Status of

(n)NNLO QCD for Dibosons

Marius Wiesemann

Max-Planck-Institut für Physik

Multi-Boson Interactions 2019
Thessaloniki (Greece), August 26th - 28th, 2019

Precision at the LHC

* Production of vector bosons ($\gamma, \mathrm{W}, \mathrm{Z}$) and Higgs
\rightarrow deep test of the fundamental laws of physics
\rightarrow high experimental precision already now

LHC data:

Diboson Cross Section Measurements

Experiment demands $\mathcal{O}(I \%)$ theoretical precision

SM predictions: what is there?

not in this talk: BSM effects

Importance of QCD corrections (example WZ)

NNLO crucial for accurate description of data

NNLO through X+jet at NLO + Slicing

NNLO through X+jet at NLO + Slicing

$$
\sigma_{\mathrm{NLO}}^{\mathrm{X}+\mathrm{jet}}=\int_{\Phi_{\mathrm{RV}}} \mathrm{~d} \sigma^{\mathrm{RV}}+\int_{\Phi_{\mathrm{RV}+1}}\left(\mathrm{~d} \sigma^{\mathrm{RR}}-\mathrm{d} \sigma^{\mathrm{S}}\right)+\int_{\Phi_{\mathrm{RV}}}\left(\mathrm{~d} \sigma^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma^{\mathrm{S}}\right)
$$

LO
 $(p p \rightarrow X)$

ŃLO
(pp $\rightarrow X+j e t)$

ŃNLO
(pp $\rightarrow X+j e t)$
$\mathrm{d} \sigma^{\mathrm{S}}$: subtraction term
\rightarrow CS [Catani, Seymour '96]
\rightarrow FKS [Frixione, Kunszt, Signer '96]
\rightarrow Antenna [Gehrmann et al. '05]
\rightarrow...

NNLO through X+jet at NLO + Slicing

$$
\left.\left.\begin{array}{rl}
\sigma_{\mathrm{NLO}}^{\mathrm{X}+\mathrm{jet}} & =\left[\int_{\Phi_{\mathrm{RV}}} \mathrm{~d} \sigma^{\mathrm{RV}}+\int_{\Phi_{\mathrm{RV}+1}}\left(\mathrm{~d} \sigma^{\mathrm{RR}}-\mathrm{d} \sigma^{\mathrm{S}}\right)+\int_{\Phi_{\mathrm{RV}}}\left(\mathrm{~d} \sigma^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma^{\mathrm{S}}\right)\right]_{\frac{q_{T}}{Q} \equiv r>r_{\mathrm{cut}}} \\
& \xrightarrow{r_{\mathrm{cut}} \ll 1}
\end{array}\right] A \cdot \log ^{4}\left(r_{\mathrm{cut}}\right)+B \cdot \log ^{3}\left(r_{\mathrm{cut}}\right)+C \cdot \log ^{2}\left(r_{\mathrm{cut}}\right)+D \cdot \log \left(r_{\mathrm{cut}}\right)\right] \otimes \mathrm{d} \sigma^{\mathrm{B}} .
$$

$\rightarrow \mathrm{d} \sigma^{\mathrm{RR}}$

NNLO through $\mathrm{X}+$ jet at NLO + Slicing

$$
\begin{gathered}
\sigma_{\mathrm{NLO}}^{\mathrm{X}+\mathrm{jet}}=\left[\int_{\Phi_{\mathrm{RV}}} \mathrm{~d} \sigma^{\mathrm{RV}}+\int_{\Phi_{\mathrm{RV}+1}}\left(\mathrm{~d} \sigma^{\mathrm{RR}}-\mathrm{d} \sigma^{\mathrm{S}}\right)+\int_{\Phi_{\mathrm{RV}}}\left(\mathrm{~d} \sigma^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma^{\mathrm{S}}\right)\right]_{\frac{q_{T}}{Q} \equiv r>r_{\mathrm{cut}}} \xrightarrow{r_{\mathrm{cut}} \ll 1}\left[A \cdot \log ^{4}\left(r_{\mathrm{cut}}\right)+B \cdot \log ^{3}\left(r_{\mathrm{cut}}\right)+C \cdot \log ^{2}\left(r_{\mathrm{cut}}\right)+D \cdot \log \left(r_{\mathrm{cut}}\right)\right] \otimes \mathrm{d} \sigma^{\mathrm{B}} \\
\quad=\int_{r>r_{\mathrm{cut}}}\left[d \sigma^{(\mathrm{res})}\right]_{\mathrm{f} . \mathrm{o} .} \equiv \Sigma_{\mathrm{NNLO}}\left(r_{\mathrm{cut}}\right) \otimes \mathrm{d} \sigma^{\mathrm{B}}
\end{gathered}
$$

20
(pp $-X$)
[Collins, Soper, Sterman '85]
[Bozzi, Catani, de Florian, Grazzini '06]
ŃLO
($p \mathrm{p} \rightarrow \mathrm{X}+\mathrm{jet}$)
ŃNLO
(pp $\rightarrow X+j e t)$

$\rightarrow \mathrm{d} \sigma^{R R}$

NNLO through $\mathrm{X}+$ jet at NLO + Slicing

 $\sigma_{\mathrm{NLO}}^{\mathrm{X}+\mathrm{jet}}=\left[\int_{\Phi_{\mathrm{RV}}} \mathrm{d} \sigma^{\mathrm{RV}}+\int_{\Phi_{\mathrm{RV}+1}}\left(\mathrm{~d} \sigma^{\mathrm{RR}}-\mathrm{d} \sigma^{\mathrm{S}}\right)+\int_{\Phi_{\mathrm{RV}}}\left(\mathrm{d} \sigma^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma^{\mathrm{S}}\right)\right]_{\frac{q_{T}}{Q} \equiv r>r_{\mathrm{cut}}}$ $\xrightarrow{r_{\mathrm{cut}} \ll 1}\left[A \cdot \log ^{4}\left(r_{\mathrm{cut}}\right)+B \cdot \log ^{3}\left(r_{\mathrm{cut}}\right)+C \cdot \log ^{2}\left(r_{\mathrm{cut}}\right)+D \cdot \log \left(r_{\mathrm{cut}}\right)\right] \otimes \mathrm{d} \sigma^{\mathrm{B}}$ $=\int_{r>r_{\text {cut }}}\left[d \sigma^{(\mathrm{res})}\right]_{\text {f.o. }} \equiv \Sigma_{\mathrm{NNLO}}\left(r_{\mathrm{cut}}\right) \otimes \mathrm{d} \sigma^{\mathrm{B}}$LO
$(p p \rightarrow X)$

$\mathrm{d} \sigma_{\mathrm{NNLO}}^{\mathrm{X}}=\left[\left.\mathrm{d} \sigma_{\mathrm{NLO}}^{\mathrm{X}+\mathrm{jet}}\right|_{r>r_{\mathrm{cut}}}-\Sigma_{\mathrm{NNLO}}\left(r_{\mathrm{cut}}\right) \otimes \mathrm{d} \sigma^{\mathrm{B}}\right]$
(Pr

ŃNLO
(pp $\rightarrow X+j e t)$

NNLO through X+jet at NLO + Slicing

$$
\mathrm{d} \sigma_{\mathrm{NNLO}}^{\mathrm{X}}=\left[\left.\mathrm{d} \sigma_{\mathrm{NLO}}^{\mathrm{X}+\mathrm{jet}}\right|_{r>r_{\mathrm{cut}}}-\Sigma_{\mathrm{NNLO}}\left(r_{\mathrm{cut}}\right) \otimes \mathrm{d} \sigma^{\mathrm{B}}\right]+
$$

LO

NNLO
$(p p \rightarrow X)$
NLO
$(p p \rightarrow X)$

$$
\rightarrow \mathrm{d} \sigma^{\mathrm{VV}}
$$

qt subtraction
[Catani, Grazzini '07]

NNLO through X+jet at NLO + Slicing

$$
\mathrm{d} \sigma_{\mathrm{NNLO}}^{\mathrm{X}}=\left[\left.\mathrm{d} \sigma_{\mathrm{NLO}}^{\mathrm{X}+\mathrm{jet}}\right|_{r>r_{\mathrm{cut}}}-\Sigma_{\mathrm{NNLO}}\left(r_{\mathrm{cut}}\right) \otimes \mathrm{d} \sigma^{\mathrm{B}}\right]+\mathcal{H}_{\mathrm{NNLO}} \otimes \mathrm{~d} \sigma^{\mathrm{B}}
$$

LO

$(p p \rightarrow X)$

qт subtraction
[Catani, Grazzini '07]

NNLO
(pp $\rightarrow X$)

$r_{\text {cut }} \rightarrow 0$ extrapolation in MATRIX

[Grazzini, Kallweit, MW 'I7]
automatically computed in every single MATRIX NNLO run

$$
\mathrm{d} \sigma_{\mathrm{NNLO}}^{\mathrm{X}}=\left[\left.\mathrm{d} \sigma_{\mathrm{NLO}}^{\mathrm{X}+\mathrm{jet}}\right|_{r>r_{\mathrm{cut}}}-\Sigma_{\mathrm{NNLO}}\left(r_{\mathrm{cut}}\right) \otimes \mathrm{d} \sigma^{\mathrm{B}}\right]+\mathcal{H}_{\mathrm{NNLO}} \otimes \mathrm{~d} \sigma^{\mathrm{B}}
$$

