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SM predictions:  what is there?
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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Figure 5. Sample of one loop diagrams contributing to 2`2⌫ production in the different-flavour case (` 6= `0)
and in the same-flavour case (` = `0) in the quark-induced (a-d) and photon-induced (e-h) channels.
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Figure 6. Sample of one-loop diagrams contributing to 2`2⌫ final states only in the same-flavour (wrt. the
charged leptons) case in the quark-induced (a-d) and photon-induced (e-h) channels.

in t-channel topologies with subsequent emission of a Z boson with Z ! ⌫⌫̄ is the only photon-
induced production mechanism at LO, as shown in the sample diagrams of Fig. 4. Consequently,
the invariant mass of the charged-lepton pair does not show a Breit–Wigner peak around MZ .

Similarly as for quark–antiquark annihilation, the �� ! e
+
e
�
⌫e⌫̄e channel is build from the

coherent sum of all diagrams entering �� ! e
+
µ
�
⌫e⌫̄µ and �� ! e

+
e
�
⌫µ/⌧ ⌫̄µ/⌧ .

2.3 Ingredients of QCD and EW corrections

At NLO QCD all O(↵s↵
4) contributions to pp ! 2`2⌫ are taken into account. In the qq̄ channel, the

only QCD loop corrections arise from virtual-gluon exchange, while the real corrections result from
real-gluon emission and crossed topologies describing (anti-)quark–gluon channels. The infrared
divergences separately arising in these two contributions are mediated by the standard dipole-
subtraction approach [35, 36]. We note that the �� channels do not receive QCD corrections at
NLO, due to the absence of any QCD partons in all tree-level diagrams.

At NLO EW we include the full set of O(↵5) contributions to pp ! 2`2⌫. At this order both
the qq̄ and �� channels receive corrections from virtual EW bosons and from closed fermion loops,
cf. Figs. 5–6. These corrections include Higgs resonances with decay into four fermions coupled
to weak bosons (in the qq̄ channel) or coupled to a heavy-fermion loop (in the �� channel). The
real corrections in the qq̄ channel can be split into real-photon emission channels and �q ! 2`2⌫q
channels1 with initial-state � ! qq̄ splittings. The �� channel also receives real corrections from

1Corresponding �q̄-induced channels are implicitly understood here and in the following.
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We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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includingalsotheqginitiatedcontributions.
1WenotethatatN

3LOweonlyincludediagrams

withclosedfermionloops(seeFigure3(a));allothercontributionsthatwouldenteracomplete

N
3LOcalculation(seeFigure3(b)forexample)cannotbeconsistentlyaccountedforatpresent.

OurapproximationincludesallcontributionsatO(↵
2
S)togetherwiththecompleteNLOcorrections

totheloop-inducedgluonfusionchannelatO(↵
3
S).Assuch,besidesprovidingthemaximum

perturbativeinformationavailableatpresentforthisprocess,ourcalculationcanbeusedtoobtain

aconsistentestimateofperturbativeuncertaintiesthroughthecustomaryprocedureofstudying

scalevariations.

OurcalculationiscarriedoutwithinthecomputationalframeworkM
atrix[52].M

atrixfeaturesa

fullygeneralimplementationoftheqT-subtractionformalism[53]andallowedustocomputeNNLO

QCDcorrectionstoalargenumberofcolour-singletprocessesathadroncolliders[38,43,45,46,54–

59].
2ThecoreoftheM

atrixframeworkistheMonteCarloprogram
M
unich,whichiscapable

ofcomputingbothNLOQCDandNLOEW
[62,63]correctionstoarbitrarySM

processes[64].

AsinpreviousM
atrixcalculations,inourcomputationoftheNLOcorrectionstothegg!

4`

process,alltherequiredone-loopamplitudesareevaluatedwithO
penLoops

3[69,70].Attwo-loop

level,weusethegg
!

VV
0helicityamplitudesofRef.[37],andimplementthecorresponding

four-leptonfinalstates,accountingforspincorrelationsando↵-shelle↵ects.TheNLOcalculation

isperformedbyusingtheCatani–Seymourdipole-subtractionmethod[71,72]andalsowithqT

subtraction[53],whichprovidesanadditionalcross-checkofourresults.

1Wenotethattherearealsoqq̄initiatedcontributionstotheloop-inducedproductionmechanismatO(↵
3
S),

whichareseparatelyfinite.Wefoundthem
tobecompletelynegligibleandignorethem

inthefollowing.Our

resultsincludeallnumericallyrelevantpartonicchannelsoftheNLOcorrectionstotheloop-inducedgluonfusion

contribution.

2ItwasalsousedintheNNLL+NNLOcomputationofRef.[60],andintheNNLOPScomputationofRef.[61].

3OpenLoopsreliesonthefastandstabletensorreductionofCollier[65,66],supportedbyarescuesystem

basedonquad-precision
CutTools[67]with

O
neLO

op[68]todealwithexceptionalphase-spacepoints.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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includingalsotheqginitiatedcontributions.
1WenotethatatN

3LOweonlyincludediagrams

withclosedfermionloops(seeFigure3(a));allothercontributionsthatwouldenteracomplete

N
3LOcalculation(seeFigure3(b)forexample)cannotbeconsistentlyaccountedforatpresent.

OurapproximationincludesallcontributionsatO(↵
2
S)togetherwiththecompleteNLOcorrections

totheloop-inducedgluonfusionchannelatO(↵
3
S).Assuch,besidesprovidingthemaximum

perturbativeinformationavailableatpresentforthisprocess,ourcalculationcanbeusedtoobtain

aconsistentestimateofperturbativeuncertaintiesthroughthecustomaryprocedureofstudying

scalevariations.

OurcalculationiscarriedoutwithinthecomputationalframeworkM
atrix[52].M

atrixfeaturesa

fullygeneralimplementationoftheqT-subtractionformalism[53]andallowedustocomputeNNLO

QCDcorrectionstoalargenumberofcolour-singletprocessesathadroncolliders[38,43,45,46,54–

59].
2ThecoreoftheM

atrixframeworkistheMonteCarloprogram
M
unich,whichiscapable

ofcomputingbothNLOQCDandNLOEW
[62,63]correctionstoarbitrarySM

processes[64].

AsinpreviousM
atrixcalculations,inourcomputationoftheNLOcorrectionstothegg!

4`

process,alltherequiredone-loopamplitudesareevaluatedwithO
penLoops

3[69,70].Attwo-loop

level,weusethegg
!

VV
0helicityamplitudesofRef.[37],andimplementthecorresponding

four-leptonfinalstates,accountingforspincorrelationsando↵-shelle↵ects.TheNLOcalculation

isperformedbyusingtheCatani–Seymourdipole-subtractionmethod[71,72]andalsowithqT

subtraction[53],whichprovidesanadditionalcross-checkofourresults.

1Wenotethattherearealsoqq̄initiatedcontributionstotheloop-inducedproductionmechanismatO(↵
3
S),

whichareseparatelyfinite.Wefoundthem
tobecompletelynegligibleandignorethem

inthefollowing.Our

resultsincludeallnumericallyrelevantpartonicchannelsoftheNLOcorrectionstotheloop-inducedgluonfusion

contribution.

2ItwasalsousedintheNNLL+NNLOcomputationofRef.[60],andintheNNLOPScomputationofRef.[61].

3OpenLoopsreliesonthefastandstabletensorreductionofCollier[65,66],supportedbyarescuesystem

basedonquad-precision
CutTools[67]with

O
neLO

op[68]todealwithexceptionalphase-spacepoints.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure3:ExamplesofN
3LOcontributionsintheqgchannel.

includingalsotheqginitiatedcontributions.
1WenotethatatN

3LOweonlyincludediagrams

withclosedfermionloops(seeFigure3(a));allothercontributionsthatwouldenteracomplete

N
3LOcalculation(seeFigure3(b)forexample)cannotbeconsistentlyaccountedforatpresent.

OurapproximationincludesallcontributionsatO(↵
2
S)togetherwiththecompleteNLOcorrections

totheloop-inducedgluonfusionchannelatO(↵
3
S).Assuch,besidesprovidingthemaximum

perturbativeinformationavailableatpresentforthisprocess,ourcalculationcanbeusedtoobtain

aconsistentestimateofperturbativeuncertaintiesthroughthecustomaryprocedureofstudying

scalevariations.

OurcalculationiscarriedoutwithinthecomputationalframeworkM
atrix[52].M

atrixfeaturesa

fullygeneralimplementationoftheqT-subtractionformalism[53]andallowedustocomputeNNLO

QCDcorrectionstoalargenumberofcolour-singletprocessesathadroncolliders[38,43,45,46,54–

59].
2ThecoreoftheM

atrixframeworkistheMonteCarloprogram
M
unich,whichiscapable

ofcomputingbothNLOQCDandNLOEW
[62,63]correctionstoarbitrarySM

processes[64].

AsinpreviousM
atrixcalculations,inourcomputationoftheNLOcorrectionstothegg!

4`

process,alltherequiredone-loopamplitudesareevaluatedwithO
penLoops

3[69,70].Attwo-loop

level,weusethegg
!

VV
0helicityamplitudesofRef.[37],andimplementthecorresponding

four-leptonfinalstates,accountingforspincorrelationsando↵-shelle↵ects.TheNLOcalculation

isperformedbyusingtheCatani–Seymourdipole-subtractionmethod[71,72]andalsowithqT

subtraction[53],whichprovidesanadditionalcross-checkofourresults.

1Wenotethattherearealsoqq̄initiatedcontributionstotheloop-inducedproductionmechanismatO(↵
3
S),

whichareseparatelyfinite.Wefoundthem
tobecompletelynegligibleandignorethem

inthefollowing.Our

resultsincludeallnumericallyrelevantpartonicchannelsoftheNLOcorrectionstotheloop-inducedgluonfusion

contribution.

2ItwasalsousedintheNNLL+NNLOcomputationofRef.[60],andintheNNLOPScomputationofRef.[61].

3OpenLoopsreliesonthefastandstabletensorreductionofCollier[65,66],supportedbyarescuesystem

basedonquad-precision
CutTools[67]with

O
neLO

op[68]todealwithexceptionalphase-spacepoints.
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qT subtraction
[Catani, Grazzini '07]
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rcut→0 extrapolation in MATRIX

σqT

NNLO(r)
σexact(ZWPROD)
NNLO

σextrapolated
NNLO (rcut ≥ 0.15)

σ/σNNLO − 1[%] pp → Z @ 13 TeV
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automatically computed in every single MATRIX NNLO run

[Grazzini,  Kallweit,  MW '17]

d�X

NNLO
=


d�X+jet

NLO

���
r > rcut

� ⌃NNLO(rcut)⌦ d�B

�
+HNNLO ⌦ d�B

 11
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rcut→0 extrapolation in MATRIX
[Grazzini,  Kallweit,  MW '17]
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simple quadratic fit (A * rcut + B * rcut + C) to extrapolate to rcut=02

d�X
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=


d�X+jet

NLO

���
r > rcut

� ⌃NNLO(rcut)⌦ d�B

�
+HNNLO ⌦ d�B



Marius Wiesemann    (MPI Munich) August 26th, 2019Status of (n)NNLO QCD for Dibosons  13

rcut→0 extrapolation in MATRIX
[Grazzini,  Kallweit,  MW '17]
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rcut→0 extrapolation in MATRIX
[Grazzini,  Kallweit,  MW '17]
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σqT

NNLO(r)
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σextrapolated
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[Hamberg, van Neerven, Matsuura '91]

d�X

NNLO
=


d�X+jet

NLO

���
r > rcut

� ⌃NNLO(rcut)⌦ d�B

�
+HNNLO ⌦ d�B
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VV production in a nutshell
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example:  WZ production (on-shell);
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example:  WZ production (on-shell);
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(a) (b) (c)

Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.

3
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EW decays of heavy bosons (W, Z, γ*)           (only isolated photons in the final state)

all topologies to same leptonic final state (with spin correlations & off-shell effects)

→ access to triple gauge couplings (TGCs) ➞ high relevance for BSM physics

loop-induced gg channel at NNLO for charge-neutral processes           (eg, for ZZ)

important background for Higgs measurements (H→VV) and BSM searches

All diboson processes at NNLO available within MATRIX!
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(a) (b) (c)

Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.

3

example:  WZ production (off-shell)
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EW decays of heavy bosons (W, Z, γ*)           (only isolated photons in the final state)

all topologies to same leptonic final state (with spin correlations & off-shell effects)

→ access to triple gauge couplings (TGCs) ➞ high relevance for BSM physics

loop-induced gg channel at NNLO for charge-neutral processes           (eg, for ZZ)

important background for Higgs measurements (H→VV) and BSM searches

All diboson processes at NNLO available within MATRIX!
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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EW decays of heavy bosons (W, Z, γ*)           (only isolated photons in the final state)

all topologies to same leptonic final state (with spin correlations & off-shell effects)

→ access to triple gauge couplings (TGCs) ➞ high relevance for BSM physics

loop-induced gg channel at NNLO for charge-neutral processes           (eg, for ZZ)

important background for Higgs measurements (H→VV) and BSM searches

All diboson processes at NNLO available within MATRIX!
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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EW decays of heavy bosons (W, Z, γ*)           (only isolated photons in the final state)

all topologies to same leptonic final state (with spin correlations & off-shell effects)

→ access to triple gauge couplings (TGCs) ➞ high relevance for BSM physics

loop-induced gg channel enters NNLO for charge-neutral processes        (eg, for ZZ)

important background for Higgs measurements (H→VV) and BSM searches

All diboson processes at NNLO available within MATRIX!

example:  WZ production (off-shell)
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.

3

N3LO corrections, denoted by “nNNLO”, which represents the most advanced perturbative QCD
prediction available at present for this process. The new calculation will be available in an updated
version of Matrix.

The paper is organised as follows. In Section 2 we introduce our computational framework. In
Section 3 we present a comparison of our results to those of Ref. [35]. In Section 4 we combine
our computations of radiative corrections to the quark annihilation and loop-induced gluon fusion
channels, and present fiducial cross sections and distributions in pp collisions at 8 and 13TeV. In
Section 5 we summarise our results.

2 Calculation within the MATRIX framework
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Figure 1: Sample Feynman diagrams for ZZ production with four charged final-state leptons:
tree-level diagrams of the quark annihilation channel in (a) and (b), loop-induced diagram of the
gluon fusion channel in (c).

We consider the four-lepton process

pp ! `+`� `0+`0� +X,

where, for simplicity, we assume the triggered lepton pairs to have di↵erent flavours (` 6= `0).
Representative Born-level diagrams are shown in Figure 1. Diagrams (a) and (b) are driven
by quark annihilation and show double-resonant t-channel ZZ production and single-resonant
s-channel Drell–Yan topologies, respectively. Diagram (c) is instead driven by gluon fusion through
a quark loop, and it enters the calculation at NNLO as it is of O(↵2

S
). However, this contribution

is enhanced by the large gluon luminosity. Up to NLO the quark annihilation and loop-induced
gluon fusion production processes do not mix. Until a few years ago, the theoretical standard was
to consider NLO-accurate predictions for the quark annihilation channel, supplemented with the
loop-induced gluon fusion contribution [27].

Starting from NNLO, the quark annihilation and loop-induced gluon fusion processes mix, and the
distinction between the two production mechanisms is questionable. An example of an interference
contribution is shown in Figure 2. A complete NNLO computation of four-lepton production has
been presented in Refs. [43, 44]. At this order, the loop-induced gluon fusion contribution enters
the cross section through the square of diagrams like the one in Figure 1 (c). The fact that this
O(↵2

S
) contribution is quite large and formally only LO accurate motivates the inclusion of NLO

corrections to the loop-induced gluon fusion channel, which are part of the N3LO corrections. Such
NLO computation for a loop-induced process requires one-loop amplitudes with the emission of one
additional parton and two-loop contributions. In Refs. [33, 35] the calculation has been performed
by considering only the gg partonic channel. Here we extend the above calculation by including also

2
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EW decays of heavy bosons (W, Z, γ*)           (only isolated photons in the final state)

all topologies to same leptonic final state (with spin correlations & off-shell effects)

→ access to triple gauge couplings (TGCs) ➞ high relevance for BSM physics

loop-induced gg channel enters NNLO for charge-neutral processes        (eg, for ZZ)

important background for Higgs measurements (H→VV) and BSM searches

All diboson processes at NNLO available within MATRIX!
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Figure 1: Sample of Born diagrams contributing to W+Z production both in the di↵erent-flavour
channel (` 6= `0) and in the same-flavour channel (` = `0). The analogous diagrams for W�Z
production are achieved by charge conjugation.

including all resonant and non-resonant Feynman diagrams that contribute to the production of
three charged leptons—one opposite-sign, same-flavour (OSSF) lepton pair, and another charged
lepton of either the same (`0 = `) or a di↵erent (`0 6= `) flavour, later referred to as same-flavour (SF)
and di↵erent-flavour (DF) channel—and one corresponding neutrino.

Our calculation is performed in the complex-mass scheme [21], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no resonance
approximation is applied. Our implementation can deal with any combination of leptonic flavours,
`, `0 2 {e, µ, ⌧}. For the sake of brevity, we will often denote this process as W±Z production
though.

