit, MW, Yook 'to appear]

NNLOPS for WW

[Re, MW, Zanderighi '18]

Setup:

The remaining three variables and their binning chosen to be

 $p_{T,W^-}: [0., 17.5, 25., 30., 35., 40., 47.5, 57.5, 72.5, 100., 200., 350., 600., 1000., 1500., \infty];$

 $y_{WW}: [-\infty, -3.5, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.5, \infty];$

 $\Delta y_{W^+W^-} \ : \quad [\, -\infty, -5.2, -4.8, -4.4, -4.0, -3.6, -3.2, -2.8, -2.4, -2.0, -1.6, -1.2, \\$

 $-0.8, -0.4, 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, \infty]\,.$

Cuts inspired by ATLAS 13 TeV study (1702.04519):

lepton cuts	$ p_{T,\ell} > 25{ m GeV}, \eta_\ell < 2.4, m_{\ell^-\ell^+} > 10{ m GeV}$
lepton dressing	add photon FSR to lepton momenta with $\Delta R_{\ell\gamma} < 0.1$ (our results do not include photon FSR, see text)
neutrino cuts	$p_T^{ m miss} > 20{ m GeV}, p_T^{ m miss,rel} > 15{ m GeV}$
	anti- k_T jets with $R = 0.4$;
jet cuts	$N_{ m jet}=0 ext{ for } p_{T,j}>25 ext{ GeV}, \ \eta_j <2.4 ext{ and } \Delta R_{ej}<0.3$
	$N_{\rm iet} = 0 \text{ for } p_{T,i} > 30 {\rm GeV}, n_i < 4.5 \text{ and } \Delta R_{ei} < 0.3$

NNLO uses the central scale

$$\mu_R = \mu_F = \mu_0 \equiv rac{1}{2} \, \left(\sqrt{m_{e^-ar{
u}_e}^2 + p_{T,e^-ar{
u}_e}^2} + \sqrt{m_{\mu^+
u_\mu}^2 + p_{T,\mu^+
u_\mu}^2}
ight)$$

All uncertainty bands are the envelop of 7-scales. In the NNLOPS scales in MiNLO and NNLO are varied in a correlated way

gg-channel not included in our study, as it can it is know at one-loop and can be added incoherently

NNLOPS for WW

[Re, MW, Zanderighi '18]

Phenomenological results:

Charge asymmetry

- W momentum cannot be reconstructed → use leptons
- lepton asymmetry smaller; almost vanishes in fiducial
- can be recovered by widening rapidity range of leptons or by considering boosted regime
- sensitive to W polarizations→ powerful probe of new physics

$$A_C^W = \frac{\sigma(|y_{W^+}| > |y_{W^-}|) - \sigma(|y_{W^+}| < |y_{W^-}|)}{\sigma(|y_{W^+}| > |y_{W^-}|) + \sigma(|y_{W^+}| < |y_{W^-}|)},$$

$$A_C^{\ell} = \frac{\sigma(|y_{\ell^+}| > |y_{\ell^-}|) - \sigma(|y_{\ell^+}| < |y_{\ell^-}|)}{\sigma(|y_{\ell^+}| > |y_{\ell^-}|) + \sigma(|y_{\ell^+}| < |y_{\ell^-}|)}.$$

NNLOPS	inclusive phase space	fiducial phase space
A_C^W	$0.1263(1)_{-1.8\%}^{+2.1\%}$	$0.0726(3)_{-2.6\%}^{+2.0\%}$
A_C^ℓ	$-[0.0270(1)_{-6.4\%}^{+5.0\%}]$	$-[0.0009(4)^{+72\%}_{-87\%}]$

* NLO (F+jet):
$$\frac{\mathrm{d}\sigma_{FJ}^{(\mathrm{NLO})}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} = \frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} + \left(\frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \right)^{2} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)}$$