$r_{\text {cut }} \rightarrow 0$ extrapolation in MATRIX

 [Grazzini, Kallweit, MW 'I7]simple quadratic fit $\left(\mathbf{A} * \mathbf{r}_{\text {cut }}^{2}+\mathbf{B} * \mathbf{r}_{\text {cut }}+\mathbf{C}\right)$ to extrapolate to $\mathbf{r}_{\mathrm{cut}}=\mathbf{0}$

$$
\mathrm{d} \sigma_{\mathrm{NNLO}}^{\mathrm{X}}=\left[\left.\mathrm{d} \sigma_{\mathrm{NLO}}^{\mathrm{X}+\mathrm{jet}}\right|_{r>r_{\mathrm{cut}}}-\Sigma_{\mathrm{NNLO}}\left(r_{\mathrm{cut}}\right) \otimes \mathrm{d} \sigma^{\mathrm{B}}\right]+\mathcal{H}_{\mathrm{NNLO}} \otimes \mathrm{~d} \sigma^{\mathrm{B}}
$$

$r_{\text {cut }} \rightarrow 0$ extrapolation in MATRIX

[Grazzini, Kallweit, MW 'I7]

$$
\mathrm{d} \sigma_{\mathrm{NNLO}}^{\mathrm{X}}=\left[\left.\mathrm{d} \sigma_{\mathrm{NLO}}^{\mathrm{X}+\mathrm{jet}}\right|_{r>r_{\mathrm{cut}}}-\Sigma_{\mathrm{NNLO}}\left(r_{\mathrm{cut}}\right) \otimes \mathrm{d} \sigma^{\mathrm{B}}\right]+\mathcal{H}_{\mathrm{NNLO}} \otimes \mathrm{~d} \sigma^{\mathrm{B}}
$$

$r_{\text {cut }} \rightarrow 0$ extrapolation in MATRIX

[Grazzini, Kallweit, MW 'I7]

$$
\mathrm{d} \sigma_{\mathrm{NNLO}}^{\mathrm{X}}=\left[\left.\mathrm{d} \sigma_{\mathrm{NLO}}^{\mathrm{X}+\mathrm{jet}}\right|_{r>r_{\mathrm{cut}}}-\Sigma_{\mathrm{NNLO}}\left(r_{\mathrm{cut}}\right) \otimes \mathrm{d} \sigma^{\mathrm{B}}\right]+\mathcal{H}_{\mathrm{NNLO}} \otimes \mathrm{~d} \sigma^{\mathrm{B}}
$$

VV production in a nutshell
 example: WZ production

VV production in a nutshell
 example: WZ production (on-shell)

VV production in a nutshell
 example: WZ production (off-shell)

- EW decays of heavy bosons $\left(\mathrm{W}, \mathrm{Z}, \mathrm{\gamma}^{*}\right) ~ \sqrt{\text { (only isolated photons in the final state) }}$

VV production in a nutshell

example: WZ production (off-shell)

(3) EW decays of heavy bosons (W, Z, γ^{*}
(only isolated photons in the final state)
(3) all topologies to same leptonic final state (with spin correlations \& off-shell effects)

VV production in a nutshell

example: WZ production (off-shell)

(36) decays of heavy bosons $\left(W, Z, \gamma^{*}\right) \quad$ (only isolated photons in the final state)
(34) all topologies to same lep<onic final state (with spin correlations \& off-shell effects)
\rightarrow access to triple gauge couplings (TGCs) \rightarrow high relevance for BSM physics

VV production in a nutshell

example: WZ production (off-shell)
 photons in the final state) tions \& off-shell effects)
(3) EW decays of heavy bos (3) all topologies to same le \rightarrow access to triple gauge toupmigs procs, mgnterevarde for BSM physics
(30) loop-induced gg channel enters NNLO for charge-neutral processes
(eg, for ZZ)

VV production in a nutshell

example: WZ production (off-shell)

(3) EW decays of heavy bosons $\left(W, Z, Y^{*}\right)$ (only isolated photons in the final state)
(3) all topologies to same leptonic final state (with spin correlations \& off-shell effects)
\rightarrow access to triple gauge couplings (TGCs) \rightarrow high relevance for BSM physics
(300p-induced gg channel enters NNLO for charge-neutral processes (eg, for ZZ)
(30) important background for Higgs measurements $(\mathrm{H} \rightarrow \mathrm{VV})$ and BSM searches

NNLO QCD corrections vorVV

All VV processes known through NNLO QCD:

\rightarrow inclusive/on-shell Z,W \& differential/off-shell Z,W (leptonic)
YY - inclusive and differential [Catani, Cieri, de Florian, Ferrera, Grazzini ' 12], [Campbell, Ellis, Li,Williams 'I6], [Grazzini, Kallweit, MW 'I7]
$\mathbf{Z}_{\boldsymbol{\gamma}}$ - inclusive/on-shell and differential/off-shell [Grazzini, Kallweit, Rathlev,Torre 'I3], [Grazzini, Kallweit, Rathlev 'I5]; see also: [Campbell et al. 'I7]
WY - inclusive/on-shell and differential/off-shell [Grazzini, Kallweit, Rathlev, Torre 'I3], [Grazzini, Kallweit, Rathlev 'I5]
ZZ - inclusive/on-shell [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs 'I4]; see also: [Heinrich et al. 'I7]

- differential/off-shell [Grazzini, Kallweit, Rathlev 'I5], [Kallweit, MW 'I8]

WW - inclusive/on-shell [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, et al. 'I 4]

- differential/off-shell [Grazzini, Kallweit, Pozzorini, Rathlev, MW 'I5]

WZ - inclusive/on-shell [Grazzini, Kallweit, Rathlev, MW '16]

- differential/off-shell [Grazzini, Kallweit, Rathlev, MW 'I7]

YY - inclusive and differential

[Catani, Cieri, de Florian, Ferrera, Grazzini 'I2], [Campbell, Ellis, Li,Williams 'I6], [Grazzini, Kallweit, MW 'I7]

33 known only with slicing techniques

- photon processes quite delicate dependence on slicing parameter due to photon isolation
(3) well under control in state-of-the-art tools like MATRIX (see plot on the right)

3. systematic uncertainties still larger than for other diboson processes, but few permille possible
(3) agreement among computation within respective uncertainties

$Z_{\mathbf{Y}}$ - inclusive/on-shell and differential/off-shell

[Grazzini, Kallweit, Rathlev 'I5]

[Campbell, Neumann,Williams 'I7]

[Grazzini, Kallweit, MW 'I7]

process (\$\{process_id\})	$\sigma_{\text {NNLO }}^{\text {extrapolated }}$	$K_{\text {NLO }}$	$K_{\text {NNLO }}$
$p p \rightarrow \gamma \gamma$ $($ ppaa02)	$40.28(30)_{-7.0 \%}^{+8.7 \%} \mathrm{pb}$	$+361 \%$	$+56.4 \%$
$p p \rightarrow e^{-} e^{+} \gamma$	$2316(5)_{-1.2 \%}^{+1.1 \%} \mathrm{fb}$	$+44.3 \%$	$+9.29 \%$
$($ ppeexa03) $p p \rightarrow \nu_{e} \bar{\nu}_{e} \gamma$	$113.5(6)_{-2.4 \%}^{+2.9 \%} \mathrm{fb}$	$+55.2 \%$	$+15.0 \%$
ppnenexa03) $p p \rightarrow e^{-} \bar{\nu}_{e} \gamma$ $($ ppenexa03) $p p \rightarrow e^{+} \nu_{e} \gamma$ $($ ppexnea03)	$2256(15)_{-3.5 \%}^{+3.7 \%} \mathrm{fb}$	$+155 \%$	$+22.0 \%$

WZ - inclusive/on-shell
[Grazzini, Kallweit, Rathlev, MW 'I6]

ZZ - inclusive/on-shell

WW - inclusive/on-shell
[Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, et al. 'I4]

[Heinrich, Jahn, Jones, Kerner, Pires 'I7]

WW - differential/off-shell

[Grazzini, Kallweit, Pozzorini, Rathlev, MW 'I5]

WZ - differential/off-shell

[Grazzini, Kallweit, Rathlev, MW 'I7]

ZZ - differential/off-shell

$Z Z \rightarrow 4 \ell \quad$ [Grazzini, Kallweit, Rathlev 'I5], [Kallweit, MW 'I8]

NEW: $Z Z / W W \rightarrow \ell \ell+E_{T, \text { miss }}$ [Kallweit, MW 'I8]

(3) mixes ZZ and WW topologies:

$\left(\mathrm{pp} \rightarrow \mathbf{Z} \mathbf{Z} / \gamma^{*} \mathbf{Z} / \mathbf{W} \mathbf{W} \rightarrow \ell \boldsymbol{\ell} \mathbf{v v}\right)$

$$
\left(\mathrm{pp} \rightarrow \mathbf{Z} / \mathbf{\gamma}^{*} \rightarrow \ell \ell \mathbf{Z} / \ell v \mathbf{W} \rightarrow \ell \ell \mathrm{vv}\right)
$$

total rate 0 jets $\quad 1$ jet $2-10$ jets

ZZ - differential/off-shell

$Z Z \rightarrow 4 \ell \quad$ [Grazzini, Kallweit, Rathlev 'I5], [Kallweit, MW 'I8]