The ```⌫ final states are generated, as shown in Figure 1 for the ud̄ ! `0+⌫`0`�`+ process at LO,

(a) via resonant t-channel W±Z production with subsequent W± ! `0±⌫`0 and Z ! `�`+ decays,
where the intermediate Z boson can be replaced by an o↵-shell photon �⇤;

(b) via s-channel production in W± ! W±Z/W±�⇤ topologies through a triple-gauge-boson
vertex WWZ or WW� with subsequent W± ! `0±⌫`0 and Z/�⇤ ! `�`+ decays;

(c) via W±(⇤) production with a subsequent decay W±(⇤) ! `0±⌫`0Z(⇤)/�⇤ ! `0±⌫`0`�`+.

In the SF channel, each diagram is duplicated according to the two possible assignments of the
two identical charged leptons to the respective decays, but the generic resonance structure is not
modified as compared to the DF channel. Note that in both SF and DF channels the appearance
of infrared (IR) divergent �⇤ ! `�`+ splittings prevents a fully inclusive phase-space integration
for massless leptons. In the DF channel, the usual experimental requirement of a mass window
around the Z-boson mass for the OSSF lepton pair is already su�cient to avoid such divergences
and render the cross section finite, while in the SF channel a lepton separation must be applied on
both possible combinations of OSSF lepton pairs.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄0 ! `0±⌫`0`�`+ gg, qq̄0 ! `0±⌫`0`�`+ q00q̄00, and crossing-related processes;

• one-loop amplitudes for qq̄0 ! `0±⌫`0`�`+ g, and crossing-related processes;

• squared one-loop and two-loop amplitudes for qq̄0 ! `0±⌫`0`�`+.
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All VV processes known through NNLO QCD: 

    ➞ inclusive/on-shell Z,W & differential/off-shell Z,W (leptonic)

γγ     -  inclusive and differential [Catani, Cieri, de Florian, Ferrera, Grazzini '12], 
                  [Campbell, Ellis, Li, Williams '16], [Grazzini, Kallweit, MW '17]

Zγ     -  inclusive/on-shell and differential/off-shell
              [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]; see also: [Campbell et al. '17]

Wγ    -  inclusive/on-shell and differential/off-shell                 
                  [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]

ZZ    -  inclusive/on-shell [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, 
                  von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs '14];  see also: [Heinrich et al. '17]

         -  differential/off-shell [Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]

WW  -  inclusive/on-shell [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, et al. '14]                     
         -  differential/off-shell [Grazzini, Kallweit, Pozzorini, Rathlev, MW '15]

WZ   -  inclusive/on-shell [Grazzini, Kallweit, Rathlev, MW '16]

         -  differential/off-shell [Grazzini, Kallweit, Rathlev, MW '17]



γγ - inclusive and differential
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Figure 2: Dependence of the NNLO cross sections on the qT -subtraction cut, rcut, for various
processes. The normalization is the result extrapolated to rcut = 0 by taking into account the
rcut dependence above rcut � 0.15 (default value). The blue bands is the combined numerical
and extrapolation uncertainty estimated by Matrix in every run.
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known only with slicing techniques

photon processes quite delicate dependence on 
slicing parameter due to photon isolation

well under control in state-of-the-art tools like 
MATRIX (see plot on the right)

systematic uncertainties still larger than for other 
diboson processes, but few permille possible

agreement among computation within respective 
uncertainties
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�7.0%
pb +361% +56.4%

(ppaa02) (17.4%)

pp ! e�e+�
1469(0)+12%

�12%
fb 2119(1)+2.9%

�4.6%
fb

16.02(1)+24%

�18%
fb

2326(1)+1.2%
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�3.0%
fb 10.37(1)+3.5%

�3.0%
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process
�LO �NLO

�loop �rcut
NNLO �extrapolated

NNLO
KNLO KNNLO

(${process_id}) (�loop/��ext

NNLO
)

pp ! H
15.42(0)+22%

�17%
pb 30.26(1)+20%

�15%
pb — 39.93(3)+11%

�10%
pb 39.93(3)+11%

�10%
pb +96.2% +32.0%

(pph21)

pp ! Z
43.32(0)+12%

�13%
nb 54.20(1)+3.1%

�4.9%
nb — 56.01(3)+0.84%

�1.1%
nb 55.99(3)+0.84%

�1.1%
nb +25.1% +3.31%

(ppz01)

pp ! W�
60.15(0)+13%

�14%
nb 75.95(2)+3.3%

�5.3%
nb — 78.36(3)+0.98%

�1.2%
nb 78.33(8)+0.98%

�1.2%
nb +26.3% +3.14%

(ppw01)

pp ! W+

81.28(1)+13%

�14%
nb 102.2(0)+3.4%

�5.3%
nb — 105.8(1)+0.93%

�1.3%
nb 105.8(1)+0.93%

�1.3%
nb +25.7% +3.52%

(ppwx01)

pp ! e�e+
592.8(1)+14%

�14%
pb 699.7(2)+2.9%

�4.5%
pb — 728.4(3)+0.48%

�0.72%
pb 732.7(3.4)+0.43%

�0.79%
pb +18.0% +4.72%

(ppeex02)

pp ! ⌫e⌫̄e 2876(0)+12%

�13%
pb 3585(1)+3.0%

�4.9%
pb — 3705(2)+0.86%

�1.1%
pb 3710(2)+0.85%

�1.1%
pb +24.6% +3.48%

(ppnenex02)

pp ! e�⌫̄e 2972(0)+14%

�15%
pb 3674(1)+3.1%

�5.2%
pb — 3772(2)+0.89%

�0.94%
pb 3768(3)+0.90%

�0.93%
pb +23.6% +2.57%

(ppenex02)

pp ! e+⌫e 3964(0)+14%

�14%
pb 4855(1)+3.0%

�5.1%
pb — 4986(2)+0.88%

�0.95%
pb 4986(3)+0.88%

�0.95%
pb +22.5% +2.70%

(ppexne02)

pp ! ��
5592(1)+10%

�11%
fb 25.75(1)+8.8%

�7.5%
pb

2534(1)+24%

�17%
fb

40.86(2)+8.7%

�7.2%
pb 40.28(30)+8.7%

�7.0%
pb +361% +56.4%

(ppaa02) (17.4%)

pp ! e�e+�
1469(0)+12%

�12%
fb 2119(1)+2.9%

�4.6%
fb

16.02(1)+24%

�18%
fb

2326(1)+1.2%

�1.3%
fb 2316(5)+1.1%

�1.2%
fb +44.3% +9.29%

(ppeexa03) (8.14%)

pp ! ⌫e⌫̄e� 63.61(1)+2.7%

�3.5%
fb 98.75(2)+3.3%

�2.7%
fb

2.559(2)+26%

�19%
fb

114.7(1)+3.2%

�2.6%
fb 113.5(6)+2.9%

�2.4%
fb +55.2% +15.0%

(ppnenexa03) (17.3%)

pp ! e�⌫̄e� 726.1(1)+11%

�12%
fb 1850(1)+6.6%

�5.3%
fb — 2286(1)+4.0%

�3.7%
fb 2256(15)+3.7%

�3.5%
fb +155% +22.0%

(ppenexa03)

pp ! e+⌫e� 861.7(1)+10%

�11%
fb 2187(1)+6.6%

�5.3%
fb — 2707(3)+4.1%

�3.8%
fb 2671(35)+3.8%

�3.6%
fb +154% +22.1%

(ppexnea03)

pp ! ZZ
9845(1)+5.2%

�6.3%
fb 14.10(0)+2.9%

�2.4%
pb

1361(1)+25%

�19%
fb

16.68(1)+3.2%

�2.6%
pb 16.67(1)+3.2%

�2.6%
pb +43.3% +18.2%

(ppzz02) (52.9%)

pp ! W+W�
66.64(1)+5.7%

�6.7%
pb 103.2(0)+3.9%

�3.1%
pb

4091(3)+27%

�19%
fb

117.1(1)+2.5%

�2.2%
pb 117.1(1)+2.5%

�2.2%
pb +54.9% +13.4%

(ppwxw02) (29.5%)

pp ! e�µ�e+µ+

11.34(0)+6.3%

�7.3%
fb 16.87(0)+3.0%

�2.5%
fb

1.971(1)+25%

�18%
fb

20.30(1)+3.5%

�2.9%
fb 20.30(1)+3.5%

�2.9%
fb +48.8% +20.3%

(ppemexmx04) (57.6%)

pp ! e�e�e+e+
5.781(1)+6.3%

�7.4%
fb 8.623(3)+3.1%

�2.5%
fb

0.9941(4)+25%

�18%
fb

10.37(1)+3.5%

�3.0%
fb 10.37(1)+3.5%

�3.0%
fb +49.2% +20.2%

(ppeeexex04) (56.9%)

pp ! e�e+⌫µ⌫̄µ 22.34(0)+5.3%

�6.4%
fb 33.90(1)+3.3%

�2.7%
fb

3.212(1)+25%

�19%
fb

40.39(2)+3.5%

�2.8%
fb 40.38(2)+3.5%

�2.8%
fb +51.7% +19.1%

(ppeexnmnmx04) (49.6%)

pp ! e�µ+⌫µ⌫̄e 232.9(0)+6.6%

�7.6%
fb 236.1(1)+2.8%

�2.4%
fb

26.93(1)+27%

�19%
fb

264.7(1)+2.2%

�1.4%
fb 264.6(2)+2.2%

�1.4%
fb +1.34% +12.1%

(ppemxnmnex04) (94.3%)

pp ! e�e+⌫e⌫̄e 115.0(0)+6.3%

�7.3%
fb 203.4(1)+4.7%

�3.8%
fb

12.62(1)+26%

�19%
fb

240.8(1)+3.4%

�3.0%
fb 240.7(1)+3.4%

�3.0%
fb +76.9% +18.4%

(ppeexnenex04) (33.8%)

pp ! e�µ�e+⌫̄µ 11.50(0)+5.7%

�6.8%
fb 23.55(1)+5.5%

�4.5%
fb — 26.17(1)+2.2%

�2.1%
fb 26.17(2)+2.2%

�2.1%
fb +105% +11.1%

(ppemexnmx04)

pp ! e�e�e+⌫̄e 11.53(0)+5.7%

�6.8%
fb 23.63(1)+5.5%

�4.5%
fb — 26.27(1)+2.3%

�2.1%
fb 26.25(2)+2.3%

�2.1%
fb +105% +11.1%

(ppeeexnex04)

pp ! e�e+µ+⌫µ 17.33(0)+5.3%

�6.3%
fb 34.14(1)+5.3%

�4.3%
fb — 37.74(2)+2.2%

�2.0%
fb 37.74(4)+2.2%

�2.0%
fb +97.0% +10.6%

(ppeexmxnm04)

pp ! e�e+e+⌫e 17.37(0)+5.3%

�6.3%
fb 34.21(2)+5.3%

�4.3%
fb — 37.85(2)+2.3%

�2.0%
fb 37.84(3)+2.3%

�2.0%
fb +96.9% +10.6%

(ppeexexne04)
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�loop �rcut
NNLO �extrapolated

NNLO
KNLO KNNLO

(${process_id}) (�loop/��ext

NNLO
)

pp ! H
15.42(0)+22%

�17%
pb 30.26(1)+20%

�15%
pb — 39.93(3)+11%

�10%
pb 39.93(3)+11%

�10%
pb +96.2% +32.0%

(pph21)

pp ! Z
43.32(0)+12%

�13%
nb 54.20(1)+3.1%

�4.9%
nb — 56.01(3)+0.84%
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�2.0%
fb 37.84(3)+2.3%
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(ppeexexne04)

Table 6: Integrated cross sections for all available processes in Matrix using the default setups.
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[Grazzini, Kallweit, MW '17][Grazzini, Kallweit, Rathlev '15]

Figure 5: Invariant mass distribution of the ℓ+ℓ−γ system at LO (blue, dotted), NLO (red, dashed)
and NNLO (green, solid) for the setup with pγT > 15GeV (left) and the setup with pγT > 40GeV
(right). The loop-induced gluon fusion contribution is also shown (pink, dash-dotted). The lower
panel shows the NNLO/NLO ratio.

Zγ → ℓ+ℓ−γ analysis the rapidity acceptance for jets is slightly increased to |ηjet| < 4.5. The cuts
are summarized in Table 4.

The predicted cross sections at LO, NLO and NNLO can be found in Table 5. The results
are presented for a single neutrino species and thus have to be multiplied by a factor of three to
obtain the complete νν̄γ cross section. In the inclusive case, i.e. for Njet ≥ 0, we find relatively
large NLO corrections of around 57% and 68% and NNLO corrections of around 12% and 14%
at

√
s = 7TeV and

√
s = 8TeV, respectively. The inclusive NNLO cross section prediction at√

s = 7TeV is in good agreement with the cross section measured by ATLAS. In the exclusive
case, Njet = 0, the NNLO corrections are very small, and the scale uncertainties are reduced
down to the 1% level. We observe quite a significant discrepancy with respect to the ATLAS
measurement for

√
s = 7TeV. The origin of this discrepancy is unclear to this point. As mentioned

in Section 3.3 the stability of the fixed order calculation when a jet veto is applied is challenged
and the perturbative uncertainties we find through scale variations are likely to be underestimated.
We also point out that our NLO prediction differs significantly from the NLO prediction reported
in Table VII of Ref. [9], that, even using MCFM, we are not able to reproduce. This could be
due to a large parton-to-particle correction applied on the NLO result quoted by ATLAS.

Figure 6 shows the photon transverse-momentum and the missing transverse-momentum dis-
tributions. These distributions are identical for Born kinematics due to momentum conservation,
so the difference results purely from real-radiation corrections. Above the photon transverse-
momentum cut of pγT > 100GeV, the difference between the two distributions is very small. Below
a missing transverse momentum of 100GeV, the cross section is only non-vanishing starting from
the NLO. Figure 6 shows a perturbative instability around pT,miss ≈ 100 GeV. This instability
originates from the incomplete cancellation of virtual and real corrections close to the phase space
boundary (see Ref. [84] for a discussion of this phenomenon.) This class of singularities is inte-
grable and does not alter the inclusive cross section, but would require a resummed computation
to achieve a reliable differential prediction close to the boundary.
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Figure 11: Invariant mass distribution me+e�� of the e+e�� system for the electron

decay channel with cuts in table 5. In the upper panel the absolute distribution is shown,

whereas in the lower panel the ratio to the NLO result is displayed. The reported numerical

integration uncertainty is about 0.2% for the NNLO results.

5 Anomalous couplings and probe for new physics

In this section we study anomalous ZZ� and Z�� coupling contributions introduced by

field operators up to dimension 8, requiring Lorentz invariance and electromagnetic gauge

invariance [14, 28, 58, 59]. The e↵ective Z�Z vertex is described by

– 19 –



Figure 1: ZZ cross section at LO (dots), NLO (dashes), NLO+gg (dot dashes) and NNLO (solid)
as a function of

√
s. The ATLAS and CMS experimental results at

√
s = 7 TeV and

√
s = 8

TeV are also shown for comparison [3–6]. The lower panel shows the NNLO and NLO+gg results
normalized to the NLO prediction.

the LO result by about 45%. The impact of NNLO corrections with respect to the NLO result
ranges from 11% (

√
s = 7 TeV) to 17% (

√
s = 14 TeV). Using NNLO PDFs throughout, the gluon

fusion contribution provides between 58% and 62% of the full NNLO correction. We find that
the one-loop diagrams involving a top quark provide a contribution which is only few per mille
of the full NNLO cross section. Since the quantitative impact of the two-loop diagrams with a
light fermion loop is extremely small, we estimate that the neglected two-loop diagrams involving
a top-quark contribute well below the per mille level.

The theoretical predictions can be compared to the ATLAS and CMS measurements [3–6]
carried out at

√
s = 7 TeV and

√
s = 8 TeV, which are also shown in the plot. We see that

the experimental uncertainties are still relatively large and that the ATLAS and CMS results
are compatible with both the NLO and NNLO predictions. The only exception is the ATLAS
measurement at

√
s = 8 TeV [5], which seems to prefer a lower cross section. The comparison

between our predictions and the experimental results, however, should be interpreted with care.
First, we point out that the LHC experiments obtain their ZZ production cross section from
four-lepton production using an interval in dilepton invariant masses around the Z boson mass,
thus not including some contribution from far off-shell Z bosons. Then, EW corrections are not
included in our calculation, and are expected to provide a negative contribution to the inclusive
cross section [21].

In Table 1 we report the LO, NLO and NNLO cross sections and scale uncertainties, evaluated
by varying µR and µF simultaneously and independently in the range 0.5mZ < µR, µF < 2mZ

with the constraint 0.5 < µF/µR < 2. From Table 1 we see that the scale uncertainties are about
±3% at NLO and remain of the same order at NNLO. We also see that the NLO scale uncertainty
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Figure 3: Renormalisation and factorisation scale dependence of the ZZ cross section at LO, NLO
and NNLO for the central scale choice µR = µF = mZ and with NNPDF-3.0 PDFs. We also show
the NNLO result without the gluon fusion contributions. The thickness of the bands shows the vari-
ation in the cross section due to factorisation scale while the slope shows the renormalisation scale
dependence. The scale uncertainty was obtained by varying the renormalisation and factorisation
scales in the range 0.5mZ < µR, µF < 2mZ with the constraint 0.5 < µF /µR < 2.

the renormalisation scale dependence. To show that this e↵ect can be attributed to the

gluon fusion channel opening up at NNLO, we also show the NNLO result excluding this

channel, leading to an improved convergence of the perturbative expansion.