* NLO (F+jet):
$$\frac{\mathrm{d}\sigma_{FJ}^{(\mathrm{NLO})}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} = \frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} + \left(\frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \right)^{2} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)}$$

$$* MiNLO: \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} = \exp[-S(p_{\mathrm{T}})] \left\{ \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} \left(1 + \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} [S(p_{\mathrm{T}})]^{(1)} \right) + \left(\frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \right)^2 \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)} \right\}$$

$$S(p_{\mathrm{T}}) = 2 \int_{p_{\mathrm{T}}}^{Q} \frac{\mathrm{d}q}{q} \left(A(\alpha_{s}(q)) \ln \frac{Q^{2}}{q^{2}} + B(\alpha_{s}(q)) \right),$$

$$A(\alpha_s) = \sum_{k=1}^{2} \left(\frac{\alpha_s}{2\pi}\right)^k A^{(k)}, \quad B(\alpha_s) = \sum_{k=1}^{2} \left(\frac{\alpha_s}{2\pi}\right)^k B^{(k)},$$

* NLO (F+jet):
$$\frac{\mathrm{d}\sigma_{FJ}^{(\mathrm{NLO})}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} = \frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} + \left(\frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \right)^{2} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)}$$

$$* MiNLO: \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} = \exp[-S(p_{\mathrm{T}})] \left\{ \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} \left(1 + \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} [S(p_{\mathrm{T}})]^{(1)} \right) + \left(\frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \right)^2 \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)} \right\}$$

$$S(p_{\mathrm{T}}) = 2 \int_{p_{\mathrm{T}}}^{Q} \frac{\mathrm{d}q}{q} \left(A(\alpha_{s}(q)) \ln \frac{Q^{2}}{q^{2}} + B(\alpha_{s}(q)) \right),$$

$$A(\alpha_{s}) = \sum_{k=1}^{2} \left(\frac{\alpha_{s}}{2\pi} \right)^{k} A^{(k)}, \quad B(\alpha_{s}) = \sum_{k=1}^{2} \left(\frac{\alpha_{s}}{2\pi} \right)^{k} B^{(k)},$$

* analytic all-order formula:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{B}}\mathrm{d}p_{\mathrm{T}}} = \frac{\mathrm{d}}{\mathrm{d}p_{\mathrm{T}}} \bigg\{ \exp[-S(p_{\mathrm{T}})] \mathcal{L}(\Phi_{\mathrm{B}}, p_{\mathrm{T}}) \bigg\} + R_f(p_{\mathrm{T}})$$

* NLO (F+jet):
$$\frac{\mathrm{d}\sigma_{FJ}^{(\mathrm{NLO})}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} = \frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} + \left(\frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \right)^{2} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)}$$

$$* MiNLO: \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} = \exp[-S(p_{\mathrm{T}})] \left\{ \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} \left(1 + \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} [S(p_{\mathrm{T}})]^{(1)} \right) + \left(\frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \right)^2 \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)} \right\}$$

$$S(p_{\mathrm{T}}) = 2 \int_{p_{\mathrm{T}}}^{Q} \frac{\mathrm{d}q}{q} \left(A(\alpha_{s}(q)) \ln \frac{Q^{2}}{q^{2}} + B(\alpha_{s}(q)) \right),$$

$$A(\alpha_{s}) = \sum_{k=1}^{2} \left(\frac{\alpha_{s}}{2\pi} \right)^{k} A^{(k)}, \quad B(\alpha_{s}) = \sum_{k=1}^{2} \left(\frac{\alpha_{s}}{2\pi} \right)^{k} B^{(k)},$$

counting:

$$\int_{\Lambda}^{Q} \mathrm{d}p_{\mathrm{T}} \frac{1}{p_{\mathrm{T}}} \alpha_{s}^{m}(p_{\mathrm{T}}) \ln^{n} \frac{p_{\mathrm{T}}}{Q} \exp(-S(p_{\mathrm{T}})) \approx \alpha_{s}^{m - \frac{n+1}{2}}(Q)$$