NEW: ZZ/WW $\rightarrow \ell \ell+E_{T, \text { miss }}$

「Kallweit, MW 'I81

channel	$\sigma_{\mathrm{LO}}[\mathrm{fb}]$	$\sigma_{\mathrm{NLO}}[\mathrm{fb}]$	$\sigma_{\mathrm{NNLO}}[\mathrm{fb}]$	$\sigma_{\mathrm{ATLAS}}[\mathrm{fb}]$
$e^{+} e^{-} \nu \nu$	$5.558(0)_{-0.5 \%}^{+0.1 \%}$	$4.806(1)_{-3.9 \%}^{+3.5 \%}$	$5.083(8)_{-0.6 \%}^{+1.9 \%}$	$5.0{ }_{-0.7}^{+0.8}(\mathrm{stat})_{-0.4}^{+0.5}($ syst $) \pm 0.1(\mathrm{lumi})$
$\mu^{+} \mu^{-} \nu \nu$	$5.558(0)_{-0.5 \%}^{+0.1 \%}$	$4.770(4)_{-4.0 \%}^{+3.6 \%}$	$5.035(9)_{-0.5 \%}^{+1.8 \%}$	$4.7_{-0.7}^{+0.7}(\mathrm{stat})_{-0.4}^{+0.5}($ syst $) \pm 0.1(\mathrm{lumi})$
total rate	$4982(0)_{-2.7 \%}^{+1.9 \%}$	$6754(2)_{-2.0 \%}^{+2.4 \%}$	$7690(5)_{-2.1 \%}^{+2.7 \%}$	$7300{ }_{-400}^{+400}(\text { stat })_{-300}^{+300}(\text { syst })_{-100}^{+200}(\mathrm{lumi})$

total rate 0 jets 1 jet $2-10$ jets

ZZ - differential/off-shell

$Z Z \rightarrow 4 \ell \quad[G r a z z i n i$, Kallweit, Rathlev 'I5], [Kallweit, MW 'I8]

NEW: ZZ/WW $\rightarrow \ell \ell+E_{T, \text { miss }}$

「Kallweit, MW 'I81

channel	$\sigma_{\text {LO }}[\mathrm{fb}]$	$\sigma_{\text {NLO }}[\mathrm{fb}]$	$\sigma_{\text {NuLO }}[\mathrm{fb}]$	$\sigma_{\text {ATLAS }}[\mathrm{fb}]$		
$e^{+} e^{-} \nu \nu$	$5.558(0)_{-0.5 \%}^{+0.1 \%}$	$4.806(1)_{-}^{+3 .} 9 \%$	$5.083(8)_{-0.6 \%}^{+1.9 \%}$	$5.0_{-0.7}^{+0.8}(\text { stat })_{-0.4}^{+0.5}(\text { syst }) \pm 0.1(\mathrm{lumi})$		
$\mu^{+} \mu^{-} \nu \nu$	$5.558(0)_{-0.5 \%}^{+0.1 \%}$	$4.770(4)_{-4.0 \%}^{+8.6 \%}$	$5.035(9)_{-0.5 \%}^{+1.8 \%}$	$4.7_{-0.7}^{+0.7}$ (stat) ${ }_{-0.4}^{+0.5}$ (syst) $\pm 0.1(\mathrm{lumi})$		
total rate	$4982(0)_{-2.7 \%}^{+1.9 \%}$	$6754(2)_{-2.0 \%}^{+2.4 \%}$	$690(5)_{-2.1 \%}^{+2.17}$	$7300{ }_{-400}^{+400}(\text { stat })$	${ }_{-300}^{+300}(\text { syst })$	${ }_{-100}^{+200} \text { (lumi) }$

Excellent agreement between NNLO and data

ZZ - differential/off-shell

$Z Z \rightarrow 4 \ell \quad[G r a z z i n i$, Kallweit, Rathlev 'I5], [Kallweit, MW 'I8]
 total rate 0 jets $\quad 1$ jet $\quad 2-10$ jets

NEW: ZZ/WW $\rightarrow \ell \ell+E_{T, \text { miss }}$

「Kallweit, MW 'I81

channel	$\sigma_{\mathrm{LO}}[\mathrm{fb}]$	$\sigma_{\mathrm{NLO}}[\mathrm{fb}]$	$\sigma_{\text {NNLO }}\left[\frac{[\mathrm{bb}}{}\right]$	$\underline{ } \sigma_{\text {ATLAS }}[\mathrm{fb}]$		
$e^{+} e^{-} \nu \nu$	$5.558(0)_{-0.5 \%}^{+0.1 \%}$	$4.806(1)_{-}^{+3.50}$	$5.083(8)_{-0.6 \%}^{+1.9 \%}$	$5.0_{-0.7}^{+0.8}(\text { stat })$	${ }_{-0.4}^{+0.5}($ syst $) \pm$	0.1 (lumi)
$\mu^{+} \mu^{-} \nu \nu$	$5.558(0)_{-0.5 \%}^{+0.1 \%}$	$4.770(4)_{-4.0}^{+8}$	$5.035(9)_{-0.5 \%}^{+1.8 \%}$	$4.7_{-0.7}^{+0.7} \text { (stat) }$	${ }_{-0.4}^{+0.5}(\mathrm{syst}) \pm$	0.1 (lumi)
total rate	$4982(0)_{-2.7 \%}^{+1.9 \%}$	$6754(2)_{-2.0}^{+2.4}$	$7690(5)_{-2.1 \%}^{+2 . i \%}$	$7300{ }_{-400}^{+400}$ (stat)	$)_{-300}^{+300}($ syst $)$	${ }_{-100}^{+200}$ (lumi)

Excellent agreement between NNLO and data

(better than comparison to MC [JHEP 1701 (2017) 099])

NNLO QCD corrections vorVV

All VV processes known through NNLO QCD:

\rightarrow inclusive/on-shell Z,W \& differential/off-shell Z,W (leptonic)
YY - inclusive and differential [Catani, Cieri, de Florian, Ferrera, Grazzini ' 12], [Campbell, Ellis, Li,Williams 'I6], [Grazzini, Kallweit, MW 'I7]
$\mathbf{Z}_{\boldsymbol{\gamma}}$ - inclusive/on-shell and differential/off-shell [Grazzini, Kallweit, Rathlev,Torre 'I3], [Grazzini, Kallweit, Rathlev 'I5]; see also: [Campbell et al. 'I7]
WY - inclusive/on-shell and differential/off-shell [Grazzini, Kallweit, Rathlev, Torre 'I3], [Grazzini, Kallweit, Rathlev 'I5]
ZZ - inclusive/on-shell [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs 'I4]; see also: [Heinrich et al. 'I7]

- differential/off-shell [Grazzini, Kallweit, Rathlev 'I5], [Kallweit, MW 'I8]

WW - inclusive/on-shell [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, et al. 'I 4]

- differential/off-shell [Grazzini, Kallweit, Pozzorini, Rathlev, MW 'I5]

WZ - inclusive/on-shell [Grazzini, Kallweit, Rathlev, MW '16]

- differential/off-shell [Grazzini, Kallweit, Rathlev, MW 'I7]

NNLO QCD corrections vorVV

All VV processes known through NNLO QCD:

\rightarrow inclusive/on-shell Z,W \& differential/off-shell Z,W (leptonic)
YY - inclusive and differential [Catani, Cieri, de Florian, Ferrera, Grazzini ' 12], [Campbell, Ellis, Li,Williams 'I6], [Grazzini, Kallweit, MW 'I7]
Z $\mathbf{\gamma}$ - inclusive/on-shell and differential/off-shell
[Grazzini, Kallweit, Rathlev, Torre 'I3], [Grazzini, Kallweit, Rathlev 'I 5]; see also: [Campbell et al. 'I7]
WY - inclusive/on-shell and differential/off-shell [Grazzini, Kallweit, Rathlev, Torre 'I3], [Grazzini, Kallweit, Rathlev 'I5]
ZZ - inclusive/on-shell [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs 'I4]; see also: [Heinrich et al. 'I7]

- differential/off-shell [Grazzini, Kallweit, Rathlev 'I5], [Kallweit, MW 'I8]

WW - inclusive/on-shell [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, et al. 'I 4]

- differential/off-shell [Grazzini, Kallweit, Pozzorini, Rathlev, MW 'I5]

WZ - inclusive/on-shell [Grazzini, Kallweit, Rathlev, MW 'I6]