The appearance of new channels that open up at NNLO and their importance in

the various kinematic regions can be studied by considering di↵erential results. Due to

the observed mild power corrections in this process we chose to fix the value of the 0-

jettiness slicing parameter to T
cut
0

= 10�2 GeV for all our histograms. In Fig. 4 we present

the invariant mass of the ZZ system and the average transverse momentum distribution

hpT,Zi of any Z-boson, defined as hpT,Zi = (|pZ1
T |+ |pZ2

T |)/2. We also present results for the

loop-induced gg ! ZZ channel.

In Fig. 4a we show our results for the ZZ invariant mass. In the first and second

sub-panels we show the e↵ect of the NLO and NNLO corrections, respectively. We observe

in the first sub-panel large NLO QCD corrections which vary between 40% at low mZZ

and 60% at high mZZ , and change both the shape and normalisation of the predicted

cross section with respect to the LO result. Going to NNLO we observe an approximately

flat increase of the cross section of about 18% with respect to the NLO result, where

approximately 60% of this e↵ect comes from the loop-induced gg ! ZZ channel, which

is outside the scale uncertainty band of the NLO prediction. Similarly, in the transverse

momentum distribution (Fig. 4b), we observe large NLO corrections of approximately 30%

at low hpT,Zi, which can reach almost 100% at high hpT,Zi. The shape of the NNLO
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3

√
s

TeV σLO σNLO σNNLO σgg→H→WW∗

7 29.52+1.6%
−2.5% 45.16+3.7%

−2.9% 49.04+2.1%
−1.8% 3.25+7.1%

−7.8%

8 35.50+2.4%
−3.5% 54.77+3.7%

−2.9% 59.84+2.2%
−1.9% 4.14+7.2%

−7.8%

13 67.16+5.5%
−6.7% 106.0+4.1%

−3.2% 118.7+2.5%
−2.2% 9.44+7.4%

−7.9%

14 73.74+5.9%
−7.2% 116.7+4.1%

−3.3% 131.3+2.6%
−2.2% 10.64+7.5%

−8.0%

TABLE I. LO, NLO and NNLO cross sections (in picobarn)
for on-shell W+W− production in the 4FNS and reference
results for gg → H → WW ∗ from Ref. [75].

decrease when moving from LO to NLO and NNLO.
Moreover, the NNLO (NLO) corrections turn out to ex-
ceed the scale uncertainty of the NLO (LO) predictions
by up to a factor 3 (34). The fact that LO and NLO
scale variations underestimate higher-order effects can be
attributed to the fact that the gluon–quark and gluon–
gluon induced partonic channels, which yield a sizable
contribution to the W+W− cross section, appear only
beyond LO and NLO, respectively. The NNLO is the
first order at which all partonic channels are contribut-
ing. The NNLO scale dependence, which amounts to
about 3%, can thus be considered a realistic estimate of
the theoretical uncertainty due to missing higher-order
effects.

In Figure 1, theoretical predictions in the 4FNS are
compared to CMS and ATLAS measurements at 7 and
8 TeV [5–8]. For a consistent comparison, our results
for on-shell W+W− production are combined with the
gg → H → WW ∗ cross sections reported in Table I.
It turns out that the inclusion of the NNLO corrections
leads to an excellent description of the data at 7 TeV and
decreases the significance of the observed excess at 8 TeV.
In the lower frame of Figure 1, predictions and scale vari-
ations at NNLO are compared to NLO ones, and also the
individual contribution of the gg → W+W− channel is
shown. Using NNLO parton distributions throughout,
the loop induced gluon fusion contribution is only about
35% of the total NNLO correction.

In the light of the small scale dependence of the 4FNS
NNLO cross section, the ambiguities associated with the
definition of a top-free W+W− cross section and its sen-
sitivity to the choice of the FNS might represent a sig-
nificant source of theoretical uncertainty at NNLO. In
particular, the omission of b-quark emissions in our 4FNS
definition of the W+W− cross section implies potentially
large logarithms of mb in the transition from the 4FNS
to the 5FNS. To quantify this kind of uncertainties, we
study the NNLO W+W− cross section in the 5FNS and
introduce a subtraction of its top contamination that al-
lows for a consistent comparison between the two FNSs.
An optimal definition of W+W− production in the 5FNS
requires maximal suppression of the top resonances in
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FIG. 1. The on-shell W+W− cross section in the 4FNS at

LO (dots), NLO (dashes), NLO+gg (dot dashes) and NNLO

(solid) combined with gg → H → WW ∗ is compared to re-

cent ATLAS and CMS measurements [5–8]. In the lower panel

NNLO and NLO+gg results are normalized to NLO predic-

tions. The bands describe scale variations.

the pp → W+W−b and pp → W+W−bb̄ channels. At
the same time, the cancellation of collinear singularities
associated with massless g → bb̄ splittings requires a suf-
ficient level of inclusiveness. The difficulty of fulfilling
both requirements is clearly illustrated in Figure 2 (left),
where 5FNS predictions are plotted versus a b-jet veto
that rejects b-jets with pT,bjet > pvetoT,bjet over the whole
rapidity range, and are compared to 4FNS results. In
the inclusive limit, pvetoT,bjet → ∞, the higher-order correc-
tions in the 5FNS suffer from a huge top contamination.
At 7 (14) TeV the resulting relative enhancement with
respect to the 4FNS amounts to about 30 (60)% at NLO
and a factor 4 (8) at NNLO. In principle, it can be sup-
pressed through the b-jet veto. However, for natural jet
veto values around 30 GeV the top contamination re-
mains larger than 10% of the W+W− cross section, and
a complete suppression of the top contributions requires
a veto of the order of 1 GeV. Moreover, as pvetoT,bjet → 0,
the (N)NLO cross section does not approach a constant,
but, starting from pvetoT,bjet ∼ 10 GeV, it displays a loga-
rithmic slope due to singularities associated with initial
state g → bb̄ splittings. This sensitivity to the jet-veto
parameters represents a theoretical ambiguity at the sev-
eral percent level, which is inherent in the definition of
top-free W+W− production based on a b-jet veto.

To circumvent this problem we will adopt an alterna-
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Figure 1: On-shell W±Z cross section as a function of the centre-of-mass energy at LO, NLO
and NNLO. In the lower panel the curves of the main frame are normalized to the central NLO
prediction. The bands correspond to scale variations as described in the text.

tainties. When considering the relative effects of radiative corrections, the impact of the different
mass windows is completely negligible. Nevertheless, we will consistently apply the respective
mass windows when comparing to data in the following.

We first present results for the ATLAS definition of the W±Z cross sections, reported in Ta-
ble 3, where we compare with the 7 and 8TeV ATLAS measurements of Ref. [4] and Ref. [5],
respectively. Comparing these cross sections in absolute terms to the on-shell case, we find a
reduction by roughly 3% due to the applied mass-window cut and genuine off-shell effects; how-
ever, as anticipated, the relative impact of radiative corrections remains widely unchanged, again
ranging between 63% and 83% at NLO and between 8% and 11% at NNLO for the collider ener-
gies under consideration. Also the scale uncertainty bands stay almost identical when including
off-shell effects and applying the ATLAS mass cut.

Comparing with the experimentally measured cross sections from Refs. [4, 5], we find that
the inclusion of NNLO corrections clearly improves the agreement between data and theory, in
particular at 8TeV, where the measurement is most precise. While the central NLO prediction is
roughly 2σ away from the measured cross section at 8TeV, the NNLO prediction is right on top
of the data with fully overlapping uncertainty bands.

Next, we provide theory predictions for the W±Z cross sections as defined by CMS in Table 4,
where we also quote the results of the CMS measurements performed at 7 and 8TeV (reported in
Ref. [6]), and at 13TeV (reported in Ref. [7]). As already anticipated, the precise definition of the
Z-mass window has only a very mild impact on the cross section. In particular, both the relative

4

ZZ - inclusive/on-shell
[Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, 
Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs '14]; [Heinrich, Jahn, Jones, Kerner, Pires '17]

WZ - inclusive/on-shell
[Grazzini, Kallweit, Rathlev, MW '16]

WW - inclusive/on-shell
[Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, et al. '14]                     

Figure 1: ZZ cross section at LO (dots), NLO (dashes), NLO+gg (dot dashes) and NNLO (solid)
as a function of

√
s. The ATLAS and CMS experimental results at

√
s = 7 TeV and

√
s = 8

TeV are also shown for comparison [3–6]. The lower panel shows the NNLO and NLO+gg results
normalized to the NLO prediction.

the LO result by about 45%. The impact of NNLO corrections with respect to the NLO result
ranges from 11% (

√
s = 7 TeV) to 17% (

√
s = 14 TeV). Using NNLO PDFs throughout, the gluon

fusion contribution provides between 58% and 62% of the full NNLO correction. We find that
the one-loop diagrams involving a top quark provide a contribution which is only few per mille
of the full NNLO cross section. Since the quantitative impact of the two-loop diagrams with a
light fermion loop is extremely small, we estimate that the neglected two-loop diagrams involving
a top-quark contribute well below the per mille level.

The theoretical predictions can be compared to the ATLAS and CMS measurements [3–6]
carried out at

√
s = 7 TeV and

√
s = 8 TeV, which are also shown in the plot. We see that

the experimental uncertainties are still relatively large and that the ATLAS and CMS results
are compatible with both the NLO and NNLO predictions. The only exception is the ATLAS
measurement at

√
s = 8 TeV [5], which seems to prefer a lower cross section. The comparison

between our predictions and the experimental results, however, should be interpreted with care.
First, we point out that the LHC experiments obtain their ZZ production cross section from
four-lepton production using an interval in dilepton invariant masses around the Z boson mass,
thus not including some contribution from far off-shell Z bosons. Then, EW corrections are not
included in our calculation, and are expected to provide a negative contribution to the inclusive
cross section [21].

In Table 1 we report the LO, NLO and NNLO cross sections and scale uncertainties, evaluated
by varying µR and µF simultaneously and independently in the range 0.5mZ < µR, µF < 2mZ

with the constraint 0.5 < µF/µR < 2. From Table 1 we see that the scale uncertainties are about
±3% at NLO and remain of the same order at NNLO. We also see that the NLO scale uncertainty

3

13 TeV



Marius Wiesemann    (MPI Munich) August 26th, 2019Status of (n)NNLO QCD for Dibosons  25

 WW - differential/off-shell
[Grazzini, Kallweit, Pozzorini, Rathlev, MW '15]

WZ - differential/off-shell
[Grazzini, Kallweit, Rathlev, MW '17]

dσ/dmWW [fb/GeV] µ+e-νµν‾ e(inclusive)@LHC 8 TeV

LO
NLO
NNLO

10-4

10-3

10-2

10-1

100

101

p
r
o
d
u
c
e
d
 
w
i
t
h
 
M
A
T
R
I
X

mWW [GeV]

dσ/dσNLO

NLO'+gg

 0.9

 1

 1.1

 1.2

 1.3

 100  150  200  250  300  350  400  450  500

dσ/bin [fb] WZ@LHC 8 TeV (ATLAS data)

LO
NLO
NNLO
data

10-1

100

101

p
r
o
d
u
c
e
d
 
w
i
t
h
 
M
A
T
R
I
X

mT,WZ 

dσ/dσNLO

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

0 100 200 300 400 500 600 ∞

(a) (b)

Figure 4: Same as Figure 3, but for (a) the transverse mass of the WZ system as defined in Eq. (5)
and (b) the missing transverse energy.
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Figure 5: Same as Figure 4 (a), but separated by (a) W�Z and (b) W+Z production.
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ZZ - differential/off-shell
[Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]ZZ→4ℓ

[Kallweit, MW '18]
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Figure 3: Di↵erential distributions for the four-lepton processes in the total phase space at
LO (black, dotted), NLO (red, dashed) and NNLO (blue, solid), compared to ATLAS 8TeV
data extrapolated to the total phase space [9] (green points with error bars); for (a) �yZ1,Z2 , (b)
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`
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, (c) pT,Z1 , and (d) Njets; the lower frames show the ratio over NLO.
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Figure 1: Sample of Born diagrams contributing to W+W� production both in the di↵erent-flavour
case (l 6= l0) and in the same-flavour case (l = l0).
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Figure 2: Sample of Born diagrams contributing to W+W� production only in the same-flavour
case. In the di↵erent-flavour case, they would describe ZZ production in the 2l2⌫ 0 channel.

(d) via resonant t-channel ZZ production with Z ! l+l� and Z ! ⌫l⌫̄l decays;

(e) via further Z ! 4 leptons topologies, Z/�⇤ ! llZ ! ll⌫l⌫l or Z ! ⌫l⌫lZ ! ll⌫l⌫l. Any
double-resonant configurations are kinematically suppressed or excluded by phase-space cuts.

Note that the appearance of infrared (IR) divergent �⇤ ! l+l� splittings in the case of equal lepton
flavours would prevent a fully inclusive phase-space integration.

Our calculation is performed in the complex-mass scheme [51], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no reso-
nance approximation is applied. Our implementation can deal with any combination of leptonic
flavours, l, l0 2 {e, µ, ⌧}. However, in this paper we will focus on the di↵erent-flavour chan-
nel pp ! µ+e�⌫µ⌫̄e +X. For the sake of brevity, we will often denote this process as W+W�

production though.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 gg, qq̄(0) ! l+l0�⌫l⌫̄l0 q(00)q̄(000), and crossing-related pro-
cesses;

• one-loop amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 g, and crossing-related processes;

• squared one-loop amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 and gg ! l+l0�⌫l⌫̄l0 ;

• two-loop amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 .

All required tree-level and one-loop amplitudes are obtained from the OpenLoops generator [?,54],
which implements a fast numerical recursion for the calculation of NLO scattering amplitudes
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ZZ - differential/off-shell
[Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]ZZ→4ℓ

NEW:  ZZ/WW→ℓℓ+ET,miss

[Kallweit, MW '18]
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Figure 3: Di↵erential distributions for the four-lepton processes in the total phase space at
LO (black, dotted), NLO (red, dashed) and NNLO (blue, solid), compared to ATLAS 8TeV
data extrapolated to the total phase space [9] (green points with error bars); for (a) �yZ1,Z2 , (b)
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Figure 4: Di↵erential distributions of the 2`2⌫ processes with fiducial cuts at LO (black, dotted),
NLO (red, dashed) and NNLO (blue, solid), compared to ATLAS 8TeV data [9] (green points
with error bars); for (a) pT,``, (b) mT,ZZ , and (c) ��``; the lower frame shows the ratio over NLO.

predictions is degraded by one order for each added jet. NNLO e↵ects on other distributions are
large, but primarily a↵ect the normalization and not the shapes.

We continue our discussion of di↵erential results with the ``+Emiss

T
signature in Figure 4, which

shows the distributions in the transverse momentum of the dilepton pair, pT,`` (panel a), the
transverse mass of the ZZ pair, defined as4

mT,ZZ =

s✓q
p2
T,``

+m2

Z
+
q
(pmiss

T
)2 +m2

Z

◆2

� (pT,`` + pmiss

T )2

(panel b), and the azimuthal angle between the two leptons, ��`` (panel c). The results correspond
to the sum of all channels including both SF (`` ⌫`⌫`) and DF (`` ⌫`0⌫`0) processes (` 2 {e, µ}, ⌫`0 2
{⌫e, ⌫µ, ⌫⌧}, ` 6= `0). We recall that SF contributions are computed by subtracting W+W� and
top-quark backgrounds as outlined before. For all three distributions in Figure 4 we find excellent
agreement between theory and data. At NNLO, di↵erences hardly exceed the 1� level. Although
NNLO corrections change the cross section in certain bins, the experimental uncertainties are still
too large for more distinct conclusions. Similar to our previous observations for fiducial rates, the
agreement found here at fixed order is a significant improvement over the comparison with the
Monte Carlo prediction shown in Ref. [9]. As pointed out before, we expect a poor modelling of
the jet veto by the Powheg generator to be the main source of these di↵erences, see also Ref. [80].

In the remainder of this paper we focus on the ``+Emiss

T
signature, with the same fiducial setup

as before. In Figure 5 we have picked three out of many observables where the importance of
NNLO corrections is evident. The NLO0+gg result in the ratio frame denotes the sum of the NLO
and the loop-induced gg cross section, both evaluated with NNLO PDFs, which was the best
prediction available in the past. Its di↵erence compared to the complete NNLO QCD result shows
the size of the genuine O(↵2

S
) corrections to the qq̄ channel, computed for the first time in this

4
Boldface is used to indicate the vectorial sum of the dilepton and missing transverse momentum.
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mixes ZZ and WW topologies
    (pp→ZZ/γ*Z/WW→ũũ νν)             (pp→Z/γ*→ũũ Z/ũ ν W→ũũ νν)
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Figure 1: Sample of Born diagrams contributing to W+W� production both in the di↵erent-flavour
case (l 6= l0) and in the same-flavour case (l = l0).
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Figure 2: Sample of Born diagrams contributing to W+W� production only in the same-flavour
case. In the di↵erent-flavour case, they would describe ZZ production in the 2l2⌫ 0 channel.

(d) via resonant t-channel ZZ production with Z ! l+l� and Z ! ⌫l⌫̄l decays;

(e) via further Z ! 4 leptons topologies, Z/�⇤ ! llZ ! ll⌫l⌫l or Z ! ⌫l⌫lZ ! ll⌫l⌫l. Any
double-resonant configurations are kinematically suppressed or excluded by phase-space cuts.