* analytic all-order formula:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{B}}\mathrm{d}p_{\mathrm{T}}} = \frac{\mathrm{d}}{\mathrm{d}p_{\mathrm{T}}} \left\{ \exp[-S(p_{\mathrm{T}})]\mathcal{L}(\Phi_{\mathrm{B}}, p_{\mathrm{T}}) \right\} + R_f(p_{\mathrm{T}}) \\ = \exp[-S(p_{\mathrm{T}})] \left\{ D(p_{\mathrm{T}}) + \frac{R_f(p_{\mathrm{T}})}{\exp[-S(p_{\mathrm{T}})]} \right\}$$

* NLO (F+jet):
$$\frac{\mathrm{d}\sigma_{FJ}^{(\mathrm{NLO})}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} = \frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} + \left(\frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \right)^{2} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)}$$

$$* MiNLO: \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} = \exp[-S(p_{\mathrm{T}})] \left\{ \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} \left(1 + \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} [S(p_{\mathrm{T}})]^{(1)} \right) + \left(\frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \right)^2 \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)} \right\}$$

$$S(p_{\mathrm{T}}) = 2 \int_{p_{\mathrm{T}}}^{Q} \frac{\mathrm{d}q}{q} \left(A(\alpha_{s}(q)) \ln \frac{Q^{2}}{q^{2}} + B(\alpha_{s}(q)) \right),$$

$$A(\alpha_{s}) = \sum_{k=1}^{2} \left(\frac{\alpha_{s}}{2\pi} \right)^{k} A^{(k)}, \quad B(\alpha_{s}) = \sum_{k=1}^{2} \left(\frac{\alpha_{s}}{2\pi} \right)^{k} B^{(k)},$$

counting:

$$\int_{\Lambda}^{Q} \mathrm{d}p_{\mathrm{T}} \frac{1}{p_{\mathrm{T}}} \alpha_{s}^{m}(p_{\mathrm{T}}) \ln^{n} \frac{p_{\mathrm{T}}}{Q} \exp(-S(p_{\mathrm{T}})) \approx \alpha_{s}^{m - \frac{n+1}{2}}(Q)$$

* analytic all-order formula:

$$D(p_{\scriptscriptstyle
m T}) \equiv -rac{{
m d}S(p_{\scriptscriptstyle
m T})}{{
m d}p_{\scriptscriptstyle
m T}} \mathcal{L}(p_{\scriptscriptstyle
m T}) + rac{{
m d}\mathcal{L}(p_{\scriptscriptstyle
m T})}{{
m d}p_{\scriptscriptstyle
m T}}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{B}}\mathrm{d}p_{\mathrm{T}}} = \frac{\mathrm{d}}{\mathrm{d}p_{\mathrm{T}}} \left\{ \exp[-S(p_{\mathrm{T}})]\mathcal{L}(\Phi_{\mathrm{B}}, p_{\mathrm{T}}) \right\} + R_f(p_{\mathrm{T}}) = \exp[-S(p_{\mathrm{T}})] \left\{ D(p_{\mathrm{T}}) + \frac{R_f(p_{\mathrm{T}})}{\exp[-S(p_{\mathrm{T}})]} \right\}$$

$$= \exp[-S(p_{\mathrm{T}})] \left\{ \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} \left(1 + \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} [S(p_{\mathrm{T}})]^{(1)} \right) + \left(\frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \right)^2 \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)} + \left(\frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \right)^3 [D(p_{\mathrm{T}})]^{(3)} + \text{regular terms} \right\}$$