- differential/off-shell [Grazzini, Kallweit, Rathlev, MW 'I7]

comment

$\begin{array}{ll} \mathrm{pp} \rightarrow \mathbf{Z} / \mathrm{Y}^{*}(\rightarrow \ell \ell / \mathrm{vv}) \\ \mathrm{pp} \rightarrow \mathbf{W}(\rightarrow \ell \mathbf{v}) & \text { single boson } \\ \mathrm{pp} \rightarrow \mathbf{H} & \text { processes } \end{array}$ processes	validated analytically + FEWZ validated with FEWZ, NNLOjet validated analytically (by SusHi)
$\mathrm{pp} \rightarrow \mathrm{\gamma} \mathrm{\gamma}$	validated with 2γ NNLO
$\mathrm{pp} \rightarrow \mathbf{Z} \mathbf{Y} \rightarrow \boldsymbol{\ell \ell \gamma} \mathbf{\gamma}$ photon	[Grazzini, Kallweit, Rathlev 'I5]
$\mathrm{pp} \rightarrow \mathbf{Z} \boldsymbol{\gamma} \rightarrow \mathbf{v v \gamma}$ processes	[Grazzini, Kallweit, Rathlev 'I5]
$\mathrm{pp} \rightarrow \mathbf{W} \mathbf{\gamma} \rightarrow \boldsymbol{\ell} \mathbf{v}$	[Grazzini, Kallweit, Rathlev 'I5]
$\mathrm{pp} \rightarrow \mathbf{Z Z}$	[Cascioli et al. 'I4]
$\mathrm{pp} \rightarrow \mathbf{Z Z} \rightarrow$ \& $\boldsymbol{\text { ele }}$	[Grazzini, Kallweit, Rathlev 'I5], [Kallweit, MW 'I8]
$\mathrm{pp} \rightarrow \mathbf{Z Z} \boldsymbol{Z} \rightarrow$ 建' $\boldsymbol{\ell}^{\prime}$	[Grazzini, Kallweit, Rathlev 'I5], [Kallweit, MW 'I8]
$\mathrm{pp} \rightarrow \mathbf{Z Z} \rightarrow \boldsymbol{\ell} \mathbf{l v}^{\prime} \mathbf{v}^{\prime}$	[Kallweit, MW 'I8]
$\mathrm{pp} \rightarrow \mathbf{Z Z} / \mathbf{W W} \rightarrow \ell \ell \mathbf{v}$ massive	[Kallweit, MW 'I8]
$\mathrm{pp} \rightarrow \mathbf{W} \mathbf{W}$ processes	[Gehrmann et al. '14]
$\mathrm{pp} \rightarrow \mathbf{W} \mathbf{W} \rightarrow \boldsymbol{\ell} \mathbf{v} \ell^{\prime} \mathbf{v}^{\prime}$	[Grazzini, Kallweit, Pozzorini, Rathlev, MW '\|6]
$\mathrm{pp} \rightarrow \mathbf{W Z}$	[Grazzini, Kallweit, Rathlev, MW 'I6]
$\mathrm{pp} \rightarrow \mathbf{W Z} \rightarrow \boldsymbol{\ell} \mathbf{v} \boldsymbol{\ell} \boldsymbol{\ell}$	[Grazzini, Kallweit, Rathlev, MW 'I7]
$\mathrm{pp} \rightarrow \mathbf{W Z} \rightarrow \ell^{\prime} \mathbf{v}^{\prime} \ell \ell$	[Grazzini, Kallweit, Rathlev, MW 'I7]
$\mathrm{pp} \rightarrow \mathrm{H} \boldsymbol{H}$	not in public release

The MATRIX framework [Grazzini, Kallweit, MW 'I7] https://matrix.hepforge.org/

Amplitudes

OpenLoops
 (Collier, CutTOols, ...)
 Dedicated 2-loop codes (VVamp, GiNaC, TDHPL, ...)

Munich
 MUlti-chaNnel Integrator at Swiss (CH) precision

q_{T} subtraction $\Leftrightarrow q_{\mathrm{T}}$ resummation

Matrix

Munich Automates qT Subtraction and Resummation to Integrate \mathbf{X}-sections.

Recent developments for VV at the QCD front

$g g \rightarrow 4 \ell(Z Z)$ and $g g \rightarrow 2 \ell 2 v(W W)$ at $N L O$

[Grazzini, Kallweit, MW,Yook 'I8] and [Grazzini, Kallweit, MW,Yook 'to appear]

$g g \rightarrow 4 \ell(Z Z)$ and $g g \rightarrow 2 \ell 2 v(W W)$ at NLO

[Grazzini, Kallweit, MW,Yook 'I8] and [Grazzini, Kallweit, MW,Yook 'to appear]

virtuals:
reals:

$g g \rightarrow 4 \ell(Z Z)$ at NLO

[Grazzini, Kallweit, MW,Yook 'I8]

\sqrt{s}	8 TeV		13 TeV	8 TeV
	$\sigma[\mathrm{fb}]$		13 TeV	
LO	$8.1881(8)_{-3.2 \%}^{+2.4 \%}$	$13.933(7)_{-6.4 \%}^{+5.5 \%}$	-27.5%	-29.8%
NLO	$11.2958(4)_{-2.0 \%}^{+2.5 \%}$	$19.8454(7)_{-2.1 \%}^{+2.5 \%}$	0%	0%
$q \bar{q} \mathrm{NNLO}$	$12.08(3)_{-1.1 \%}^{+1.1 \%}$	$21.54(2)_{-1.2 \%}^{+1.1 \%}$	$+6.9 \%$	$+8.6 \%$
	$\sigma[\mathrm{fb}]$			$\sigma / \sigma_{\mathrm{gLO}}-1$
$g g \mathrm{LO}$	$0.79354(8)_{-20.9 \%}^{+28.2 \%}$	$2.0054(2)_{-17.9 \%}^{+23.5 \%}$	0%	0%
$g g \mathrm{NLO}_{g g}$	$1.4810(9)_{-13.2 \%}^{+16.0 \%}$	$3.627(3)_{-12.8 \%}^{+1.5 \%}$	$+86.6 \%$	$+80.9 \%$
$g g \mathrm{NLO}$	$1.3901(9)_{-13.6 \%}^{+15.4 \%}$	$3.423(3)_{-12.0 \%}^{+13.9 \%}$	$+75.2 \%$	$+70.7 \%$
	$\sigma[\mathrm{fb}]$			
NNLO	$12.87(3)_{-2.1 \%}^{+2.8 \%}$	$23.55(2)_{-2.6 \%}^{+3.0 \%}$	$+13.9 \%$	$+18.7 \%$
$n N N L O$	$13.47(3)_{-2.2 \%}^{+2.6 \%}$	$24.97(2)_{-2.7 \%}^{+2.9 \%}$	$+19.2 \%$	$+25.8 \%$

+5-6\% effect due to NLO correction to gg compared to NNLO

$g g \rightarrow 4 \ell(Z Z)$ at NLO

[Grazzini, Kallweit, MW,Yook 'I8]

\sqrt{s}	8 TeV		13 TeV	8 TeV	
	$\sigma[\mathrm{fb}]$		$\sigma / \mathrm{TeV}_{\mathrm{NLO}}-1$		
LO	$8.1881(8)_{-3.2 \%}^{+2.4 \%}$	$13.933(7)_{-6.4 \%}^{+5.5 \%}$	-27.5%	-29.8%	
NLO	$11.2958(4)_{-2.0 \%}^{+2.5 \%}$	$19.8454(7)_{-2.1 \%}^{+2.5 \%}$	0%	0%	
$q \bar{q} \mathrm{NNLO}$	$12.08(3)_{-1.1 \%}^{+1.1 \%}$	$21.54(2)_{-1.2 \%}^{+1.1 \%}$	$+6.9 \%$	$+8.6 \%$	
	$\sigma[\mathrm{fb}]$			$\sigma / \sigma_{\mathrm{ggLO}}-1$	
$g g \mathrm{LO}$	$0.79354(8)_{-20.9 \%}^{+28.2 \%}$	$2.0054(2)_{-17.9 \%}^{+23.5 \%}$	0%	0%	
$g g \mathrm{NLO}_{g g}$	$1.4810(9)_{-13.2 \%}^{+16.0 \%}$	$3.627(3)_{-12.8 \%}^{+15.2 \%}$	$+86.6 \%$	$+80.9 \%$	
$g g \mathrm{NLO}$	$1.3901(9)_{-13.6 \%}^{+15.4 \%}$	$3.423(3)_{-12.0 \%}^{+13.9 \%}$	$+75.2 \%$	$+70.7 \%$	
	$\sigma[\mathrm{fb}]$				
NNLO	$12.87(3)_{-2.1 \%}^{+2.8 \%}$	$23.55(2)_{-2.6 \%}^{+3.0 \%}$	$+13.9 \%$	$+18.7 \%$	
nNNLO	$13.47(3)_{-2.2 \%}^{+2.6 \%}$	$24.97(2)_{-2.7 \%}^{+2.9 \%}$	$+19.2 \%$	$+25.8 \%$	

+5-6\% effect due to NLO correction to gg compared to NNLO

NLO gg correction large+not flat; moves inNNLO outside uncertainty band of NNLO

huge NLO gg K-factor (~2 \& more); impact of newly computed fermionic channels clearly visible

NEW: $g g \rightarrow 2 \ell 2 v(W W)$ at NLO

[Grazzini, Kallweit, MW,Yook 'to appear]

$\sqrt{s}=13 \mathrm{TeV}$	jet veto	no jet veto	jet veto	no jet veto
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{NLO}}-1$	
LO	$284.2(2)_{-6.5 \%}^{+5.6 \%}$	284.2(2) ${ }_{-6.5 \%}^{+5.6 \%}$	-15.6\%	-43.7\%
NLO	$336.6(4)_{-2.0 \%}^{+1.6 \%}$	$504.6(4)_{-3.3 \%}^{+4.1 \%}$	0\%	0\%
$q \bar{q}$ NNLO	$337.0(2)_{-0.5 \%}^{+0.7 \%}$	$559.0(4)_{-2.0 \%}^{+2.1 \%}$	+1.2\%	+10.8\%
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{ggLO}}-1$	
$g g \mathrm{LO}$	$21.96(2)_{-18.4 \%}^{+25.7 \%}$	$21.96(2)_{-18.4 \%}^{+25.7 \%}$	0\%	0\%
$g g \mathrm{NLO}_{g g}$	$31.70(2)_{-10.6 \%}^{+10.8 \%}$	$38.4(1)_{-13.3 \%}^{+15.8 \%}$	$+44.4 \%$	+74.7\%
$g g \mathrm{NLO}$	$28.76(4)_{-9.0 \%}^{+7.8 \%}$	$37.42(4)_{-12.9 \%}^{+15.2 \%}$	+31.0\%	+70.4\%
	$\sigma[\mathrm{fb}]$		$\sigma / \sigma_{\mathrm{NLO}}-1$	
NNLO	$359.0(2)_{-0.9 \%}^{+1.2 \%}$	$581.0(4)_{-2.6 \%}^{+2.9 \%}$	$+6.7 \%$	+15.1\%
nNNLO	$365.8(2)_{-0.6 \%}^{+0.4 \%}$	$596.6(4)_{-2.7 \%}^{+2.8 \%}$	+8.7\%	+18.2\%