Note that the appearance of infrared (IR) divergent �⇤ ! l+l� splittings in the case of equal lepton
flavours would prevent a fully inclusive phase-space integration.

Our calculation is performed in the complex-mass scheme [51], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no reso-
nance approximation is applied. Our implementation can deal with any combination of leptonic
flavours, l, l0 2 {e, µ, ⌧}. However, in this paper we will focus on the di↵erent-flavour chan-
nel pp ! µ+e�⌫µ⌫̄e +X. For the sake of brevity, we will often denote this process as W+W�

production though.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 gg, qq̄(0) ! l+l0�⌫l⌫̄l0 q(00)q̄(000), and crossing-related pro-
cesses;

• one-loop amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 g, and crossing-related processes;

• squared one-loop amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 and gg ! l+l0�⌫l⌫̄l0 ;

• two-loop amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 .

All required tree-level and one-loop amplitudes are obtained from the OpenLoops generator [?,54],
which implements a fast numerical recursion for the calculation of NLO scattering amplitudes

4

u

ū
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4

ũũ+ET,miss at NNLO [Kallweit, MW '18]

channel �LO [fb] �NLO [fb] �NNLO [fb] �ATLAS [fb]

e+e�µ+µ� 8.188(1)+2.4%

�3.2%
11.30(0)+2.5%

�2.0%
12.92(1)+2.8%

�2.2%
12.4 +1.0

�1.0
(stat) +0.6

�0.5
(syst) +0.3

�0.2
(lumi)

e+e�e+e� 4.654(0)+2.3%

�3.1%
6.410(2)+2.5%

�2.0%
7.310(8)+2.7%

�2.1%
5.9 +0.8

�0.8
(stat) +0.4

�0.4
(syst)± 0.1(lumi)

µ+µ�µ+µ� 3.565(0)+2.6%

�3.5%
4.969(5)+2.5%

�2.0%
5.688(6)+2.9%

�2.2%
4.9 +0.6

�0.5
(stat) +0.3

�0.2
(syst)± 0.1(lumi)

e+e�⌫⌫ 5.558(0)+0.1%

�0.5%
4.806(1)+3.5%

�3.9%
5.083(8)+1.9%

�0.6%
5.0 +0.8

�0.7
(stat) +0.5

�0.4
(syst)± 0.1(lumi)

µ+µ�⌫⌫ 5.558(0)+0.1%

�0.5%
4.770(4)+3.6%

�4.0%
5.035(9)+1.8%

�0.5%
4.7 +0.7

�0.7
(stat) +0.5

�0.4
(syst)± 0.1(lumi)

total rate 4982(0)+1.9%

�2.7%
6754(2)+2.4%

�2.0%
7690(5)+2.7%

�2.1%
7300 +400

�400
(stat) +300

�300
(syst) +200

�100
(lumi)

Table 2: Predictions for fiducial and total rates compared to ATLAS 8 TeV data [9].

Zrec

a
= `+`� and Zrec

b
= `0+`0�, which we employ for the predicted cross sections in the total

phase space. The fiducial cuts involve standard requirements on the transverse momenta and
pseudo-rapidities of the leptons, a separation in �R =

p
�⌘2 +��2 between the leptons, and a

window in the invariant mass of reconstructed Z bosons around the Z-pole. In the SF channel
````, Z bosons are reconstructed by identifying the combination of opposite-sign same-flavour
(OSSF) lepton pairings (Za = `+

a
`�
a
and Zb = `+

b
`�
b
, or Za = `+

a
`�
b
and Zb = `+

b
`�
a
) that minimizes

|mZa �mZ | + |mZb
�mZ | with the reconstructed Z bosons Zrec

a
= Za and Zrec

b
= Zb. A rather

special feature in the fiducial phase spaces of the four-lepton channels is the fact that ATLAS
measures one of the electrons up to very large pseudo-rapidities (|⌘e| < 4.9). The measurement of
the ``+Emiss

T
signature applies two additional requirements, which force the two Z bosons closer

to back-to-back-like configurations to suppress backgrounds such as Z+jets: There is a lower cut
on the axial missing transverse momentum, Axial-pmiss

T
= �pmiss

T
· cos (��``,⌫⌫), where pmiss

T
⌘ pT,⌫⌫

and ��``,⌫⌫ is the azimuthal angle between the dilepton and the neutrino pair. Furthermore, the
two Z-boson momenta are balanced by putting an upper cut on pT -balance = |pmiss

T
� pT,``|/pT,``.

Finally, the ``+Emiss

T
signature requires a jet veto to suppress top-quark backgrounds. Note that

jets close to electrons (�Rej < 0.3) are not vetoed.

In Table 2 we report cross-section predictions and compare them against ATLAS 8TeV results [9].
Central predictions are stated with the numerical error on the last digit quoted in round brackets.
The relative uncertainties quoted in percent are estimated from scale variations as described above.
Results reported for e+e�µ+µ�, e+e�e+e�, µ+µ�µ+µ�, e+e�⌫⌫̄, and µ+µ�⌫⌫̄ production are cross
sections in the respective fiducial volumes defined in Table 1. The prediction in the last line of the
table is obtained from the computation of pp ! e+e�µ+µ� +X in the total phase space defined
in Table 1, by dividing out the branching ratio BR(Z ! ``) for each Z-boson decay. The main
conclusions that can be drawn from these results are the following:

• Radiative corrections are large and have a marked dependence on the event selection: They
range between +35% to +40% at NLO and +14% to +17% at NNLO in cases without a jet
veto, i.e. for all but the 2`2⌫ results. Roughly half (45%–55%) of the O(↵2

s
) terms are due to

the loop-induced gg component in these cases. For the 2`2⌫ processes the situation is quite
di↵erent: Due to the jet veto NLO corrections turn negative and yield about �14%. NNLO
corrections are roughly +6%. However, the positive e↵ect is entirely due to loop-induced gg
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sections in the respective fiducial volumes defined in Table 1. The prediction in the last line of the
table is obtained from the computation of pp ! e+e�µ+µ� +X in the total phase space defined
in Table 1, by dividing out the branching ratio BR(Z ! ``) for each Z-boson decay. The main
conclusions that can be drawn from these results are the following:

• Radiative corrections are large and have a marked dependence on the event selection: They
range between +35% to +40% at NLO and +14% to +17% at NNLO in cases without a jet
veto, i.e. for all but the 2`2⌫ results. Roughly half (45%–55%) of the O(↵2
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corrections are roughly +6%. However, the positive e↵ect is entirely due to loop-induced gg
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Figure 3: Di↵erential distributions for the four-lepton processes in the total phase space at
LO (black, dotted), NLO (red, dashed) and NNLO (blue, solid), compared to ATLAS 8TeV
data extrapolated to the total phase space [9] (green points with error bars); for (a) �yZ1,Z2 , (b)
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`
+
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, (c) pT,Z1 , and (d) Njets; the lower frames show the ratio over NLO.
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Figure 1: Sample of Born diagrams contributing to W+W� production both in the di↵erent-flavour
case (l 6= l0) and in the same-flavour case (l = l0).
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Figure 2: Sample of Born diagrams contributing to W+W� production only in the same-flavour
case. In the di↵erent-flavour case, they would describe ZZ production in the 2l2⌫ 0 channel.

(d) via resonant t-channel ZZ production with Z ! l+l� and Z ! ⌫l⌫̄l decays;

(e) via further Z ! 4 leptons topologies, Z/�⇤ ! llZ ! ll⌫l⌫l or Z ! ⌫l⌫lZ ! ll⌫l⌫l. Any
double-resonant configurations are kinematically suppressed or excluded by phase-space cuts.

Note that the appearance of infrared (IR) divergent �⇤ ! l+l� splittings in the case of equal lepton
flavours would prevent a fully inclusive phase-space integration.

Our calculation is performed in the complex-mass scheme [51], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no reso-
nance approximation is applied. Our implementation can deal with any combination of leptonic
flavours, l, l0 2 {e, µ, ⌧}. However, in this paper we will focus on the di↵erent-flavour chan-
nel pp ! µ+e�⌫µ⌫̄e +X. For the sake of brevity, we will often denote this process as W+W�

production though.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 gg, qq̄(0) ! l+l0�⌫l⌫̄l0 q(00)q̄(000), and crossing-related pro-
cesses;

• one-loop amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 g, and crossing-related processes;

• squared one-loop amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 and gg ! l+l0�⌫l⌫̄l0 ;

• two-loop amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 .

All required tree-level and one-loop amplitudes are obtained from the OpenLoops generator [?,54],
which implements a fast numerical recursion for the calculation of NLO scattering amplitudes
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flavours would prevent a fully inclusive phase-space integration.
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flavours, l, l0 2 {e, µ, ⌧}. However, in this paper we will focus on the di↵erent-flavour chan-
nel pp ! µ+e�⌫µ⌫̄e +X. For the sake of brevity, we will often denote this process as W+W�
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Our calculation is performed in the complex-mass scheme [51], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no reso-
nance approximation is applied. Our implementation can deal with any combination of leptonic
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mixes ZZ and WW topologies
    (pp→ZZ/γ*Z/WW→ũũ νν)             (pp→Z/γ*→ũũ Z/ũ ν W→ũũ νν)
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includes also contributions from o↵-shell EW bosons and all relevant interferences; no reso-
nance approximation is applied. Our implementation can deal with any combination of leptonic
flavours, l, l0 2 {e, µ, ⌧}. However, in this paper we will focus on the di↵erent-flavour chan-
nel pp ! µ+e�⌫µ⌫̄e +X. For the sake of brevity, we will often denote this process as W+W�

production though.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 gg, qq̄(0) ! l+l0�⌫l⌫̄l0 q(00)q̄(000), and crossing-related pro-
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All required tree-level and one-loop amplitudes are obtained from the OpenLoops generator [?,54],
which implements a fast numerical recursion for the calculation of NLO scattering amplitudes
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ũũ+ET,miss at NNLO [Kallweit, MW '18]

channel �LO [fb] �NLO [fb] �NNLO [fb] �ATLAS [fb]

e+e�µ+µ� 8.188(1)+2.4%

�3.2%
11.30(0)+2.5%

�2.0%
12.92(1)+2.8%

�2.2%
12.4 +1.0

�1.0
(stat) +0.6

�0.5
(syst) +0.3

�0.2
(lumi)

e+e�e+e� 4.654(0)+2.3%

�3.1%
6.410(2)+2.5%

�2.0%
7.310(8)+2.7%

�2.1%
5.9 +0.8

�0.8
(stat) +0.4

�0.4
(syst)± 0.1(lumi)

µ+µ�µ+µ� 3.565(0)+2.6%

�3.5%
4.969(5)+2.5%

�2.0%
5.688(6)+2.9%

�2.2%
4.9 +0.6

�0.5
(stat) +0.3

�0.2
(syst)± 0.1(lumi)

e+e�⌫⌫ 5.558(0)+0.1%

�0.5%
4.806(1)+3.5%

�3.9%
5.083(8)+1.9%

�0.6%
5.0 +0.8

�0.7
(stat) +0.5

�0.4
(syst)± 0.1(lumi)

µ+µ�⌫⌫ 5.558(0)+0.1%

�0.5%
4.770(4)+3.6%

�4.0%
5.035(9)+1.8%

�0.5%
4.7 +0.7

�0.7
(stat) +0.5

�0.4
(syst)± 0.1(lumi)

total rate 4982(0)+1.9%

�2.7%
6754(2)+2.4%

�2.0%
7690(5)+2.7%

�2.1%
7300 +400

�400
(stat) +300

�300
(syst) +200

�100
(lumi)

Table 2: Predictions for fiducial and total rates compared to ATLAS 8 TeV data [9].

Zrec

a
= `+`� and Zrec

b
= `0+`0�, which we employ for the predicted cross sections in the total

phase space. The fiducial cuts involve standard requirements on the transverse momenta and
pseudo-rapidities of the leptons, a separation in �R =

p
�⌘2 +��2 between the leptons, and a

window in the invariant mass of reconstructed Z bosons around the Z-pole. In the SF channel
````, Z bosons are reconstructed by identifying the combination of opposite-sign same-flavour
(OSSF) lepton pairings (Za = `+

a
`�
a
and Zb = `+

b
`�
b
, or Za = `+

a
`�
b
and Zb = `+

b
`�
a
) that minimizes

|mZa �mZ | + |mZb
�mZ | with the reconstructed Z bosons Zrec

a
= Za and Zrec

b
= Zb. A rather

special feature in the fiducial phase spaces of the four-lepton channels is the fact that ATLAS
measures one of the electrons up to very large pseudo-rapidities (|⌘e| < 4.9). The measurement of
the ``+Emiss

T
signature applies two additional requirements, which force the two Z bosons closer

to back-to-back-like configurations to suppress backgrounds such as Z+jets: There is a lower cut
on the axial missing transverse momentum, Axial-pmiss

T
= �pmiss

T
· cos (��``,⌫⌫), where pmiss

T
⌘ pT,⌫⌫

and ��``,⌫⌫ is the azimuthal angle between the dilepton and the neutrino pair. Furthermore, the
two Z-boson momenta are balanced by putting an upper cut on pT -balance = |pmiss

T
� pT,``|/pT,``.

Finally, the ``+Emiss

T
signature requires a jet veto to suppress top-quark backgrounds. Note that

jets close to electrons (�Rej < 0.3) are not vetoed.

In Table 2 we report cross-section predictions and compare them against ATLAS 8TeV results [9].
Central predictions are stated with the numerical error on the last digit quoted in round brackets.
The relative uncertainties quoted in percent are estimated from scale variations as described above.
Results reported for e+e�µ+µ�, e+e�e+e�, µ+µ�µ+µ�, e+e�⌫⌫̄, and µ+µ�⌫⌫̄ production are cross
sections in the respective fiducial volumes defined in Table 1. The prediction in the last line of the
table is obtained from the computation of pp ! e+e�µ+µ� +X in the total phase space defined
in Table 1, by dividing out the branching ratio BR(Z ! ``) for each Z-boson decay. The main
conclusions that can be drawn from these results are the following:

• Radiative corrections are large and have a marked dependence on the event selection: They
range between +35% to +40% at NLO and +14% to +17% at NNLO in cases without a jet
veto, i.e. for all but the 2`2⌫ results. Roughly half (45%–55%) of the O(↵2

s
) terms are due to

the loop-induced gg component in these cases. For the 2`2⌫ processes the situation is quite
di↵erent: Due to the jet veto NLO corrections turn negative and yield about �14%. NNLO
corrections are roughly +6%. However, the positive e↵ect is entirely due to loop-induced gg
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measures one of the electrons up to very large pseudo-rapidities (|⌘e| < 4.9). The measurement of
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Excellent agreement between NNLO and data
dσ/dmT,ZZ [fb/GeV] 2ℓ2ν@LHC 8 TeV (ATLAS data)
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Figure 4: Di↵erential distributions of the 2`2⌫ processes with fiducial cuts at LO (black, dotted),
NLO (red, dashed) and NNLO (blue, solid), compared to ATLAS 8TeV data [9] (green points
with error bars); for (a) pT,``, (b) mT,ZZ , and (c) ��``; the lower frame shows the ratio over NLO.

predictions is degraded by one order for each added jet. NNLO e↵ects on other distributions are
large, but primarily a↵ect the normalization and not the shapes.

We continue our discussion of di↵erential results with the ``+Emiss

T
signature in Figure 4, which

shows the distributions in the transverse momentum of the dilepton pair, pT,`` (panel a), the
transverse mass of the ZZ pair, defined as4

mT,ZZ =

s✓q
p2
T,``

+m2

Z
+
q
(pmiss

T
)2 +m2

Z

◆2

� (pT,`` + pmiss

T )2

(panel b), and the azimuthal angle between the two leptons, ��`` (panel c). The results correspond
to the sum of all channels including both SF (`` ⌫`⌫`) and DF (`` ⌫`0⌫`0) processes (` 2 {e, µ}, ⌫`0 2
{⌫e, ⌫µ, ⌫⌧}, ` 6= `0). We recall that SF contributions are computed by subtracting W+W� and
top-quark backgrounds as outlined before. For all three distributions in Figure 4 we find excellent
agreement between theory and data. At NNLO, di↵erences hardly exceed the 1� level. Although
NNLO corrections change the cross section in certain bins, the experimental uncertainties are still
too large for more distinct conclusions. Similar to our previous observations for fiducial rates, the
agreement found here at fixed order is a significant improvement over the comparison with the
Monte Carlo prediction shown in Ref. [9]. As pointed out before, we expect a poor modelling of
the jet veto by the Powheg generator to be the main source of these di↵erences, see also Ref. [80].