* NLO (F+jet):
$$\frac{\mathrm{d}\sigma_{FJ}^{(\mathrm{NLO})}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} = \frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} + \left(\frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \right)^{2} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)}$$

$$* MiNLO: \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} = \exp[-S(p_{\mathrm{T}})] \left\{ \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} \left(1 + \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} [S(p_{\mathrm{T}})]^{(1)} \right) + \left(\frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \right)^2 \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)} \right\}$$

$$S(p_{\mathrm{T}}) = 2 \int_{p_{\mathrm{T}}}^{Q} \frac{\mathrm{d}q}{q} \left(A(\alpha_{s}(q)) \ln \frac{Q^{2}}{q^{2}} + B(\alpha_{s}(q)) \right),$$

$$A(\alpha_{s}) = \sum_{k=1}^{2} \left(\frac{\alpha_{s}}{2\pi} \right)^{k} A^{(k)}, \quad B(\alpha_{s}) = \sum_{k=1}^{2} \left(\frac{\alpha_{s}}{2\pi} \right)^{k} B^{(k)},$$

counting:

$$\int_{\Lambda}^{Q} \mathrm{d}p_{\mathrm{T}} \frac{1}{p_{\mathrm{T}}} \alpha_{s}^{m}(p_{\mathrm{T}}) \ln^{n} \frac{p_{\mathrm{T}}}{Q} \exp(-S(p_{\mathrm{T}})) \approx \alpha_{s}^{m-\frac{n+1}{2}}(Q)$$

* analytic all-order formula:

$$D(p_{\scriptscriptstyle
m T}) \equiv -rac{{
m d}S(p_{\scriptscriptstyle
m T})}{{
m d}p_{\scriptscriptstyle
m T}} \mathcal{L}(p_{\scriptscriptstyle
m T}) + rac{{
m d}\mathcal{L}(p_{\scriptscriptstyle
m T})}{{
m d}p_{\scriptscriptstyle
m T}}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{B}}\mathrm{d}p_{\mathrm{T}}} = \frac{\mathrm{d}}{\mathrm{d}p_{\mathrm{T}}} \left\{ \exp[-S(p_{\mathrm{T}})]\mathcal{L}(\Phi_{\mathrm{B}}, p_{\mathrm{T}}) \right\} + R_f(p_{\mathrm{T}}) = \exp[-S(p_{\mathrm{T}})] \left\{ D(p_{\mathrm{T}}) + \frac{R_f(p_{\mathrm{T}})}{\exp[-S(p_{\mathrm{T}})]} \right\}$$

$$= \exp[-S(p_{\mathrm{T}})] \left\{ \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} \left(1 + \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} [S(p_{\mathrm{T}})]^{(1)} \right) + \left(\frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \right)^2 \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)} + \left(\frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \right)^3 [D(p_{\mathrm{T}})]^{(3)} + \text{regular terms} \right\}$$

MINLO

* NLO (F+jet):
$$\frac{\mathrm{d}\sigma_{FJ}^{(\mathrm{NLO})}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} = \frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} + \left(\frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \right)^{2} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)}$$

$$* MiNLO: \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} = \exp[-S(p_{\mathrm{T}})] \left\{ \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} \left(1 + \frac{\alpha_s(p_{\mathrm{T}})}{2\pi} [S(p_{\mathrm{T}})]^{(1)} \right) + \left(\frac{\alpha_s(p_{\mathrm{T}})}{2\pi} \right)^2 \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)} \right\}$$

$$S(p_{\mathrm{T}}) = 2 \int_{p_{\mathrm{T}}}^{Q} \frac{\mathrm{d}q}{q} \left(A(\alpha_{s}(q)) \ln \frac{Q^{2}}{q^{2}} + B(\alpha_{s}(q)) \right),$$

$$A(\alpha_{s}) = \sum_{k=1}^{2} \left(\frac{\alpha_{s}}{2\pi} \right)^{k} A^{(k)}, \quad B(\alpha_{s}) = \sum_{k=1}^{2} \left(\frac{\alpha_{s}}{2\pi} \right)^{k} B^{(k)},$$

counting:

$$\int_{\Lambda}^{Q} \mathrm{d}p_{\mathrm{T}} \frac{1}{p_{\mathrm{T}}} \alpha_{s}^{m}(p_{\mathrm{T}}) \ln^{n} \frac{p_{\mathrm{T}}}{Q} \exp(-S(p_{\mathrm{T}})) \approx \alpha_{s}^{m-\frac{n+1}{2}}(Q)$$