+2(3)\% effect due to NLO correction to gg compared to NNLO with(out) jet veto

NEW: $g g \rightarrow 2 \ell 2 v(W W)$ at NLO

[Grazzini, Kallweit, MW,Yook 'to appear]

shape of nNNLO and NLO gg K-factor strongly affected by jet veto; large impact of newly computed fermionic channels clearly visible

NEW: $g g \rightarrow 2 \ell 2 v(W W)$ at NLO

[Grazzini, Kallweit, MW,Yook 'to appear]

good agreement between nNNLO and recent 13 TeV ATLAS data; tails could further improve due to EW corrections (Jonas Lindert's talk)

Event simulation

Event simulation

Event simulation

NLO+PS (~10\%): long-standing issue \rightarrow groundbreaking ~ 15 years; standard today NNLO+PS(~1\%): extremely challenging; no general application to involved processes

NNLO+PS approaches

* MiNLO+reweighting [Hamilton, Nason, Zanderighi 'I2]

$$
\begin{aligned}
p p & \rightarrow H \quad[H a m i l t o n, \text { Nason, Re, Zanderighi 'I3] } \\
p p & \rightarrow \ell \ell(Z) \quad[K a r l b e r g, \text { Hamilton, Zanderighi 'I4] } \\
p p & \rightarrow \ell \ell H / \ell v H(Z H / W H) \quad \text { [Astill, Bizoń, Re, Zanderigh 'I6 'I8] } \\
p p & \rightarrow \ell \vee \ell \ell^{\prime} v \text { ' (WW) } \quad[\mathrm{Re}, \mathrm{MW}, \text { Zanderighi 'I8] }
\end{aligned}
$$

* Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi 'I3]

$$
p p \rightarrow \ell \ell(Z) \quad[\text { Alioli, Bauer, Berggren, Tackmann, Walsh 'I5] }
$$

* UNNLOPS [Höche, Prestel 'I4]

$$
\begin{aligned}
& P P \rightarrow H \quad[\text { Höche, Prestel 'I4] } \\
& P P \rightarrow \ell \ell(Z) \quad[\text { Höche, Prestel 'I4] }
\end{aligned}
$$

MiNLO+reweighting

	X	$X+j e t$	$X+2 j e t s$	$X+n j(n>2)$
XI (NLO)	-	NLO	LO	-
XJ-MiNLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	-
X@NNLOPS	NNLO	NLO	LO	PS

I. merge $\quad p p \rightarrow W W$ and $\quad p p \rightarrow W W+j e t \quad$ (both at NLO+PS)

MiNLO+reweighting

	X	$X+j e t$	$X+2 j e t s$	$X+n j(n>2)$
XI (NLO)	-	NLO	LO	-
XJMINLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	-
X@NNLOPS	NNLO	NLO	LO	PS

I. merge $\quad p p \rightarrow W W$ and $\quad p p \rightarrow W W+j e t$ (both at NLO+PS)

2. reweight to NNLO in born phase space

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{XJ}-\mathrm{MiNLO}^{\prime}}}=\frac{c_{0}+c_{1} \alpha_{\mathrm{S}}+c_{2} \alpha_{\mathrm{S}}^{2}}{c_{0}+c_{1} \alpha_{\mathrm{S}}+d_{2} \alpha_{\mathrm{S}}^{2}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

NNLO+PS for WW
 [Re, MW, Zanderighi 'I8]

Jet veto

\rightarrow NNLOPS physical down to $p_{т}=0$
$\mathbf{p}_{\boldsymbol{t}}$ of dilepton system

\rightarrow NNLOPS cures perturbative instabilities ($\mathrm{PT}^{\text {miss }} \mathrm{cut}$)
\rightarrow NNLOPS induces additional shape effects

NNLO+PS for WW
 [Re, MW, Zanderighi 'I8]

p_{t} of dilepton system

\rightarrow NNLOPS cures perturbative instabilities ($\mathrm{p}_{\mathrm{T}}^{\text {miss }} \mathrm{cut}$)
\rightarrow NNLOPS induces additional shape effects

The problem with reweighting

\rightarrow approximation: mw flat \& CS angles [Collins, Soper '77] to convert to 8I 3D moments

$$
\begin{aligned}
& \begin{array}{l}
f_{0}(\theta, \phi)=\left(1-3 \cos ^{2} \theta\right) / 2 \\
f_{3}(\theta, \phi)=\sin \theta \cos \phi \\
f_{6}(\theta, \phi)=\sin 2 \theta \sin \phi
\end{array} \\
& f_{1}(\theta, \phi)=\sin 2 \theta \cos \phi, \\
& f_{4}(\theta, \phi)=\cos \theta, \\
& f_{2}(\theta, \phi)=\left(\sin ^{2} \theta \cos 2 \phi\right) / 2, \\
& f_{6}(\theta, \phi)=\sin 2 \theta \sin \phi, \quad f_{7}(\theta, \phi)=\sin ^{2} \theta \sin 2 \phi \quad f_{8}(\theta, \phi)=1+\cos ^{2} \theta
\end{aligned}
$$

\rightarrow discrete binning limits $p_{T, W-}$: $\quad[0 ., 177.5,25 ., 30 ., 35 ., 40 ., 47.5,57.5,72.5,100 ., 200 ., 350 ., 600 ., 1000 ., 1500 ., \infty]$; applicability in less $y_{W W}: \quad[-\infty,-3.5,-2.5,-2.0,-1.5,-1.0,-0.5,0.0,0.5,1.0,1.5,2.0,2.5,3.5, \infty]$; populated regions

$$
\begin{aligned}
\Delta y_{W^{+} W^{-}}: \quad & {[-\infty,-5.2,-4.8,-4.4,-4.0,-3.6,-3.2,-2.8,-2.4,-2.0,-1.6,-1.2,} \\
& -0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,2.4,2.8,3.2,3.6,4.0,4.4,4.8,5.2, \infty] .
\end{aligned}
$$

\rightarrow reweighting still numerically intensive
\rightarrow thorough validation required

Issue in NNLOPS

 event production of experiments already for DY
New approach: MiNNLOps

[Monni, Nason, Re, MW, Zanderighi 'I9]

	X	$X+j e t$	$X+2 j e t s$	$X+n j(n>2)$
X (NLO)	-	NLO	LO	-
X-MiNLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	-
X@NNLOPS	NNLO	NLO	LO	PS

I. merge $p p \rightarrow W W$ and $\quad p p \rightarrow W W+j e t$ (both at NLO+PS)

2. reweight to NNLO in born phase space

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{XJ}-\mathrm{MiNLO}^{\prime}}}=\frac{c_{0}+c_{1} \alpha_{\mathrm{S}}+c_{2} \alpha_{\mathrm{S}}^{2}}{c_{0}+c_{1} \alpha_{\mathrm{S}}+d_{2} \alpha_{\mathrm{S}}^{2}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

New approach: MiNNLOps

[Monni, Nason, Re, MW, Zanderighi 'I9]

	X	$X+j e t$	$X+2 j e t s$	$X+n j(n>2)$
$X($ NLO $)$	-	NLO	LO	-
XJMINLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	-
X@NNLOPS	NNLO	NLO	LO	PS

I. merge $\quad p p \rightarrow W W$ and $\quad p p \rightarrow W W+j e t \quad$ (both at NLO+PS)

2. reweight to NNLO in born phase space

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{a \Phi_{B}}\right)_{\mathrm{XJ}-\mathrm{MiNLO}^{\prime}}}=\frac{c_{0}+e_{1} \alpha_{\mathrm{S}}+c_{2} \alpha_{\mathrm{S}}^{2}}{c_{0}+c_{1} \alpha_{\mathrm{S}}+d_{2} \alpha_{\mathrm{S}}^{2}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

New approach: MiNNLOps

[Monni, Nason, Re, MW, Zanderighi 'I9]

	X	$X+$ jet	$X+2$ jets	$X+n j(n>2)$
X (NLO)	-	NLO	LO	-
X-MiNLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	-
X@NLLOPS	NNLO	NLO	LO	PS

I. merge $p p \rightarrow W W$ and $p p \rightarrow W W+j e t$ (both at NLO+PS)

2. add missing terms explicitly (from analytic all-order formula)