In the remainder of this paper we focus on the ``+Emiss

T
signature, with the same fiducial setup

as before. In Figure 5 we have picked three out of many observables where the importance of
NNLO corrections is evident. The NLO0+gg result in the ratio frame denotes the sum of the NLO
and the loop-induced gg cross section, both evaluated with NNLO PDFs, which was the best
prediction available in the past. Its di↵erence compared to the complete NNLO QCD result shows
the size of the genuine O(↵2

S
) corrections to the qq̄ channel, computed for the first time in this

4
Boldface is used to indicate the vectorial sum of the dilepton and missing transverse momentum.
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ZZ - differential/off-shell
[Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]ZZ→4ℓ

[Kallweit, MW '18]
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Figure 3: Di↵erential distributions for the four-lepton processes in the total phase space at
LO (black, dotted), NLO (red, dashed) and NNLO (blue, solid), compared to ATLAS 8TeV
data extrapolated to the total phase space [9] (green points with error bars); for (a) �yZ1,Z2 , (b)
��

`
+
Z1

,`
�
Z1
, (c) pT,Z1 , and (d) Njets; the lower frames show the ratio over NLO.
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Figure 1: Sample of Born diagrams contributing to W+W� production both in the di↵erent-flavour
case (l 6= l0) and in the same-flavour case (l = l0).
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Figure 2: Sample of Born diagrams contributing to W+W� production only in the same-flavour
case. In the di↵erent-flavour case, they would describe ZZ production in the 2l2⌫ 0 channel.

(d) via resonant t-channel ZZ production with Z ! l+l� and Z ! ⌫l⌫̄l decays;

(e) via further Z ! 4 leptons topologies, Z/�⇤ ! llZ ! ll⌫l⌫l or Z ! ⌫l⌫lZ ! ll⌫l⌫l. Any
double-resonant configurations are kinematically suppressed or excluded by phase-space cuts.

Note that the appearance of infrared (IR) divergent �⇤ ! l+l� splittings in the case of equal lepton
flavours would prevent a fully inclusive phase-space integration.

Our calculation is performed in the complex-mass scheme [51], and besides resonances, it
includes also contributions from o↵-shell EW bosons and all relevant interferences; no reso-
nance approximation is applied. Our implementation can deal with any combination of leptonic
flavours, l, l0 2 {e, µ, ⌧}. However, in this paper we will focus on the di↵erent-flavour chan-
nel pp ! µ+e�⌫µ⌫̄e +X. For the sake of brevity, we will often denote this process as W+W�

production though.

The NNLO computation requires the following scattering amplitudes at O(↵2

S
):

• tree amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 gg, qq̄(0) ! l+l0�⌫l⌫̄l0 q(00)q̄(000), and crossing-related pro-
cesses;

• one-loop amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 g, and crossing-related processes;

• squared one-loop amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 and gg ! l+l0�⌫l⌫̄l0 ;

• two-loop amplitudes for qq̄ ! l+l0�⌫l⌫̄l0 .
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ũũ+ET,miss at NNLO [Kallweit, MW '18]

channel �LO [fb] �NLO [fb] �NNLO [fb] �ATLAS [fb]

e+e�µ+µ� 8.188(1)+2.4%

�3.2%
11.30(0)+2.5%

�2.0%
12.92(1)+2.8%

�2.2%
12.4 +1.0

�1.0
(stat) +0.6

�0.5
(syst) +0.3

�0.2
(lumi)

e+e�e+e� 4.654(0)+2.3%

�3.1%
6.410(2)+2.5%

�2.0%
7.310(8)+2.7%

�2.1%
5.9 +0.8

�0.8
(stat) +0.4

�0.4
(syst)± 0.1(lumi)

µ+µ�µ+µ� 3.565(0)+2.6%

�3.5%
4.969(5)+2.5%

�2.0%
5.688(6)+2.9%

�2.2%
4.9 +0.6

�0.5
(stat) +0.3

�0.2
(syst)± 0.1(lumi)

e+e�⌫⌫ 5.558(0)+0.1%

�0.5%
4.806(1)+3.5%

�3.9%
5.083(8)+1.9%

�0.6%
5.0 +0.8

�0.7
(stat) +0.5

�0.4
(syst)± 0.1(lumi)

µ+µ�⌫⌫ 5.558(0)+0.1%

�0.5%
4.770(4)+3.6%

�4.0%
5.035(9)+1.8%

�0.5%
4.7 +0.7

�0.7
(stat) +0.5

�0.4
(syst)± 0.1(lumi)

total rate 4982(0)+1.9%

�2.7%
6754(2)+2.4%

�2.0%
7690(5)+2.7%

�2.1%
7300 +400

�400
(stat) +300

�300
(syst) +200

�100
(lumi)

Table 2: Predictions for fiducial and total rates compared to ATLAS 8 TeV data [9].

Zrec

a
= `+`� and Zrec

b
= `0+`0�, which we employ for the predicted cross sections in the total

phase space. The fiducial cuts involve standard requirements on the transverse momenta and
pseudo-rapidities of the leptons, a separation in �R =

p
�⌘2 +��2 between the leptons, and a

window in the invariant mass of reconstructed Z bosons around the Z-pole. In the SF channel
````, Z bosons are reconstructed by identifying the combination of opposite-sign same-flavour
(OSSF) lepton pairings (Za = `+

a
`�
a
and Zb = `+

b
`�
b
, or Za = `+

a
`�
b
and Zb = `+

b
`�
a
) that minimizes

|mZa �mZ | + |mZb
�mZ | with the reconstructed Z bosons Zrec

a
= Za and Zrec

b
= Zb. A rather

special feature in the fiducial phase spaces of the four-lepton channels is the fact that ATLAS
measures one of the electrons up to very large pseudo-rapidities (|⌘e| < 4.9). The measurement of
the ``+Emiss

T
signature applies two additional requirements, which force the two Z bosons closer

to back-to-back-like configurations to suppress backgrounds such as Z+jets: There is a lower cut
on the axial missing transverse momentum, Axial-pmiss

T
= �pmiss

T
· cos (��``,⌫⌫), where pmiss

T
⌘ pT,⌫⌫

and ��``,⌫⌫ is the azimuthal angle between the dilepton and the neutrino pair. Furthermore, the
two Z-boson momenta are balanced by putting an upper cut on pT -balance = |pmiss

T
� pT,``|/pT,``.

Finally, the ``+Emiss

T
signature requires a jet veto to suppress top-quark backgrounds. Note that

jets close to electrons (�Rej < 0.3) are not vetoed.

In Table 2 we report cross-section predictions and compare them against ATLAS 8TeV results [9].
Central predictions are stated with the numerical error on the last digit quoted in round brackets.
The relative uncertainties quoted in percent are estimated from scale variations as described above.
Results reported for e+e�µ+µ�, e+e�e+e�, µ+µ�µ+µ�, e+e�⌫⌫̄, and µ+µ�⌫⌫̄ production are cross
sections in the respective fiducial volumes defined in Table 1. The prediction in the last line of the
table is obtained from the computation of pp ! e+e�µ+µ� +X in the total phase space defined
in Table 1, by dividing out the branching ratio BR(Z ! ``) for each Z-boson decay. The main
conclusions that can be drawn from these results are the following:

• Radiative corrections are large and have a marked dependence on the event selection: They
range between +35% to +40% at NLO and +14% to +17% at NNLO in cases without a jet
veto, i.e. for all but the 2`2⌫ results. Roughly half (45%–55%) of the O(↵2

s
) terms are due to

the loop-induced gg component in these cases. For the 2`2⌫ processes the situation is quite
di↵erent: Due to the jet veto NLO corrections turn negative and yield about �14%. NNLO
corrections are roughly +6%. However, the positive e↵ect is entirely due to loop-induced gg

5

channel �LO [fb] �NLO [fb] �NNLO [fb] �ATLAS [fb]

e+e�µ+µ� 8.188(1)+2.4%

�3.2%
11.30(0)+2.5%

�2.0%
12.92(1)+2.8%

�2.2%
12.4 +1.0

�1.0
(stat) +0.6

�0.5
(syst) +0.3

�0.2
(lumi)

e+e�e+e� 4.654(0)+2.3%

�3.1%
6.410(2)+2.5%

�2.0%
7.310(8)+2.7%

�2.1%
5.9 +0.8

�0.8
(stat) +0.4

�0.4
(syst)± 0.1(lumi)

µ+µ�µ+µ� 3.565(0)+2.6%

�3.5%
4.969(5)+2.5%

�2.0%
5.688(6)+2.9%

�2.2%
4.9 +0.6

�0.5
(stat) +0.3

�0.2
(syst)± 0.1(lumi)

e+e�⌫⌫ 5.558(0)+0.1%

�0.5%
4.806(1)+3.5%

�3.9%
5.083(8)+1.9%

�0.6%
5.0 +0.8

�0.7
(stat) +0.5

�0.4
(syst)± 0.1(lumi)

µ+µ�⌫⌫ 5.558(0)+0.1%

�0.5%
4.770(4)+3.6%

�4.0%
5.035(9)+1.8%

�0.5%
4.7 +0.7

�0.7
(stat) +0.5

�0.4
(syst)± 0.1(lumi)

total rate 4982(0)+1.9%

�2.7%
6754(2)+2.4%

�2.0%
7690(5)+2.7%

�2.1%
7300 +400

�400
(stat) +300

�300
(syst) +200

�100
(lumi)

Table 2: Predictions for fiducial and total rates compared to ATLAS 8 TeV data [9].

Zrec

a
= `+`� and Zrec

b
= `0+`0�, which we employ for the predicted cross sections in the total

phase space. The fiducial cuts involve standard requirements on the transverse momenta and
pseudo-rapidities of the leptons, a separation in �R =

p
�⌘2 +��2 between the leptons, and a

window in the invariant mass of reconstructed Z bosons around the Z-pole. In the SF channel
````, Z bosons are reconstructed by identifying the combination of opposite-sign same-flavour
(OSSF) lepton pairings (Za = `+

a
`�
a
and Zb = `+

b
`�
b
, or Za = `+

a
`�
b
and Zb = `+

b
`�
a
) that minimizes

|mZa �mZ | + |mZb
�mZ | with the reconstructed Z bosons Zrec

a
= Za and Zrec

b
= Zb. A rather

special feature in the fiducial phase spaces of the four-lepton channels is the fact that ATLAS
measures one of the electrons up to very large pseudo-rapidities (|⌘e| < 4.9). The measurement of
the ``+Emiss

T
signature applies two additional requirements, which force the two Z bosons closer

to back-to-back-like configurations to suppress backgrounds such as Z+jets: There is a lower cut
on the axial missing transverse momentum, Axial-pmiss

T
= �pmiss

T
· cos (��``,⌫⌫), where pmiss

T
⌘ pT,⌫⌫

and ��``,⌫⌫ is the azimuthal angle between the dilepton and the neutrino pair. Furthermore, the
two Z-boson momenta are balanced by putting an upper cut on pT -balance = |pmiss

T
� pT,``|/pT,``.

Finally, the ``+Emiss

T
signature requires a jet veto to suppress top-quark backgrounds. Note that

jets close to electrons (�Rej < 0.3) are not vetoed.

In Table 2 we report cross-section predictions and compare them against ATLAS 8TeV results [9].
Central predictions are stated with the numerical error on the last digit quoted in round brackets.
The relative uncertainties quoted in percent are estimated from scale variations as described above.
Results reported for e+e�µ+µ�, e+e�e+e�, µ+µ�µ+µ�, e+e�⌫⌫̄, and µ+µ�⌫⌫̄ production are cross
sections in the respective fiducial volumes defined in Table 1. The prediction in the last line of the
table is obtained from the computation of pp ! e+e�µ+µ� +X in the total phase space defined
in Table 1, by dividing out the branching ratio BR(Z ! ``) for each Z-boson decay. The main
conclusions that can be drawn from these results are the following:

• Radiative corrections are large and have a marked dependence on the event selection: They
range between +35% to +40% at NLO and +14% to +17% at NNLO in cases without a jet
veto, i.e. for all but the 2`2⌫ results. Roughly half (45%–55%) of the O(↵2

s
) terms are due to

the loop-induced gg component in these cases. For the 2`2⌫ processes the situation is quite
di↵erent: Due to the jet veto NLO corrections turn negative and yield about �14%. NNLO
corrections are roughly +6%. However, the positive e↵ect is entirely due to loop-induced gg
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Figure 4: Di↵erential distributions of the 2`2⌫ processes with fiducial cuts at LO (black, dotted),
NLO (red, dashed) and NNLO (blue, solid), compared to ATLAS 8TeV data [9] (green points
with error bars); for (a) pT,``, (b) mT,ZZ , and (c) ��``; the lower frame shows the ratio over NLO.

predictions is degraded by one order for each added jet. NNLO e↵ects on other distributions are
large, but primarily a↵ect the normalization and not the shapes.

We continue our discussion of di↵erential results with the ``+Emiss

T
signature in Figure 4, which

shows the distributions in the transverse momentum of the dilepton pair, pT,`` (panel a), the
transverse mass of the ZZ pair, defined as4

mT,ZZ =

s✓q
p2
T,``

+m2

Z
+
q
(pmiss

T
)2 +m2

Z

◆2

� (pT,`` + pmiss

T )2

(panel b), and the azimuthal angle between the two leptons, ��`` (panel c). The results correspond
to the sum of all channels including both SF (`` ⌫`⌫`) and DF (`` ⌫`0⌫`0) processes (` 2 {e, µ}, ⌫`0 2
{⌫e, ⌫µ, ⌫⌧}, ` 6= `0). We recall that SF contributions are computed by subtracting W+W� and
top-quark backgrounds as outlined before. For all three distributions in Figure 4 we find excellent
agreement between theory and data. At NNLO, di↵erences hardly exceed the 1� level. Although
NNLO corrections change the cross section in certain bins, the experimental uncertainties are still
too large for more distinct conclusions. Similar to our previous observations for fiducial rates, the
agreement found here at fixed order is a significant improvement over the comparison with the
Monte Carlo prediction shown in Ref. [9]. As pointed out before, we expect a poor modelling of
the jet veto by the Powheg generator to be the main source of these di↵erences, see also Ref. [80].

In the remainder of this paper we focus on the ``+Emiss

T
signature, with the same fiducial setup

as before. In Figure 5 we have picked three out of many observables where the importance of
NNLO corrections is evident. The NLO0+gg result in the ratio frame denotes the sum of the NLO
and the loop-induced gg cross section, both evaluated with NNLO PDFs, which was the best
prediction available in the past. Its di↵erence compared to the complete NNLO QCD result shows
the size of the genuine O(↵2

S
) corrections to the qq̄ channel, computed for the first time in this

4
Boldface is used to indicate the vectorial sum of the dilepton and missing transverse momentum.
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data within 1σ  
(better than comparison to MC [JHEP 1701 (2017) 099])

NEW:  ZZ/WW→ℓℓ+ET,miss
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All VV processes known through NNLO QCD: 

    ➞ inclusive/on-shell Z,W & differential/off-shell Z,W (leptonic)

γγ     -  inclusive and differential [Catani, Cieri, de Florian, Ferrera, Grazzini '12], 
                  [Campbell, Ellis, Li, Williams '16], [Grazzini, Kallweit, MW '17]

Zγ     -  inclusive/on-shell and differential/off-shell
              [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]; see also: [Campbell et al. '17]

Wγ    -  inclusive/on-shell and differential/off-shell                 
                  [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]

ZZ    -  inclusive/on-shell [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, 
                  von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs '14];  see also: [Heinrich et al. '17]

         -  differential/off-shell [Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]

WW  -  inclusive/on-shell [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, et al. '14]                     
         -  differential/off-shell [Grazzini, Kallweit, Pozzorini, Rathlev, MW '15]

WZ   -  inclusive/on-shell [Grazzini, Kallweit, Rathlev, MW '16]

         -  differential/off-shell [Grazzini, Kallweit, Rathlev, MW '17]

NNLO QCD corrections vor VV
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All VV processes known through NNLO QCD: 

    ➞ inclusive/on-shell Z,W & differential/off-shell Z,W (leptonic)

γγ     -  inclusive and differential [Catani, Cieri, de Florian, Ferrera, Grazzini '12], 
                  [Campbell, Ellis, Li, Williams '16], [Grazzini, Kallweit, MW '17]

Zγ     -  inclusive/on-shell and differential/off-shell
              [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]; see also: [Campbell et al. '17]

Wγ    -  inclusive/on-shell and differential/off-shell                 
                  [Grazzini, Kallweit, Rathlev, Torre '13], [Grazzini, Kallweit, Rathlev '15]

ZZ    -  inclusive/on-shell [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, 
                  von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs '14];  see also: [Heinrich et al. '17]

         -  differential/off-shell [Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]

WW  -  inclusive/on-shell [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, et al. '14]                     
         -  differential/off-shell [Grazzini, Kallweit, Pozzorini, Rathlev, MW '15]

WZ   -  inclusive/on-shell [Grazzini, Kallweit, Rathlev, MW '16]

         -  differential/off-shell [Grazzini, Kallweit, Rathlev, MW '17]

all publicly available within MATRIX

NNLO QCD corrections vor VV



process status comment

pp→Z/γ*(→ℓℓ/νν) validated analytically + FEWZ

pp→W(→ℓν) validated with FEWZ, NNLOjet

pp→H validated analytically (by SusHi)

pp→γγ validated with 2γNNLO

pp→Zγ→ℓℓγ [Grazzini, Kallweit, Rathlev '15]

pp→Zγ→ννγ [Grazzini, Kallweit, Rathlev '15]

pp→Wγ→ℓνγ [Grazzini, Kallweit, Rathlev '15]

pp→ZZ [Cascioli et al. '14]

pp→ZZ→ℓℓℓℓ [Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]

pp→ZZ→ℓℓℓ'ℓ' [Grazzini, Kallweit, Rathlev '15], [Kallweit, MW '18]

pp→ZZ→ℓℓν'ν' [Kallweit, MW '18]

pp→ZZ/WW→ℓℓνν [Kallweit, MW '18]

pp→WW [Gehrmann et al. '14]

pp→WW→ℓν ℓ'ν'

pp→WZ [Grazzini, Kallweit, Rathlev, MW '16]

pp→WZ→ℓνℓℓ [Grazzini, Kallweit, Rathlev, MW '17]

pp→WZ→ℓ'ν'ℓℓ [Grazzini, Kallweit, Rathlev, MW '17]

pp→HH (     ) not in public release

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

single boson 
processes

photon 
processes

massive 
diboson 
processes



The MATRIX framework

MUNICH
MUlti-chaNnel Integrator at Swiss (CH) precision

Amplitudes

OPENLOOPS
(COLLIER, CUTTOols, . . . )

Dedicated 2-loop codes
(VVAMP, GINAC, TDHPL, . . . )

qT subtraction , qT resummation

MATRIX
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The MATRIX framework
[Grazzini,  Kallweit,  MW '17]          https://matrix.hepforge.org/
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the

2

gg→4ℓ (ZZ) and gg→2ℓ2ν (WW) at NLO
[Grazzini, Kallweit, MW, Yook '18] and [Grazzini, Kallweit, MW, Yook 'to appear]
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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Figure 2: Example of NNLO interference between quark annihilation and loop-induced gluon
fusion production mechanisms.
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Figure 3: Examples of N3LO contributions in the qg channel.

including also the qg initiated contributions.1 We note that at N3LO we only include diagrams
with closed fermion loops (see Figure 3 (a)); all other contributions that would enter a complete
N3LO calculation (see Figure 3 (b) for example) cannot be consistently accounted for at present.
Our approximation includes all contributions at O(↵2

S
) together with the complete NLO corrections

to the loop-induced gluon fusion channel at O(↵3

S
). As such, besides providing the maximum

perturbative information available at present for this process, our calculation can be used to obtain
a consistent estimate of perturbative uncertainties through the customary procedure of studying
scale variations.