* analytic all-order formula:

$$D(p_{\scriptscriptstyle
m T}) \equiv -rac{{
m d}S(p_{\scriptscriptstyle
m T})}{{
m d}p_{\scriptscriptstyle
m T}} \mathcal{L}(p_{\scriptscriptstyle
m T}) + rac{{
m d}\mathcal{L}(p_{\scriptscriptstyle
m T})}{{
m d}p_{\scriptscriptstyle
m T}}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{B}}\mathrm{d}p_{\mathrm{T}}} = \frac{\mathrm{d}}{\mathrm{d}p_{\mathrm{T}}} \left\{ \exp[-S(p_{\mathrm{T}})]\mathcal{L}(\Phi_{\mathrm{B}}, p_{\mathrm{T}}) \right\} + R_{f}(p_{\mathrm{T}}) = \exp[-S(p_{\mathrm{T}})] \left\{ D(p_{\mathrm{T}}) + \frac{R_{f}(p_{\mathrm{T}})}{\exp[-S(p_{\mathrm{T}})]} \right\}$$

$$= \exp[-S(p_{\mathrm{T}})] \left\{ \frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(1)} \left(1 + \frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} [S(p_{\mathrm{T}})]^{(1)} \right) + \left(\frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \right)^{2} \left[\frac{\mathrm{d}\sigma_{FJ}}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} \right]^{(2)} + \left(\frac{\alpha_{s}(p_{\mathrm{T}})}{2\pi} \right)^{3} [D(p_{\mathrm{T}})]^{(3)} + \operatorname{regular terms} \right\}$$

MINLO

missing terms for NNLO accuracy

MiNNLO_{PS} results

[Monni, Nason, Re, MW, Zanderighi '19]

MiNNLO_{PS} results

[Monni, Nason, Re, MW, Zanderighi '19]

MiNNLO_{PS} results

[Monni, Nason, Re, MW, Zanderighi '19]

[Grazzini, Kallweit, MW '17]

dileptons with certain cuts (and photon final states) are special

August 26th, 2019

[Grazzini, Kallweit, MW '17]

August 26th, 2019

[Grazzini, Kallweit, MW '17]

August 26th, 2019

[Grazzini, Kallweit, MW '17]

August 26th, 2019

(MPI Munich)

Marius Wiesemann

MATRIX features on one slide

 \circ Colourless 2→I and 2→2 reactions (decays, off-shell effects, spin correlations; previous slide)

physics features:

- NNLO accuracy based on q_T subtraction
- loop-induced gg component part of NNLO cross section (effectively LO accurate)
- © CKM for W-boson production
- essential fiducial cuts, dynamical scales and distributions already pre-defined for each process
- final-state particles directly accessible (for distributions, cuts, scales)
- scale uncertainty estimated automatically estimated (7- or 9-point) with every run
- NEW: automatic extrapolation of q_T-subtraction cut-off to zero (with extrapolation uncertainty)

technical features:

- © Core: C++ code; steered by Python interface (compilation/running/job submission/result collection)
- only requirements: LHAPDF 5 or 6 pre-installed & Python 2.7 with numpy
- Otherwise fully automatic! (download/compilation of external packages; inputs via interface etc.)
- local and cluster support: LSF (Ixplus), HT-Condor (Ixplus), condor, SLURM, Torque/PBS, SGE
 - → missing your favourite cluster? Let us know!
- option to reduce workload (output) on slow file systems
- all relevant references in CITATION.bib (provided with every run)
- omprehensive manual shipped with the code