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{\mathrm{B}} \mathrm{~d} p_{\mathrm{T}}}=\frac{\mathrm{d}}{\mathrm{~d} p_{\mathrm{T}}}\left\{\exp \left[-S\left(p_{\mathrm{T}}\right)\right] \mathcal{L}\left(\Phi_{\mathrm{B}}, p_{\mathrm{T}}\right)\right\}+R_{f}\left(p_{\mathrm{T}}\right)=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{D\left(p_{\mathrm{T}}\right)+\frac{R_{f}\left(p_{\mathrm{T}}\right)}{\exp \left[-S\left(p_{\mathrm{T}}\right)\right]}\right\}
$$

New approach: MiNNLOps

[Monni, Nason, Re, MW, Zanderighi 'I9]

	X	X+jet	$X+2$ jets	$X+n j(n>2)$
X (NLO)	-	NLO	LO	-
X-MiNLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	-
X@NLLOPS	NNLO	NLO	LO	PS

I. merge $\quad p p \rightarrow W W$ and $\quad p p \rightarrow W W+j e t \quad$ (both at NLO+PS)

2. add missing terms explicitly (from analytic all-order formula)

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{\mathrm{B}} \mathrm{~d} p_{\mathrm{T}}}=\frac{\mathrm{d}}{\mathrm{~d} p_{\mathrm{T}}}\left\{\exp \left[-S\left(p_{\mathrm{T}}\right)\right] \mathcal{L}\left(\Phi_{\mathrm{B}}, p_{\mathrm{T}}\right)\right\}+R_{f}\left(p_{\mathrm{T}}\right)=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{D\left(p_{\mathrm{T}}\right)+\frac{R_{f}\left(p_{\mathrm{T}}\right)}{\exp \left[-S\left(p_{\mathrm{T}}\right)\right]}\right\}
$$

$$
=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}\right]^{(1)}\left(1+\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[S\left(p_{\mathrm{T}}\right)\right]^{(1)}\right)+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}\right]^{(2)}+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{3}\left[D\left(p_{\mathrm{T}}\right)\right]^{(3)}+\text { regular terms }\right\}
$$

New approach: MiNNLOps

[Monni, Nason, Re, MW, Zanderighi 'I9]

	X	$X+j e t$	$X+2 j e t s$	$X+n j(n>2)$
$X($ NLO $)$	-	NLO	LO	-
XJMINLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	-
X@NNLOPS	NNLO	NLO	LO	PS

I. merge $p p \rightarrow W W$ and $p p \rightarrow W W+j e t$ (both at NLO+PS)

2. add missing terms explicitly (from analytic all-order formula)

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{\mathrm{B}} \mathrm{~d} p_{\mathrm{T}}}=\frac{\mathrm{d}}{\mathrm{~d} p_{\mathrm{T}}}\left\{\exp \left[-S\left(p_{\mathrm{T}}\right)\right] \mathcal{L}\left(\Phi_{\mathrm{B}}, p_{\mathrm{T}}\right)\right\}+R_{f}\left(p_{\mathrm{T}}\right)=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{D\left(p_{\mathrm{T}}\right)+\frac{R_{f}\left(p_{\mathrm{T}}\right)}{\exp \left[-S\left(p_{\mathrm{T}}\right)\right]}\right\}
$$

$$
=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}\right]^{(1)}\left(1+\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[S\left(p_{\mathrm{T}}\right)\right]^{(1)}\right)+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}\right]^{(2)}+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{3}\left[D\left(p_{\mathrm{T}}\right)\right]^{(3)}+\text { regular terms }\right\} .
$$

MiNLO

New approach: MiNNLOps

[Monni, Nason, Re, MW, Zanderighi 'I9]

	X	$X+j e t$	$X+2 j e t s$	$X+n j(n>2)$
$X($ NLO $)$	-	NLO	LO	-
XJMINLO	NLO	NLO	LO	PS
X@NNLO	NNLO	NLO	LO	-
X@NNLOPS	NNLO	NLO	LO	PS

I. merge $p p \rightarrow W W$ and $p p \rightarrow W W+j e t$ (both at NLO+PS)

2. add missing terms explicitly (from analytic all-order formula)

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{\mathrm{B}} \mathrm{~d} p_{\mathrm{T}}}=\frac{\mathrm{d}}{\mathrm{~d} p_{\mathrm{T}}}\left\{\exp \left[-S\left(p_{\mathrm{T}}\right)\right] \mathcal{L}\left(\Phi_{\mathrm{B}}, p_{\mathrm{T}}\right)\right\}+R_{f}\left(p_{\mathrm{T}}\right)=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{D\left(p_{\mathrm{T}}\right)+\frac{R_{f}\left(p_{\mathrm{T}}\right)}{\exp \left[-S\left(p_{\mathrm{T}}\right)\right]}\right\}
$$

$$
=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}\right]^{(1)}\left(1+\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[S\left(p_{\mathrm{T}}\right)\right]^{(1)}\right)+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}\right]^{(2)}+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{3}\left[D\left(p_{\mathrm{T}}\right)\right]^{(3)}+\text { regular terms }\right\}
$$

MiNNLOps results

[Monni, Nason, Re, MW, Zanderighi 'I9]

Conclusions

(38) Diboson theory predictions under excellent control:

* NNLO QCD done! \rightarrow publicly available within MATRIX
- $\ell \ell+E T$,miss signature studied at NNLO, mixes ZZ andWW resonances
- NLO QCD corrections for loop-induced gg contribution
dirst NNLO+PS computation for a $2 \rightarrow 4$ process (WW)
(36) MiNNLOps: New NNLO+PS approach (no reweighting)
(3. Open issues/ongoing work for dibosons:
- best way to combine NNLO, NLO EW and NLO gg
- NLO gg Higgs interference for ZZ andWW
- combination of NNLO QCD with state-of-the-art (N3LL) resummation
- MiNNLOps for diboson processes

Thank You!

Back Un

NEW: $g g \rightarrow 2 \ell 2 v(W W)$ at NLO

[Grazzini, Kallweit, MW,Yook 'to appear]

NNLOPS forWW
 [Re, MW, Zanderighi 'I8]

 Setup:

 Setup:}

The remaining three variables and their binning chosen to be

$$
\begin{aligned}
p_{T, W^{-}}: & {[0 ., 17.5,25 ., 30 ., 35 ., 40 ., 47.5,57.5,72.5,100 ., 200 ., 350 ., 600 ., 1000 ., 1500 ., \infty] ; } \\
y_{W W}: & {[-\infty,-3.5,-2.5,-2.0,-1.5,-1.0,-0.5,0.0,0.5,1.0,1.5,2.0,2.5,3.5, \infty] } \\
\Delta y_{W^{+} W^{-}}: & {[-\infty,-5.2,-4.8,-4.4,-4.0,-3.6,-3.2,-2.8,-2.4,-2.0,-1.6,-1.2} \\
& -0.8,-0.4,0.0,0.4,0.8,1.2,1.6,2.0,2.4,2.8,3.2,3.6,4.0,4.4,4.8,5.2, \infty]
\end{aligned}
$$

Cuts inspired by ATLAS 13 TeV study (1702.04519):

lepton cuts	$p_{T, \ell}>25 \mathrm{GeV}, \quad\left\|\eta_{\ell}\right\|<2.4, \quad m_{\ell^{-} \ell^{+}}>10 \mathrm{GeV}$
lepton dressing	add photon FSR to lepton momenta with $\Delta R_{\ell \gamma}<0.1$ (our results do not include photon FSR, see text)
neutrino cuts	$p_{T}^{\mathrm{miss}}>20 \mathrm{GeV}, \quad p_{T}^{\text {miss,rel }}>15 \mathrm{GeV}$ anti- k_{T} jets with $R=0.4$;
jet cuts	$\begin{aligned} & N_{\text {jet }}=0 \text { for } p_{T, j}>25 \mathrm{GeV},\left\|\eta_{j}\right\|<2.4 \text { and } \Delta R_{e j}<0.3 \\ & N_{\text {jet }}=0 \text { for } p_{T, j}>30 \mathrm{GeV},\left\|\eta_{j}\right\|<4.5 \text { and } \Delta R_{e j}<0.3 \end{aligned}$

NNLO uses the central scale $\mu_{R}=\mu_{F}=\mu_{0} \equiv \frac{1}{2}\left(\sqrt{m_{e-\overline{\nu_{e}}}^{2}+p_{T, e-\overline{\nu_{e}}}^{2}}+\sqrt{m_{\mu}^{2}+\nu_{\mu}+p_{T, \mu+\nu_{\mu}}^{2}}\right)$
All uncertainty bands are the envelop of 7 -scales. In the NNLOPS scales in MiNLO and NNLO are varied in a correlated way
gg-channel not included in our study, as it can it is know at one-loop and can be added incoherently

NNLOPS forWW

[Re, MW, Zanderighi 'I8]

Phenomenological results:
 Charge asymmetry

- W momentum cannot be reconstructed \rightarrow use leptons
- lepton asymmetry smaller; almost vanishes in fiducial
- can be recovered by widening rapidity range of leptons or by considering boosted regime
- sensitive to W polarizations
\rightarrow powerful probe of new physics