Our calculation is carried out within the computational framework Matrix [52]. Matrix features a
fully general implementation of the qT -subtraction formalism [53] and allowed us to compute NNLO
QCD corrections to a large number of colour-singlet processes at hadron colliders [38, 43, 45, 46, 54–
59].2 The core of the Matrix framework is the Monte Carlo program Munich, which is capable
of computing both NLO QCD and NLO EW [62, 63] corrections to arbitrary SM processes [64].

As in previous Matrix calculations, in our computation of the NLO corrections to the gg ! 4`
process, all the required one-loop amplitudes are evaluated with OpenLoops

3 [69, 70]. At two-loop
level, we use the gg ! V V 0 helicity amplitudes of Ref. [37], and implement the corresponding
four-lepton final states, accounting for spin correlations and o↵-shell e↵ects. The NLO calculation
is performed by using the Catani–Seymour dipole-subtraction method [71, 72] and also with qT
subtraction [53], which provides an additional cross-check of our results.

1We note that there are also qq̄ initiated contributions to the loop-induced production mechanism at O(↵3
S),

which are separately finite. We found them to be completely negligible and ignore them in the following. Our
results include all numerically relevant partonic channels of the NLO corrections to the loop-induced gluon fusion
contribution.

2It was also used in the NNLL+NNLO computation of Ref. [60], and in the NNLOPS computation of Ref. [61].
3
OpenLoops relies on the fast and stable tensor reduction of Collier [65, 66], supported by a rescue system

based on quad-precision CutTools [67] with OneLOop [68] to deal with exceptional phase-space points.
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
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2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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Figure 1: Born-level Feynman diagrams for ZZ production with four charged final-state leptons.

We compute the four-lepton (4`) processes

pp ! `+`� `0+`0� +X,

with di↵erent-flavour (DF) leptons (` 6= `0), denoted as ```0`0. Representative Born level diagrams are
shown in Figure 1. They involve double-resonant t-channel ZZ production (panel a), single-resonant
s-channel Drell–Yan (DY) topologies (panel b), and loop induced gluon fusion diagrams (panel c).

3 Results

Validation

The NLO corrections to the loop induced gluon fusion contributions have been first computed
in Ref. [25] and in Ref. [27], by neglecting the quark-gluon channel. The results of Ref. [25]
are provided with only two significant digits. More accurate results are given in Ref. [27]. In
Refs. [25, 27] the calculation is carried out by using five massless flavours and the contribution of
top quark loops and triangles is neglected. We have compared our results with those of Ref. [27]
by using exactly the same implementation.......

3.1 Setup

We present predictions for pp collisions at 8 and 13 TeV. For the EW parameters we employ the
Gµ scheme and compute the EW mixing angle as cos ✓2

W
= (m2

W
� i�W mW )/(m2

Z
� i�Z mZ) and

↵ =
p
2Gµm2

W
sin2 ✓W/⇡, using the complex-mass scheme [59] throughout. The EW inputs are

set to the PDG [60] values: GF = 1.16639⇥ 10�5GeV�2, mW = 80.385GeV, �W = 2.0854GeV,
mZ = 91.1876GeV, �Z = 2.4952GeV, mH = 125GeV, and �H = 0.00407. The branching ratio of
the Z-boson decay into massless charged leptons, ` 2 {e, µ}, is BR(Z ! ``) = 0.033631, which
is used below to compute the cross section in the total phase space. The on-shell top-quark
mass is set to mt = 173.2GeV, and �t = 1.44262 is used. For each perturbative order we use
the corresponding set of Nf = 5 NNPDF3.0 [61] parton distributions with ↵S(mZ) = 0.118.
Renormalization (µR) and factorization (µF ) scales are set to half of the invariant mass of the ZZ
pair, µR = µF = µ0 ⌘

1

2
mZZ . Residual uncertainties are estimated from customary 7-point scale

variations by a factor of two, with the constraint 0.5  µR/µF  2.

We use the selection cuts adopted by the ATLAS collaboration, as explained in Table 1. The
fiducial cuts involve standard requirements on the transverse momenta and pseudo-rapidities of the
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see also:
[Caola, Melnikov, Röntsch, Tancredi '15 '16]

NEW:
qg contributions

gg→4ℓ (ZZ) and gg→2ℓ2ν (WW) at NLO
[Grazzini, Kallweit, MW, Yook '18] and [Grazzini, Kallweit, MW, Yook 'to appear]



p
s 8TeV 13TeV 8TeV 13TeV

� [fb] �/�NLO � 1

LO 8.1881(8)+2.4%

�3.2%
13.933(7)+5.5%

�6.4%
�27.5% �29.8%

NLO 11.2958(4)+2.5%

�2.0%
19.8454(7)+2.5%

�2.1%
0% 0%

qq̄NNLO 12.08(3)+1.1%

�1.1%
21.54(2)+1.1%

�1.2%
+6.9% +8.6%

� [fb] �/�ggLO � 1

ggLO 0.79354(8)+28.2%

�20.9%
2.0054(2)+23.5%

�17.9%
0% 0%

ggNLOgg 1.4810(9)+16.0%

�13.2%
3.627(3)+15.2%

�12.8%
+86.6% +80.9%

ggNLO 1.3901(9)+15.4%

�13.6%
3.423(3)+13.9%

�12.0%
+75.2% +70.7%

� [fb] �/�NLO � 1

NNLO 12.87(3)+2.8%

�2.1%
23.55(2)+3.0%

�2.6%
+13.9% +18.7%

nNNLO 13.47(3)+2.6%

�2.2%
24.97(2)+2.9%

�2.7%
+19.2% +25.8%

Table 3: Fiducial cross sections at di↵erent perturbative orders and relative impact on NLO and
ggLO predictions, respectively. The quoted uncertainties correspond to scale variations as described
in the text, and the numerical integration errors on the previous digit are stated in parentheses;
for all (n)NNLO results, the latter include the uncertainty due the rcut extrapolation [52].

We add a comment on the contribution of diagrams with a Higgs boson: The cuts we are applying
essentially select on-shell Z bosons, thereby forcing the Higgs boson to be o↵-shell. Nonetheless,
our calculation consistently includes also the Higgs diagrams. The signal–background interference
in the gg ! ZZ ! 4l channel is known to provide a non-negligible contribution [34]. Indeed, we
find that with our selection cuts the impact of the Higgs contribution is about �5% both in the
ggLO and ggNLO results.

We now turn to presenting kinematical distributions. Throughout this section, the plots are
organized according to the following pattern: There is an upper panel where absolute cross sections
at LO (black, dotted), NLO (red, dashed), NNLO (blue, dash-dotted) and nNNLO (magenta,
solid) are shown. In the central panel the nNNLO result with its scale uncertainty is normalised
to the central NNLO result. In the lower panel the NLO/LO K-factors of the loop-induced
gluon fusion contribution are shown, with (ggNLO; pink, solid) and without (ggNLOgg; brown,
dash-double-dotted) the qg contribution. The figures on the left show the 8TeV results, and the
ones on the right the 13TeV results.

We first consider the invariant-mass distribution of the four-lepton system in Figure 4. The
impact of the NLO corrections to the loop-induced gluon fusion contribution is largest at small
invariant masses: In the peak region they increase the NNLO cross section by about 5% (7%) at
p
s = 8 (13)TeV. As m4` increases, the impact of the ggNLO corrections decreases, and it is only

about +1% at m4` ⇠ 1TeV. This is not unexpected, since the gg contribution is largest when
gluons with smaller x are probed. On the contrary, the size of the ggNLO/ggLO K-factor in the

7

+5-6% effect due to NLO correction to gg 
compared to NNLO

[Grazzini, Kallweit, MW, Yook '18]
gg→4ℓ (ZZ) at NLO
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for all (n)NNLO results, the latter include the uncertainty due the rcut extrapolation [52].

We add a comment on the contribution of diagrams with a Higgs boson: The cuts we are applying
essentially select on-shell Z bosons, thereby forcing the Higgs boson to be o↵-shell. Nonetheless,
our calculation consistently includes also the Higgs diagrams. The signal–background interference
in the gg ! ZZ ! 4l channel is known to provide a non-negligible contribution [34]. Indeed, we
find that with our selection cuts the impact of the Higgs contribution is about �5% both in the
ggLO and ggNLO results.

We now turn to presenting kinematical distributions. Throughout this section, the plots are
organized according to the following pattern: There is an upper panel where absolute cross sections
at LO (black, dotted), NLO (red, dashed), NNLO (blue, dash-dotted) and nNNLO (magenta,
solid) are shown. In the central panel the nNNLO result with its scale uncertainty is normalised
to the central NNLO result. In the lower panel the NLO/LO K-factors of the loop-induced
gluon fusion contribution are shown, with (ggNLO; pink, solid) and without (ggNLOgg; brown,
dash-double-dotted) the qg contribution. The figures on the left show the 8TeV results, and the
ones on the right the 13TeV results.

We first consider the invariant-mass distribution of the four-lepton system in Figure 4. The
impact of the NLO corrections to the loop-induced gluon fusion contribution is largest at small
invariant masses: In the peak region they increase the NNLO cross section by about 5% (7%) at
p
s = 8 (13)TeV. As m4` increases, the impact of the ggNLO corrections decreases, and it is only

about +1% at m4` ⇠ 1TeV. This is not unexpected, since the gg contribution is largest when
gluons with smaller x are probed. On the contrary, the size of the ggNLO/ggLO K-factor in the
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+5-6% effect due to NLO correction to gg 
compared to NNLO

[Grazzini, Kallweit, MW, Yook '18]
gg→4ℓ (ZZ) at NLO

dσ/dpT, ℓ1
 [pb/GeV] ZZ → 2e2µ@LHC 13 TeV

LO
NLO
NNLO
nNNLO

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
r
o
d
u
c
e
d
 
w
i
t
h
 
M
A
T
R
I
X

dσ/dσNNLO

 0.9
 0.95

 1
 1.05
 1.1

 1.15

pT, ℓ1
 [GeV]

dσ/dσggLO

ggLO ggNLOgg ggNLO

 0

 1

 2

 3

 4

 5

 0  200  400  600  800  1000

Figure 7: Di↵erential distribution in pT,`1 at 8TeV (left) and 13TeV (right).

not specific to the loop-induced gluon fusion channel: We observe the same features also for the
NLO corrections to the quark annihilation channel.

Also for the transverse-momentum distributions of the Z bosons the importance of the qg channels
in the ggNLO result is evident: The pT,Z1 shape is clearly modified due to a negative qg contribution
at small pT,Z1 , and a positive qg contribution in the tail of the distribution. At large pT,Z2 the
contribution of the qg channels is as large as the one of the gg channel. However, they have
opposite signs such that they compensate each other and the ggNLO corrections almost vanish,
whereas, neglecting qg contributions, the ggNLOgg corrections show an increase of roughly 40%
wrt. ggLO instead. NNLO scale uncertainties at small pT,Z1 and pT,Z2 typically do not cover the
sizeable nNNLO corrections.

Another eye-catching feature we observe in Figure 8 is the significant drop of the transverse-
momentum distribution of both the leading and subleading Z boson above pT,Zi ⇠ 900 GeV
(i 2 {1, 2}). This is due to the interplay between the large transverse momentum of the parent
Z boson, which makes the corresponding lepton pair boosted, and the �R`` > �Rmin

``
cut in the

fiducial phase space (` 2 {e, µ}, �Rmin

``
= 0.2). Indeed, if the transverse momentum of the parent

Z boson fulfills the condition

pT,Zi ⇠
>

p
2mZp

1� cos�Rmin

``

⇠ 900 GeV , (2)

the lepton pair is forced to be produced o↵-shell, and as a consequence the cross section is strongly
suppressed. Note that this e↵ect is independent of the collider energy.
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moves nNNLO outside uncertainty 
band of NNLO

huge NLO gg K-factor (~2 & more);
impact of newly computed fermionic 
channels clearly visible



[Grazzini, Kallweit, MW, Yook 'to appear]
gg→2ℓ2ν (WW) at NLONEW: 

p
s = 13 TeV jet veto no jet veto jet veto no jet veto

� [fb] �/�NLO � 1

LO 284.2(2)+5.6%

�6.5%
284.2(2)+5.6%

�6.5%
�15.6% �43.7%

NLO 336.6(4)+1.6%

�2.0%
504.6(4)+4.1%

�3.3%
0% 0%

qq̄NNLO 337.0(2)+0.7%

�0.5%
559.0(4)+2.1%

�2.0%
+1.2% +10.8%

� [fb] �/�ggLO � 1

ggLO 21.96(2)+25.7%

�18.4%
21.96(2)+25.7%

�18.4%
0% 0%

ggNLOgg 31.70(2)+10.8%

�10.6%
38.4(1)+15.8%

�13.3%
+44.4% +74.7%

ggNLO 28.76(4)+7.8%

�9.0%
37.42(4)+15.2%

�12.9%
+31.0% +70.4%

� [fb] �/�NLO � 1

NNLO 359.0(2)+1.2%

�0.9%
581.0(4)+2.9%

�2.6%
+6.7% +15.1%

nNNLO 365.8(2)+0.4%

�0.6%
596.6(4)+2.8%

�2.7%
+8.7% +18.2%

Table 2: Fiducial cross sections at di↵erent perturbative orders and relative impact on NLO and
ggLO predictions, respectively. The quoted uncertainties correspond to scale variations as described
in the text, and the numerical integration errors on the previous digit are stated in parentheses;
for all (n)NNLO results, the latter include the uncertainty due the rcut extrapolation [75].

order QCD corrections, both in the quark initiated channels and for the loop-induced gluon
fusion contribution. In particular, the relative impact of the newly computed qg channel
becomes quite sizeable with the jet veto. As we will discuss below the jet veto also has
quite a strong impact on the QCD corrections and the relative size of the qg for kinematical
distributions. Without a jet veto radiative corrections are overall similar to those found for
ZZ production in Refs. [72].

• The NLO (qq̄NNLO) corrections are only +15% (+1.2%) with a jet veto and +43.7% (+10.8%)
without.

• NLO corrections to the loop-induced gluon fusion channel are large: They are +70.4% in the
case inclusive over QCD radiation and still 31.0% with a jet veto. The relative impact of
the qg channel can be appreciated from the di↵erence between the ggNLO with ggNLOgg

predictions. While in the inclusive case it is only roughly 5% of full NLO QCD corrections
to the loop-induced gluon fusion channel, its relative contribution increases to roughly 25%
when a jet veto is applied.

• Finally, the full NNLO QCD with a jet-veto requirement are with +6.7% almost entirely
due to the ggLO contribution, it is only about a third of the +15% for the setup inclusive
over QCD radiation. The impact of the NLO corrections to the loop-induced contribution
is to increase the NNLO result by about 2% (3.1%) with(out) a jet veto. Excluding the qg
channels would increase the nNNLO prediction with a jet veto by about 0.5%, while it has
a subleading impact otherwise. The NNLO and nNNLO predictions are only compatible
within scale uncertainties without a requirement on the QCD radiation.
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+2(3)% effect due to NLO correction to gg compared to NNLO with(out) jet veto
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[Grazzini, Kallweit, MW, Yook 'to appear]
gg→2ℓ2ν (WW) at NLONEW: 

dσ/dpT, W+ [pb/GeV] W+W-@LHC 13 TeV
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Figure 5: Transverse-momentum spectrum of the W boson with jet veto (left) and without (right).

larger in the peak region (⇠ +3%), but then at larger invariant masses the e↵ect turns and stays
negative (⇠ �2% in the TeV range). Also the ggNLO K-factor shows a quite peculiar shape when
a jet veto is applied, showing a significant suppression of the cross section in the tail of the mWW

distribution. In this region the qg channel becomes very sizeable, becoming as large as the gg
initiated contribution, but with the opposite sign.MW: how can it turn negative ??? For the mWW

distribution inclusive over QCD radiation, on the other hand, the ggNLO correction is rather flat
(disregarding the first two bins below the peak) and always positive. Also the qg channel has a
subleading impact in that case.