$A_{C}^{W}=\frac{\sigma\left(\left\|y_{W^{+}}\right\|>\left\|y_{W^{-}}\right\|\right)-\sigma\left(\left\|y_{W^{+}}\right\|<\left\|y_{W^{-}}\right\|\right)}{\sigma\left(\left\|y_{W^{+}}\right\|>\left\|y_{W^{-}}\right\|\right)+\sigma\left(\left\|y_{W^{+}}\right\|<\left\|y_{W^{-}}\right\|\right)},$	NNLOPS	inclusive phase space	fiducial phase space
$A_{C}^{\ell}=\frac{\sigma\left(\left\|y_{\ell^{+}}\right\|>\left\|y_{\ell^{-}}\right\|\right)-\sigma\left(\left\|y_{\ell^{+}}\right\|<\left\|y_{\ell^{-}}\right\|\right)}{\sigma\left(\left\|y_{\ell^{+}}\right\|>\left\|y_{\ell^{-}}\right\|\right)+\sigma\left(\left\|y_{\ell^{+}}\right\|<\left\|y_{\ell^{-}}\right\|\right)}$.	$\begin{gathered} A_{C}^{W} \\ A_{C}^{\ell} \end{gathered}$	$\begin{gathered} 0.1263(1)_{-1.8 \%}^{+2.1 \%} \\ -\left[0.0270(1)_{-6.4 \%}^{+5.0 \%}\right] \end{gathered}$	$\begin{array}{r} 0.0726(3)_{-2.6 \%}^{+2.0 \%} \\ -\left[0.0009(4)_{-87 \%}^{+72 \%}\right] \end{array}$

New approach: MiNNLOps

* $\operatorname{NLO}(\mathrm{F}+\mathrm{jet}): \quad \frac{\mathrm{d} \sigma_{F J}^{(\mathrm{NLO})}}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}=\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}$

New approach: MiNNLOps

* $\operatorname{NLO}(\mathrm{F}+\mathrm{jet}): \quad \frac{\mathrm{d} \sigma_{F J}^{(\mathrm{NLO})}}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}=\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}$
* MiNLO: $\quad \frac{\mathrm{d} \sigma}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}\left(1+\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[S\left(p_{\mathrm{T}}\right)\right]^{(1)}\right)+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}\right\}$

$$
\begin{gathered}
S\left(p_{\mathrm{T}}\right)=2 \int_{p_{\mathrm{T}}}^{Q} \frac{\mathrm{~d} q}{q}\left(A\left(\alpha_{s}(q)\right) \ln \frac{Q^{2}}{q^{2}}+B\left(\alpha_{s}(q)\right)\right), \\
A\left(\alpha_{s}\right)=\sum_{k=1}^{2}\left(\frac{\alpha_{s}}{2 \pi}\right)^{k} A^{(k)}, \quad B\left(\alpha_{s}\right)=\sum_{k=1}^{2}\left(\frac{\alpha_{s}}{2 \pi}\right)^{k} B^{(k)}
\end{gathered}
$$

New approach: MiNNLOps

* $\operatorname{NLO}(\mathbf{F}+\mathrm{jet}): \quad \frac{\mathrm{d} \sigma_{F J}^{(\mathrm{NLO})}}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}=\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}$
* MiNLO: $\quad \frac{\mathrm{d} \sigma}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}\left(1+\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[S\left(p_{\mathrm{T}}\right)\right]^{(1)}\right)+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}\right\}$

$$
\begin{gathered}
S\left(p_{\mathrm{T}}\right)=2 \int_{p_{\mathrm{T}}}^{Q} \frac{\mathrm{~d} q}{q}\left(A\left(\alpha_{s}(q)\right) \ln \frac{Q^{2}}{q^{2}}+B\left(\alpha_{s}(q)\right)\right) \\
A\left(\alpha_{s}\right)=\sum_{k=1}^{2}\left(\frac{\alpha_{s}}{2 \pi}\right)^{k} A^{(k)}, \quad B\left(\alpha_{s}\right)=\sum_{k=1}^{2}\left(\frac{\alpha_{s}}{2 \pi}\right)^{k} B^{(k)}
\end{gathered}
$$

* analytic all-order formula:
$\frac{\mathrm{d} \sigma}{\mathrm{d} \Phi_{\mathrm{B}} \mathrm{d} p_{\mathrm{T}}}=\frac{\mathrm{d}}{\mathrm{d} p_{\mathrm{T}}}\left\{\exp \left[-S\left(p_{\mathrm{T}}\right)\right] \mathcal{L}\left(\Phi_{\mathrm{B}}, p_{\mathrm{T}}\right)\right\}+R_{f}\left(p_{\mathrm{T}}\right)$

New approach: MiNNLOps

* $\operatorname{NLO}(\mathrm{F}+\mathrm{jet}): \quad \frac{\mathrm{d} \sigma_{F J}^{(\mathrm{NLO})}}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}=\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}$
* $\operatorname{MiNLO}: \quad \frac{\mathrm{d} \sigma}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}\left(1+\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[S\left(p_{\mathrm{T}}\right)\right]^{(1)}\right)+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}\right\}$

$$
\begin{gathered}
S\left(p_{\mathrm{T}}\right)=2 \int_{p_{\mathrm{T}}}^{Q} \frac{\mathrm{~d} q}{q}\left(A\left(\alpha_{s}(q)\right) \ln \frac{Q^{2}}{q^{2}}+B\left(\alpha_{s}(q)\right)\right), \\
A\left(\alpha_{s}\right)=\sum_{k=1}^{2}\left(\frac{\alpha_{s}}{2 \pi}\right)^{k} A^{(k)}, \quad B\left(\alpha_{s}\right)=\sum_{k=1}^{2}\left(\frac{\alpha_{s}}{2 \pi}\right)^{k} B^{(k)}
\end{gathered}
$$

counting:

$$
\int_{\Lambda}^{Q} \mathrm{~d} p_{\mathrm{T}} \frac{1}{p_{\mathrm{T}}} \alpha_{s}^{m}\left(p_{\mathrm{T}}\right) \ln ^{n} \frac{p_{\mathrm{T}}}{Q} \exp \left(-S\left(p_{\mathrm{T}}\right)\right) \approx \alpha_{s}^{m-\frac{n+1}{2}}(Q)
$$

* analytic all-order formula:

$$
D\left(p_{\mathrm{T}}\right) \equiv-\frac{\mathrm{d} S\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}} \mathcal{L}\left(p_{\mathrm{T}}\right)+\frac{\mathrm{d} \mathcal{L}\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}}
$$

$\frac{\mathrm{d} \sigma}{\mathrm{d} \Phi_{\mathrm{B}} \mathrm{d} p_{\mathrm{T}}}=\frac{\mathrm{d}}{\mathrm{d} p_{\mathrm{T}}}\left\{\exp \left[-S\left(p_{\mathrm{T}}\right)\right] \mathcal{L}\left(\Phi_{\mathrm{B}}, p_{\mathrm{T}}\right)\right\}+R_{f}\left(p_{\mathrm{T}}\right)=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{D\left(p_{\mathrm{T}}\right)+\frac{R_{f}\left(p_{\mathrm{T}}\right)}{\exp \left[-S\left(p_{\mathrm{T}}\right)\right]}\right\}$

New approach: MiNNLOps

* NLO (F+jet): $\frac{\mathrm{d} \sigma_{F J}^{(\mathrm{NLO})}}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}=\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}$
* $\operatorname{MiNLO}: \quad \frac{\mathrm{d} \sigma}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}\left(1+\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[S\left(p_{\mathrm{T}}\right)\right]^{(1)}\right)+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}\right\}$

$$
\begin{gathered}
S\left(p_{\mathrm{T}}\right)=2 \int_{p_{\mathrm{T}}}^{Q} \frac{\mathrm{~d} q}{q}\left(A\left(\alpha_{s}(q)\right) \ln \frac{Q^{2}}{q^{2}}+B\left(\alpha_{s}(q)\right)\right) \\
A\left(\alpha_{s}\right)=\sum_{k=1}^{2}\left(\frac{\alpha_{s}}{2 \pi}\right)^{k} A^{(k)}, \quad B\left(\alpha_{s}\right)=\sum_{k=1}^{2}\left(\frac{\alpha_{s}}{2 \pi}\right)^{k} B^{(k)}
\end{gathered}
$$

counting:

$$
\int_{\Lambda}^{Q} \mathrm{~d} p_{\mathrm{T}} \frac{1}{p_{\mathrm{T}}} \alpha_{s}^{m}\left(p_{\mathrm{T}}\right) \ln ^{n} \frac{p_{\mathrm{T}}}{Q} \exp \left(-S\left(p_{\mathrm{T}}\right)\right) \approx \alpha_{s}^{m-\frac{n+1}{2}}(Q)
$$

* analytic all-order formula:

$$
D\left(p_{\mathrm{T}}\right) \equiv-\frac{\mathrm{d} S\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}} \mathcal{L}\left(p_{\mathrm{T}}\right)+\frac{\mathrm{d} \mathcal{L}\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}}
$$

$\frac{\mathrm{d} \sigma}{\mathrm{d} \Phi_{\mathrm{B}} \mathrm{d} p_{\mathrm{T}}}=\frac{\mathrm{d}}{\mathrm{d} p_{\mathrm{T}}}\left\{\exp \left[-S\left(p_{\mathrm{T}}\right)\right] \mathcal{L}\left(\Phi_{\mathrm{B}}, p_{\mathrm{T}}\right)\right\}+R_{f}\left(p_{\mathrm{T}}\right)=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{D\left(p_{\mathrm{T}}\right)+\frac{R_{f}\left(p_{\mathrm{T}}\right)}{\exp \left[-S\left(p_{\mathrm{T}}\right)\right]}\right\}$
$=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}\left(1+\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[S\left(p_{\mathrm{T}}\right)\right]^{(1)}\right)+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{3}\left[D\left(p_{\mathrm{T}}\right)\right]^{(3)}+\right.$ regular terms $\}$