We find similar results for the transverse-momentum distribution of the W boson (pT,W ) in Figure 5:
With the jet-veto requirement the nNNLO/NNLO ratio is about +5% at small transverse momenta,
then steadily decreases until it reaches about �3% for pT,W & 300GeV. Without the jet veto
the nNNLO corrections are the same at small transverse momenta, but they remain positive
and small in the tail of the distribution. The ggNLO K-factor in that case is completely flat
and around +70%, with a minor impact of the qg channel. The jet-veto induces a strong shape
on the ggNLO correction, which has a large positive impact at small transverse momenta and
significantly suppresses the loop-induce gluon fusion cross section at large transverse momenta,
with a considerable e↵ect coming from the qg channel.

In Figure 6 we show the distribution in the missing transverse momentum (pT,miss) computed from
the vectorial sum of the neutrino momenta. Again the pattern of the corrections with and without
jet veto is rather similar to the two distributions considered before. We thus only discuss one
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with jet-veto no jet-veto

shape of nNNLO and NLO gg K-factor strongly affected by jet veto;
large impact of newly computed fermionic channels clearly visible

PRELIMINARY



[Grazzini, Kallweit, MW, Yook 'to appear]
gg→2ℓ2ν (WW) at NLONEW: 

dσ/dpT, ℓ1
 [pb/GeV] W+W-@LHC 13 TeV (ATLAS data)
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Figure 7: Di↵erential distributions in the fiducial phase-space selections of Table 1 compared to
ATLAS 13TeV data [34]; top left: leading-lepton distribution; top center: lepton-pair invariant-mass
distribution; top right: lepton-pair transverse-momentum distribution; bottom left: lepton-pair
rapidity distribution; bottom right: azimuthal distance between leptons.
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good agreement between nNNLO and recent 13 TeV ATLAS data;
tails could further improve due to EW corrections  (Jonas Lindert's talk)
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MiNLO+reweighting [Hamilton, Nason, Zanderighi '12]

      pp ➙ H    [Hamilton, Nason, Re, Zanderighi '13]

     pp ➙ ℓℓ (Z)    [Karlberg, Hamilton, Zanderighi '14]

     pp ➙ ℓℓH/ℓνH (ZH/WH)    [Astill, Bizoń, Re, Zanderigh '16 '18]

     pp ➙ ℓνℓ'ν' (WW)    [Re, MW, Zanderighi '18]

Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi '13]

     pp ➙ ℓℓ (Z)    [Alioli, Bauer, Berggren, Tackmann, Walsh '15]

UNNLOPS [Höche, Prestel '14]

      pp ➙ H    [Höche, Prestel '14]

     pp ➙ ℓℓ (Z)    [Höche, Prestel '14]

NNLO+PS approaches
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MiNLO+reweighting

Giulia Zanderighi, WW@NNLOPS

Reweighing: NNLOPS

11

Reweighing the weight of XJ-MiNLO events with 
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1. merge       pp ➞ WW        and        pp ➞ WW+jet    (both at NLO+PS)

2. reweight to NNLO in born phase space
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Reweighing: NNLOPS
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Figure 10. Same as Fig. 7, but for various distributions in the fiducial phase space measured in the
8 TeV analysis by ATLAS [6]: (a) transverse momentum of the leading lepton pT,`1 (b) transverse
momentum pT,``, (c) invariant mass m`�`+ and (d) rapidity of the dilepton pair, (d) azimuthal
lepton separation ��``, and (e) |cos(✓?)| defined in Eq. (3.5).

The two distribution which require some additional discussion in Fig. 10 are pT,`` and

��``. We note at this point that in the fiducial phase space the LHE-level NNLOPS result

before shower, which is shown only in the ratio frame, has a di↵erent normalization (by

about�5%) than after shower. This is due to the jet-veto requirements and does not appear

in the inclusive nor the fiducial-noJV phase space. It can be understood by realizing that

the LHE-level results are unphysical in regions sensitive to soft-gluon radiation where large

logarithmic contributions are resummed by the shower. In other phase-space regions LHE-

level results coincide with the respective fixed-order result. Since among the fiducial cuts

only the jet-veto requirements are subject to e↵ects from soft gluons, large di↵erences

between LHE-level and showered results appear in the fiducial-JV setup primarily.

The pT,`` distribution in Fig. 10 (b) shows some interesting features: at 20GeV the

NNLO curve develops some perturbative instability. The integrable logarithmic singularity

[153] is caused by the fiducial pmiss

T
> 20 GeV cut, which at LO implies that the cross section

– 27 –
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[Re, MW, Zanderighi '18]

pT of dilepton system

→ NNLOPS cures perturbative instabilities (pT    cut)
→ NNLOPS induces additional shape effects
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Figure 6. Comparison of MiNLO (black, dotted), NNLO (red, dashed) and NNLOPS (blue, solid)
predictions in the fiducial phase space as a function of pvetoT,j1

for (a) the cross section and (b) the
jet-veto e�ciency.

the jet-veto e�ciency predicted by MiNLO is about 4% below the NNLOPS one for typical

jet-veto cuts applied by the experiments (20GeV. pveto
T,j1

. 30GeV).

The agreement between NNLO and NNLOPS results is remarkable. Even down to

pveto
T,j1

= 15GeV their di↵erence is within ⇠ 2%. Similar results were found in Ref. [83]

with resummation e↵ects at high logarithmic accuracy of about ⇠ 2–3% beyond NNLO for

pveto
T,j1

= 30GeV. This shows that jet-veto logarithms at typical jet-veto cuts applied by the

experiments are not particularly large and still well described by a NNLO computation.

Clearly, below pveto
T,j1

= 15GeV NNLO loses all predictive power and even turns negative at

some point. The scale-uncertainty band completely underestimates the true uncertainty

of the NNLO prediction due to missing higher-order corrections in this region. It is nice

to see how matching to the parton shower cures the unphysical behaviour of the NNLO

result, so that NNLOPS yields accurate predictions in the entire range of jet-veto cuts.

Furthermore, the scale uncertainty band of the NNLOPS curve widens at small pveto
T,j1

,

reflecting the fact that higher-order logarithmic terms become important in this region

and degrade the accuracy of the perturbative prediction.

3.4 Di↵erential distributions in the fiducial phase space

We now turn to discussing di↵erential cross sections. The figures in this section have the

same layout as before. Additionally, we show the central NNLOPS result at LHE level,

i.e. before the shower is applied, in the ratio frame. We start by considering observables

which are sensitive to soft-gluon emissions. In phase-space regions where the cross section

– 22 –

Jet veto

miss→ NNLOPS physical down to pT = 0
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Figure 10. Same as Fig. 7, but for various distributions in the fiducial phase space measured in the
8 TeV analysis by ATLAS [6]: (a) transverse momentum of the leading lepton pT,`1 (b) transverse
momentum pT,``, (c) invariant mass m`�`+ and (d) rapidity of the dilepton pair, (d) azimuthal
lepton separation ��``, and (e) |cos(✓?)| defined in Eq. (3.5).

The two distribution which require some additional discussion in Fig. 10 are pT,`` and

��``. We note at this point that in the fiducial phase space the LHE-level NNLOPS result

before shower, which is shown only in the ratio frame, has a di↵erent normalization (by

about�5%) than after shower. This is due to the jet-veto requirements and does not appear

in the inclusive nor the fiducial-noJV phase space. It can be understood by realizing that

the LHE-level results are unphysical in regions sensitive to soft-gluon radiation where large

logarithmic contributions are resummed by the shower. In other phase-space regions LHE-

level results coincide with the respective fixed-order result. Since among the fiducial cuts

only the jet-veto requirements are subject to e↵ects from soft gluons, large di↵erences

between LHE-level and showered results appear in the fiducial-JV setup primarily.

The pT,`` distribution in Fig. 10 (b) shows some interesting features: at 20GeV the

NNLO curve develops some perturbative instability. The integrable logarithmic singularity

[153] is caused by the fiducial pmiss

T
> 20 GeV cut, which at LO implies that the cross section
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[Re, MW, Zanderighi '18]

pT of dilepton system

→ NNLOPS cures perturbative instabilities (pT    cut)
→ NNLOPS induces additional shape effects
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Figure 6. Comparison of MiNLO (black, dotted), NNLO (red, dashed) and NNLOPS (blue, solid)
predictions in the fiducial phase space as a function of pvetoT,j1

for (a) the cross section and (b) the
jet-veto e�ciency.

the jet-veto e�ciency predicted by MiNLO is about 4% below the NNLOPS one for typical

jet-veto cuts applied by the experiments (20GeV. pveto
T,j1

. 30GeV).

The agreement between NNLO and NNLOPS results is remarkable. Even down to

pveto
T,j1

= 15GeV their di↵erence is within ⇠ 2%. Similar results were found in Ref. [83]

with resummation e↵ects at high logarithmic accuracy of about ⇠ 2–3% beyond NNLO for

pveto
T,j1

= 30GeV. This shows that jet-veto logarithms at typical jet-veto cuts applied by the

experiments are not particularly large and still well described by a NNLO computation.

Clearly, below pveto
T,j1

= 15GeV NNLO loses all predictive power and even turns negative at

some point. The scale-uncertainty band completely underestimates the true uncertainty

of the NNLO prediction due to missing higher-order corrections in this region. It is nice

to see how matching to the parton shower cures the unphysical behaviour of the NNLO

result, so that NNLOPS yields accurate predictions in the entire range of jet-veto cuts.

Furthermore, the scale uncertainty band of the NNLOPS curve widens at small pveto
T,j1

,

reflecting the fact that higher-order logarithmic terms become important in this region

and degrade the accuracy of the perturbative prediction.

3.4 Di↵erential distributions in the fiducial phase space

We now turn to discussing di↵erential cross sections. The figures in this section have the

same layout as before. Additionally, we show the central NNLOPS result at LHE level,

i.e. before the shower is applied, in the ratio frame. We start by considering observables

which are sensitive to soft-gluon emissions. In phase-space regions where the cross section
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The remaining three variables and their binning chosen to be

Cuts inspired by ATLAS 13 TeV study (1702.04519): NNLO uses the central scale

All uncertainty bands are the envelop 
of 7-scales. In the NNLOPS scales in 
MiNLO and NNLO are varied in a 
correlated way 

gg-channel not included in our study, as 
it can it is know at one-loop and can be 
added incoherently 

where the function h(pT) has the property that it is one at pT = 0 and vanishes at infinity.

This function is used in Eq. (2.3) to split the cross section into

d�A = d� · h(pT) , d�B = d� · (1� h(pT)) . (2.4)

Here we use the following smoothing function:

h(pT) =
(2MW )2

(2MW )2 + p 2

T

. (2.5)

It is trivial to see that the exact value of the NNLO di↵erential cross-section in the Born-

level phase space is preserved using this reweighting factor:

✓
d�

d�B

◆NNLOPS

=

✓
d�

d�B

◆NNLO

. (2.6)

We have not yet specified what pT exactly stands for. Between the two natural choices,

the transverse momentum of the colourless system or of the leading jet, we refrain from

using the former, and have chosen the transverse momentum of the leading jet instead.

This choice is motivated by the fact that only the latter is a direct indicator of whether

QCD radiation is present in a given event or not. This ensures that h(pT ) goes to one

only for Born-like configurations, while it tends to zero in the presence of hard radiation,

with W(�B, pT) going to one accordingly. To define jets in h(pT ) we employ the inclusive

kT -algorithm with R = 0.4 [129, 130] as implemented in FastJet [131].

2.3 Practical implementation

We now turn to discussing practical details on the implementation of the reweighting

procedure for W+W� production sketched in the previous section. First we have to find a

parametrization of the Born phase space. To this end, we select a set of nine independent

observables, with nine being the degrees of freedom of the 4-particle (e�⌫̄e µ+⌫µ) phase

space we have at LO, after removing an overall azimuthal angle. This defines our basis for

the multidimensional reweighting. We choose the variables � = {pT,W� , yWW , �yW+W� ,

cos ✓CS
W+ , �CS

W+ , cos ✓CSW� , �CS
W� ,mW+ ,mW�}, which correspond to the transverse momentum

of W� (that is equal and in the opposite direction to the one of W+ at LO), the rapidity

of the W+W� pair, the rapidity di↵erence between the two W bosons (�yW+W� = yW+ �

yW�), the Collins-Soper (CS) angles for W+ and W� as introduced in Ref. [96], and the

invariant masses of the two W bosons, respectively. The di↵erential cross section in the

Born phase space is then defined as

d�

d�B

=
d9�

dpT,W�dyWWd�yW+W�dcos ✓CS
W+d�CS

W+dcos ✓CSW�d�CS
W�dmW+dmW�

. (2.7)

Given the high complexity of both the NNLO and the MiNLO computation for W+W�

production the computation of a nine-dimensional cross section is virtually impossible with

current technology. However, we can make use of two facts: first of all, we can drop the

invariant W -boson masses by realizing that their di↵erential K factor is practically flat over
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d�

d�B

=
d7�

dpT,W�dyWWd�yW+W�dcos ✓CS
W+d�CS

W+dcos ✓CSW�d�CS
W�

(2.9)

=
3

16⇡

8X

i=0

Ai fi(✓
CS
W� ,�CS

W�) =
3

16⇡

8X

i=0

Bi fi(✓
CS
W+ ,�CS

W+),

where the first expansion (with Ai) corresponds to the parametrization of the W� decay

in terms of two CS angles and the second one (with Bi) is the same, but for the W+ decay.

The functions fi(✓,�) are given by

f0(✓,�) =
�
1� 3 cos2 ✓

�
/2 ,

f3(✓,�) = sin ✓ cos� ,

f6(✓,�) = sin 2✓ sin� ,

f1(✓,�) = sin 2✓ cos� ,

f4(✓,�) = cos ✓ ,

f7(✓,�) = sin2 ✓ sin 2� ,

f2(✓,�) = (sin2 ✓ cos 2�)/2 ,

f5(✓,�) = sin ✓ sin� ,

f8(✓,�) = 1 + cos2 ✓ .
(2.10)

For i 2 {0, ..., 7} they have the property that their integral vanishes when integrating over

dcos ✓ d�. The coe�cients Ai and Bi are defined as moments of the di↵erential cross section

integrated over the respective CS angles:

Ai =

Z
d�

d�B

gi(✓
CS
W� ,�CS

W�) dcos ✓CSW�d�CS
W� ,

Bi =

Z
d�

d�B

gi(✓
CS
W+ ,�CS

W+) dcos ✓CSW+d�CS
W+ .

(2.11)

The functions gi(✓,�) are defined as

g0(✓,�) = 4� 10 cos2 ✓ ,

g3(✓,�) = 4 sin ✓ cos� ,

g6(✓,�) = sin 2✓ sin� ,

g1(✓,�) = sin 2✓ cos� ,

g4(✓,�) = 4 cos ✓ ,

g7(✓,�) = 5 sin2 ✓ sin 2� ,

g2(✓,�) = 10 sin2 ✓ cos 2� ,

g5(✓,�) = 4 sin ✓ sin�5 ,

g8(✓,�) = 1 .

(2.12)

Note that A8 and B8 are actually no moments, but correspond to the di↵erential cross

section itself integrated over the respective CS angles.

With the notation that we have introduced to write Eq. (2.9) in such a compact form,

it is straightforward to deduce the combined formula including both decays by inserting

the expression of Eq. (2.9) for the W� decay into the Bi coe�cient of the W+ decay in

Eq. (2.11), or vice versa. Hence, our generalization to the decay of both vector bosons for

the expansion of the cross section in all four CS angles can be cast into the following form:

d�

d�B

=
9

256⇡2

8X

i=0

8X

j=0

ABij fi(✓
CS
W� ,�CS

W�) fj(✓
CS
W+ ,�CS

W+) , (2.13)

with coe�cients

ABij =

Z
d�

d�B

gi(✓
CS
W� ,�CS

W�) gj(✓
CS
W+ ,�CS

W+) dcos ✓CSW�d�CS
W�dcos ✓CSW+d�CS

W+ . (2.14)
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1.First, note that the NNLO/NLO K-factors are (as expected) completely 
flat in mW+ and mW-, hence drop these variables from the reweighing   
(validity of this approximation to be validated a posteriori)  

Final complexity: 81 triple-differential distributions at NNLO and WWJ-MiNLO. 
Numerically intensive but doable  

2.Parametrise both W-boson decays using Collins-Soper angles (9-
coefficients per decay rather than two continues variables) 
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(a) (b) (c)

Figure 2. Comparison at LHE level of our NNLOPS results (solid, blue) with the nominal NNLO
predictions (red, dashed) for the three distributions used in the reweighting, with the binning of
Eq. (2.8): (a) pT,W� , (b) yWW and (c) �yW+W� ; MiNLO results at the LHE level (black, dotted)
are shown for reference; see text for details.

results.