New approach: MiNNLOps

* NLO (F+jet): $\frac{\mathrm{d} \sigma_{F J}^{(\mathrm{NLO})}}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}=\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}$
* MiNLO: $\frac{\mathrm{d} \sigma}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}\left(1+\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[S\left(p_{\mathrm{T}}\right)\right]^{(1)}\right)+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}\right\}$

$$
\begin{gathered}
S\left(p_{\mathrm{T}}\right)=2 \int_{p_{\mathrm{T}}}^{Q} \frac{\mathrm{~d} q}{q}\left(A\left(\alpha_{s}(q)\right) \ln \frac{Q^{2}}{q^{2}}+B\left(\alpha_{s}(q)\right)\right) \\
A\left(\alpha_{s}\right)=\sum_{k=1}^{2}\left(\frac{\alpha_{s}}{2 \pi}\right)^{k} A^{(k)}, \quad B\left(\alpha_{s}\right)=\sum_{k=1}^{2}\left(\frac{\alpha_{s}}{2 \pi}\right)^{k} B^{(k)}
\end{gathered}
$$

counting:

$$
\int_{\Lambda}^{Q} \mathrm{~d} p_{\mathrm{T}} \frac{1}{p_{\mathrm{T}}} \alpha_{s}^{m}\left(p_{\mathrm{T}}\right) \ln ^{n} \frac{p_{\mathrm{T}}}{Q} \exp \left(-S\left(p_{\mathrm{T}}\right)\right) \approx \alpha_{s}^{m-\frac{n+1}{2}}(Q)
$$

* analytic all-order formula:

$$
D\left(p_{\mathrm{T}}\right) \equiv-\frac{\mathrm{d} S\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}} \mathcal{L}\left(p_{\mathrm{T}}\right)+\frac{\mathrm{d} \mathcal{L}\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}}
$$

$\frac{\mathrm{d} \sigma}{\mathrm{d} \Phi_{\mathrm{B}} \mathrm{d} p_{\mathrm{T}}}=\frac{\mathrm{d}}{\mathrm{d} p_{\mathrm{T}}}\left\{\exp \left[-S\left(p_{\mathrm{T}}\right)\right] \mathcal{L}\left(\Phi_{\mathrm{B}}, p_{\mathrm{T}}\right)\right\}+R_{f}\left(p_{\mathrm{T}}\right)=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{D\left(p_{\mathrm{T}}\right)+\frac{R_{f}\left(p_{\mathrm{T}}\right)}{\exp \left[-S\left(p_{\mathrm{T}}\right)\right]}\right\}$
$=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}\left(1+\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[S\left(p_{\mathrm{T}}\right)\right]^{(1)}\right)+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}+\left(\frac{\alpha_{S}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{3}\left[D\left(p_{\mathrm{T}}\right)\right]^{(3)}+\right.$ regular terms $\}$
MiNLO

New approach: MiNNLOps

* NLO (F+jet): $\frac{\mathrm{d} \sigma_{F J}^{(\mathrm{NLO})}}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}=\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}$
* MiNLO: $\frac{\mathrm{d} \sigma}{\mathrm{d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}=\exp \left[-S\left(p_{\mathrm{T}}\right)\right]\left\{\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(1)}\left(1+\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\left[S\left(p_{\mathrm{T}}\right)\right]^{(1)}\right)+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{d} p_{\mathrm{T}}}\right]^{(2)}\right\}$

$$
\begin{gathered}
S\left(p_{\mathrm{T}}\right)=2 \int_{p_{\mathrm{T}}}^{Q} \frac{\mathrm{~d} q}{q}\left(A\left(\alpha_{s}(q)\right) \ln \frac{Q^{2}}{q^{2}}+B\left(\alpha_{s}(q)\right)\right) \\
A\left(\alpha_{s}\right)=\sum_{k=1}^{2}\left(\frac{\alpha_{s}}{2 \pi}\right)^{k} A^{(k)}, \quad B\left(\alpha_{s}\right)=\sum_{k=1}^{2}\left(\frac{\alpha_{s}}{2 \pi}\right)^{k} B^{(k)}
\end{gathered}
$$

counting:

$$
\int_{\Lambda}^{Q} \mathrm{~d} p_{\mathrm{T}} \frac{1}{p_{\mathrm{T}}} \alpha_{s}^{m}\left(p_{\mathrm{T}}\right) \ln ^{n} \frac{p_{\mathrm{T}}}{Q} \exp \left(-S\left(p_{\mathrm{T}}\right)\right) \approx \alpha_{s}^{m-\frac{n+1}{2}}(Q)
$$

* analytic all-order formula:

$$
D\left(p_{\mathrm{T}}\right) \equiv-\frac{\mathrm{d} S\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}} \mathcal{L}\left(p_{\mathrm{T}}\right)+\frac{\mathrm{d} \mathcal{L}\left(p_{\mathrm{T}}\right)}{\mathrm{d} p_{\mathrm{T}}}
$$

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{\mathrm{B}} \mathrm{~d} p_{\mathrm{T}}}=\frac{\mathrm{d}}{\mathrm{~d} p_{\mathrm{T}}}\left\{\exp \left[-S\left(p_{\mathrm{r}}\right)\right] \mathcal{L}\left(\Phi_{\mathrm{B}}, p_{\mathrm{r}}\right)\right\}+R_{f}\left(p_{\mathrm{r}}\right)=\exp \left[-S\left(p_{\mathrm{r}}\right)\right]\left\{D\left(p_{\mathrm{r}}\right)+\frac{R_{f}\left(p_{\mathrm{r}}\right)}{\exp \left[-S\left(p_{\mathrm{r}}\right)\right]}\right\} \\
& =\frac{\left.\exp \left[-S\left(p_{\mathrm{r}}\right)\right]\left\{\left[\frac{\alpha_{s}\left(p_{\mathrm{r}}\right)}{2 \pi}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{~d} p_{\mathrm{T}}}\right]^{(1)}\left(1+\frac{\alpha_{s}\left(p_{\mathrm{r}}\right)}{2 \pi}\left[S\left(p_{\mathrm{r}}\right)\right]^{(1)}\right)+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{2}\left[\frac{\mathrm{~d} \sigma_{F J}}{\mathrm{~d} \Phi_{\mathrm{F}} \mathrm{p}_{\mathrm{T}}}\right]^{(2)}\right]+\left(\frac{\alpha_{s}\left(p_{\mathrm{T}}\right)}{2 \pi}\right)^{3}\left[D\left(p_{\mathrm{r}}\right)\right]^{(3)}\right]+\text { regular terms }\right\}}{\text { MiNLO }} \\
& \text { missing terms } \\
& \text { for NNLO accuracy }
\end{aligned}
$$

MiNNLOps results

[Monni, Nason, Re, MW, Zanderighi 'I9]

MiNNLOps results

[Monni, Nason, Re, MW, Zanderighi 'I9]

MiNNLOps results

[Monni, Nason, Re, MW, Zanderighi 'I9]

$r_{c u t} \rightarrow 0$ extrapolation in MATRIX

[Grazzini, Kallweit, MW 'I7]

dileptons with certain cuts (and photon final states) are special

$r_{\text {cut }} \rightarrow 0$ extrapolation in MATRIX [Grazzini, Kallweit, MW 'I7]

$r_{\text {cut }} \rightarrow 0$ extrapolation in MATRIX [Grazzini, Kallweit, MW 'I7]

$r_{\text {cut }} \rightarrow 0$ extrapolation in MATRIX [Grazzini, Kallweit, MW 'I7]

$r_{\text {cut }} \rightarrow 0$ extrapolation in MATRIX [Grazzini, Kallweit, MW 'I7]

$r_{\text {cut }} \rightarrow 0$ extrapolation in MATRIX [Grazzini, Kallweit, MW 'I7]

$r_{\text {cut }} \rightarrow 0$ extrapolation in MATRIX [Grazzini, Kallweit, MW 'I7]

$r_{\text {cut }} \rightarrow 0$ extrapolation in MATRIX [Grazzini, Kallweit, MW 'I7]

MATRIX features on one slide

(4) Colourless $2 \rightarrow \mathrm{I}$ and $2 \rightarrow 2$ reactions (decays, off-shell effects, spin correlations; previous slide) © physics features:
(4. NNLO accuracy based on qT subtraction

33 loop-induced gg component part of NNLO cross section (effectively LO accurate)

- CKM for W-boson production
-3. essential fiducial cuts, dynamical scales and distributions already pre-defined for each process
* final-state particles directly accessible (for distributions, cuts, scales)
(3. scale uncertainty estimated automatically estimated (7- or 9-point) with every run
(3) NEW: automatic extrapolation of qT-subtraction cut-off to zero (with extrapolation uncertainty)
© technical features:
. . Core: C++ code; steered by Python interface (compilation/running/job submission/result collection)
(3) Only requirements: LHAPDF 5 or 6 pre-installed \& Python 2.7 with numpy
(33) Otherwise fully automatic! (download/compilation of external packages; inputs via interface etc.)
- local and cluster support: LSF (lxplus), HT-Condor (lxplus), condor, SLURM,Torque/PBS, SGE
\rightarrow missing your favourite cluster? Let us know!
33 option to reduce workload (output) on slow file systems
(33) all relevant references in CITATION.bib (provided with every run)
- . comprehensive manual shipped with the code