We next consider the CS angles of the W+ decay. The corresponding results for the

W� decay are practically identical which is why we refrain from discussing them separately.

Fig. 3 shows that the distributions in ✓CS
W+ and �CS

W+ are in perfect agreement between

NNLOPS and NNLO, which demonstrates the validity of our procedure to describe the W

decays via CS angles. In fact, we have checked explicitly at NNLO level that Eq. (2.13)

reproduces the correct cross section when being di↵erential in any two of the four CS angles

at the same time.

Let us add at this point that we have also tried to only use the three-dimensional

reweighting in d�
W

+
⇤ W

�
⇤

without using the CS angles by replacing

d�

d�B

⌘
d�

d�
W

+
⇤ W

�
⇤

=
d3�

dpT,W�dyWWd�yW+W�
(2.16)

in Eq. (2.2). As expected, this reduces some statistical fluctuations. In fact, we found

that excluding the CS angles the NNLO distributions are still very well reproduced by the

NNLOPS sample. Of all one-dimensional distributions we considered, only ✓CS
W+ and ✓CS

W�

show a mildly di↵erent shape (at the few-percent level) in this case. We therefore provide

the reweighting without CS angles as an option in our code, while keeping the application

of the full expression in Eq. (2.13) the default in the code and throughout this paper. One

must bear in mind that as soon as double di↵erential distributions in angular observables

of the leptons are considered the validity of the application of the reweighting without CS

angles may be limited.

The only observables in our definition of the Born phase space, see Eq. (2.7), which

remain to be validated are the invariant masses of the two W bosons. We first recall

that for reasons of complexity we excluded them from the Born-level variables in the
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(a) (b)

Figure 3. Same as Fig. 2, but for the CS angles of the W+ decay: (a) ✓CSW+ and (b) �CS
W+ .

(a) (b)

Figure 4. Same as Fig. 2, but for the invariant mass of the W+ boson mW+ in two di↵erent
regions: (a) around the W -mass peak, mW+ 2 [50, 100]GeV, and (b) including o↵-shell regions,
mW+ 2 [0, 1000]GeV.
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(a) (b)

Figure 3. Same as Fig. 2, but for the CS angles of the W+ decay: (a) ✓CSW+ and (b) �CS
W+ .
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Figure 4. Same as Fig. 2, but for the invariant mass of the W+ boson mW+ in two di↵erent
regions: (a) around the W -mass peak, mW+ 2 [50, 100]GeV, and (b) including o↵-shell regions,
mW+ 2 [0, 1000]GeV.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Same as Fig. 2, but for observables which have not been used in Eq. (2.7) to define a
basis of the Born-level phase space: (a) invariant mass of the W+W� pair mWW , (b) transverse
momentum pT,W+ and (c) rapidity yW+ of W+, (d) transverse mass of the W+W� pair mT,WW

defined Eq. (2.17), (e) missing transverse momentum pmiss
T and (f) lepton separation ��``.

reweighting procedure by assuming them to feature flat higher-order corrections. Indeed,

Fig. 4 (a) confirms this to be an appropriate assumption in the peak-region of the spectrum,

where the bulk of events is situated and the agreement of the NNLO with the NNLOPS

distributions is close to perfect. Even in the phase-space areas where the two W bosons

become far o↵-shell the NNLOPS result deviates by less than 5% from the NNLO curve,

see Fig. 4 (b). This discrepancy is at the level of the statistical uncertainty in these regions.

We note that we only show the mW+ distribution in that figure, because the mW� results

are practically identical.

We conclude this section by studying distributions which have not been used in the

parametrization of our phase-space definition in Eq. (2.7). This is important in order to

convince oneself that, beyond the observables used for the reweighting, our procedure repro-

duces correctly the NNLO cross section for other distributions. Fig. 5 shows corresponding

plots for the invariant mass of the W+W� pair, the transverse momentum and the rapidity

– 15 –

(a) (b) (c)

������ ���� ������ �� ���

����� �����
����
������ �����

����

����

���

���

���

���

�����������

�����

���
���
���
���
�

���
���
���
���

� ��� ��� ��� ��� ����

������ �������� ������ �� ���

����� �����
����
������ �����

����

����

����

���

���

���

���

�����������

������ �����

���
���
���
���

�
���
���
���
���

� ��� ��� ��� ��� ��� ��� ��� ���

������ ���� ������ �� ���

����� �����
����
������ �����

�
��
��
��
��
��
��
��
��

�����������

����

���
����
���
����

�
����
���

� ��� � ��� � ��� �

(d) (e) (f)

Figure 5. Same as Fig. 2, but for observables which have not been used in Eq. (2.7) to define a
basis of the Born-level phase space: (a) invariant mass of the W+W� pair mWW , (b) transverse
momentum pT,W+ and (c) rapidity yW+ of W+, (d) transverse mass of the W+W� pair mT,WW

defined Eq. (2.17), (e) missing transverse momentum pmiss
T and (f) lepton separation ��``.

reweighting procedure by assuming them to feature flat higher-order corrections. Indeed,

Fig. 4 (a) confirms this to be an appropriate assumption in the peak-region of the spectrum,

where the bulk of events is situated and the agreement of the NNLO with the NNLOPS

distributions is close to perfect. Even in the phase-space areas where the two W bosons

become far o↵-shell the NNLOPS result deviates by less than 5% from the NNLO curve,

see Fig. 4 (b). This discrepancy is at the level of the statistical uncertainty in these regions.

We note that we only show the mW+ distribution in that figure, because the mW� results

are practically identical.

We conclude this section by studying distributions which have not been used in the

parametrization of our phase-space definition in Eq. (2.7). This is important in order to

convince oneself that, beyond the observables used for the reweighting, our procedure repro-

duces correctly the NNLO cross section for other distributions. Fig. 5 shows corresponding

plots for the invariant mass of the W+W� pair, the transverse momentum and the rapidity
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• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)

– 4 –

where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
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+B(↵s(q))

◆
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and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
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dpT

L(pT) +
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dS(pT)

dpT

=
2

pT

✓
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Q
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p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)
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d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)
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sing

d�BdpT
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, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads
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We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows
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where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
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s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
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MiNLO

• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)
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d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)
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d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads
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. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows
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+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
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We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable
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s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term
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MiNLO missing NNLO terms

• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula
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=
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2
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with
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, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as
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We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as
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where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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[Monni, Nason, Re, MW, Zanderighi '19]

NNLO

NNLO+PS

MiNLO

MiNNLOPS results
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Figure 2. Distribution in the transverse momentum (left) and rapidity (right) of the Higgs boson
for MiNNLOPS (blue, solid), MiNLO0 (black, dotted), and NNLO (red, dashed).

induces a larger scale dependence. On the other hand, we include additional scale-dependent
terms (as pointed out before) that originate from the analytic Sudakov form factor in the
MiNNLOPS procedure, which are absent in a fixed-order calculation, see appendix D.
This induces a more conservative estimate for the theory uncertainties of the MiNNLOPS

predictions.
In the case of the DY results in table 1, we observe that conclusions similar to the case

of Higgs production can be drawn, albeit with significantly smaller corrections: The effect
of the MiNNLOPS procedure is to increase the MiNLO0 cross section by about 5%. Again
the scale uncertainties are vastly reduced, in the case of DY by almost a factor of 10. The
MiNNLOPS result is only 1.7% below the NNLO prediction and they are in good agreement
within their respective scale uncertainties, which are extremely small. Roughly speaking,
scale uncertainties are 2% for MiNNLOPS, which is a bit larger than the 1% uncertainties at
NNLO. Given the above discussion about the formal differences between MiNNLOPS and
NNLO fixed-order computations, these results are very compelling and provide a numerical
proof of the accuracy of the total inclusive cross section of the MiNNLOPS procedure. We
will now turn to validating the MiNNLOPS results also for differential observables.

5.3 Distributions for Higgs-boson production

We first consider the case of Higgs-boson production. The figures of this section are or-
ganized as follows: the main frame shows the results from MiNNLOPS (blue,solid) and
MiNLO0 (black, dotted) after parton showering, as well as NNLO predictions (red, dashed),
and all results are reported in units of cross section per bin (namely, the sum of the values of
the bins is equal to the total cross section, possibly within cuts). In an inset we display the
bin-by-bin ratio of all the histograms which appear in the main frame to the MiNNLOPS

– 23 –
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Diboson theory predictions under excellent control:
NNLO QCD done!  ➙  publicly available within MATRIX 

ℓℓ+ET,miss signature studied at NNLO, mixes ZZ and WW resonances

NLO QCD corrections for loop-induced gg contribution

first NNLO+PS computation for a 2→4 process (WW)

MiNNLOPS: New NNLO+PS approach (no reweighting)

Open issues/ongoing work for dibosons:
best way to combine NNLO, NLO EW and NLO gg

NLO gg Higgs interference for ZZ and WW

combination of NNLO QCD with state-of-the-art (N3LL) resummation

MiNNLOPS for diboson processes

Conclusions





Thank You !
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[Grazzini, Kallweit, MW, Yook 'to appear]
gg→2ℓ2ν (WW) at NLONEW: 
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Figure 7: Di↵erential distributions in the fiducial phase-space selections of Table 1 compared to
ATLAS 13TeV data [34]; top left: leading-lepton distribution; top center: lepton-pair invariant-mass
distribution; top right: lepton-pair transverse-momentum distribution; bottom left: lepton-pair
rapidity distribution; bottom right: azimuthal distance between leptons.
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[Re, MW, Zanderighi '18]

Giulia Zanderighi, WW@NNLOPS

Setup

14

The remaining three variables and their binning chosen to be

Cuts inspired by ATLAS 13 TeV study (1702.04519): NNLO uses the central scale

All uncertainty bands are the envelop 
of 7-scales. In the NNLOPS scales in 
MiNLO and NNLO are varied in a 
correlated way 

gg-channel not included in our study, as 
it can it is know at one-loop and can be 
added incoherently 

Setup:



[Re, MW, Zanderighi '18]

Phenomenological results:
Charge asymmetry

NNLOPS inclusive phase space fiducial phase space

AW

C
0.1263(1)+2.1%

�1.8%
0.0726(3)+2.0%

�2.6%

A`

C
�[0.0270(1)+5.0%

�6.4%
] �[0.0009(4)+72%

�87%
]

Table 3. NNLOPS predictions for the charge asymmetry for W -bosons and charged leptons in
W+W� production. The fiducial volume is defined in Tab. 1 (including the jet-veto requirement).

the positively and negatively charged W bosons as shown in Fig. 11 (a): W+ bosons are

generally more forward, while W� bosons are situated more at central rapidity. However,

since theW -boson momenta of theW+W� final state are not accessible in the measurement

due to the two neutrinos (not even under the assumption that they are on-shell), one may

wonder whether this asymmetry persists in the case of the leptons. Indeed, Fig. 11 (b)

shows a similar, but less pronounced behaviour for the leptons. In fact, the asymmetry is

reversed with respect to the charges in this case with the `+ being more central and the

`� more forward.

We can now use the previous observation to define a charge asymmetry in W+W�

production for the W bosons:

AW

C =
�(|yW+ | > |yW� |)� �(|yW+ | < |yW� |)

�(|yW+ | > |yW� |) + �(|yW+ | < |yW� |)
, (3.6)

as well as for the leptons:17

A`

C =
�(|y`+ | > |y`� |)� �(|y`+ | < |y`� |)

�(|y`+ | > |y`� |) + �(|y`+ | < |y`� |)
. (3.7)

This allows us to express the size of the asymmetry by a single number. It is zero if there

is no asymmetry, positive if the positively-charged particle is more forward, and negative

otherwise. Note that the denominator simply corresponds to the integrated cross section,

within the considered cuts.

Tab. 3 summarizes the NNLOPS predictions for AW

C
and A`

C
in the inclusive and in

the fiducial phase. The uncertainties are obtained by computing a 7-point variation in

the numerator and dividing by the central cross section in the denominator. This choice

is motivated by the fact that fully correlated uncertainties in the ratio lead to too small

uncertainties for AW

C
. The W -boson asymmetry in the inclusive phase space is pretty large

and positive, as one could expect from Fig. 11 (a). It is significantly reduced by the fiducial

cuts, but still clearly di↵erent from zero. Also the leptons yield a charge asymmetry at

inclusive level, which, however, is smaller than for W bosons and negative. Unfortunately,

once lepton cuts are applied in the fiducial volume A`

C
becomes almost compatible with

zero within both perturbative and numerical uncertainties. This again is due to the left-

handed nature of the W -boson interactions: in the case of the W+ decay, the neutrino

17Note that for the leptons, since they are massless, the rapidity entering the asymmetry and the pseudo-

rapidity used to define the fiducial cuts coincide (y` ⌘ ⌘`).
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• W momentum cannot be 
reconstructed → use leptons

• lepton asymmetry smaller; 
almost vanishes in fiducial

• can be recovered by widening 
rapidity range of leptons or by 
considering boosted regime

• sensitive to W polarizations      
→ powerful probe of new physics
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Figure 11. Comparison of rapidity distributions of negatively (magenta, solid) and positively
(green, dotted) charged particles at NNLOPS for (a) the two W bosons and (b) the two leptons.
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shows a similar, but less pronounced behaviour for the leptons. In fact, the asymmetry is

reversed with respect to the charges in this case with the `+ being more central and the
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a

– 6 –

New approach:  MiNNLOPS



Marius Wiesemann    (MPI Munich) August 26th, 2019Status of (n)NNLO QCD for Dibosons

NLO (F+jet):

MiNLO:

 62

certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets

– 5 –

New approach:  MiNNLOPS



Marius Wiesemann    (MPI Munich) August 26th, 2019Status of (n)NNLO QCD for Dibosons

NLO (F+jet):

MiNLO:
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• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�
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d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2
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Q
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✓
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q2
+B(↵s(q))

◆
, (2.2)
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A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as
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+Rf (pT),
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= exp[�S(pT)]D(pT) , (2.4)

with
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dpT
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, (2.5)

and
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=
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✓
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◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT
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↵s(pT)

2⇡
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✓
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d�BdpT
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, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
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d�BdpT
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↵s(pT)
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. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain
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It is now important to observe that in order to preserve the perturbative accuracy of the
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
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and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.
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where the notation [X]
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expansion of the quantity X. The first term on the right-hand-side is the NLO differential
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integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain
d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.14)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
of eq. 2.9 contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (2.9) between the infrared scale ⇤ and Q is given by [1]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.15)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (2.9). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (2.9) we obtain the MiNLO0 formula [1], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.16)

Notice that eq. (2.11) corresponds precisely to eq. (??) for an observable

O(�) = �(�B(�)� �F ) �(pt(�)� pt). (2.17)

It is now natural to extend its precision up to NNLO (i.e. O(↵2
s(Q)) accuracy in the total

cross section). One observes that this requires the inclusion of all terms up to O(↵3
s(pT))

in the curly brackets of eq. (2.9)

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.18)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (2.5).

The regular terms not explicitly reported in eq. (2.12) arise from the O(↵3
s(pT)) expansion

of the term Rf (pT)/ exp[�S(pT)] in eq. (2.9), which vanish in the limit pT ! 0. The
absence of a 1/pT singularity, ensures that such terms give a N3LO contribution to the total
cross section, and therefore they can be ignored. We explicitly verified that their inclusion
yields a negligible numerical effect. Eq. (2.12) constitutes our master formula to build the
MiNNLOPS generator. This simply amounts to add to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.19)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
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q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X
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⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads
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2⇡
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↵s(pT)
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d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows
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+
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↵s(pT)

2⇡
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(3)
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�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term
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✓
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m
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to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
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This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
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We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable
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NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
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where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain
d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.14)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
of eq. 2.9 contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (2.9) between the infrared scale ⇤ and Q is given by [1]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.15)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (2.9). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (2.9) we obtain the MiNLO0 formula [1], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.16)

Notice that eq. (2.11) corresponds precisely to eq. (??) for an observable

O(�) = �(�B(�)� �F ) �(pt(�)� pt). (2.17)

It is now natural to extend its precision up to NNLO (i.e. O(↵2
s(Q)) accuracy in the total

cross section). One observes that this requires the inclusion of all terms up to O(↵3
s(pT))

in the curly brackets of eq. (2.9)

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.18)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (2.5).

The regular terms not explicitly reported in eq. (2.12) arise from the O(↵3
s(pT)) expansion

of the term Rf (pT)/ exp[�S(pT)] in eq. (2.9), which vanish in the limit pT ! 0. The
absence of a 1/pT singularity, ensures that such terms give a N3LO contribution to the total
cross section, and therefore they can be ignored. We explicitly verified that their inclusion
yields a negligible numerical effect. Eq. (2.12) constitutes our master formula to build the
MiNNLOPS generator. This simply amounts to add to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.19)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets

– 5 –

certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as

d�

d�FdpT

=
d�sing

d�FdpT

+Rf (pT),
d�sing

d�FdpT

= exp[�S(pT)]D(pT) , (2.11)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.12)

and
dS(pT)

dpT

= �
2

pT

✓
A(↵s(pT)) ln

Q2

p2T
+B(↵s(pT))

◆
. (2.13)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely

d�(NLO)
FJ

d�FdpT

=
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
. (2.15)

As a second step, we factor out the Sudakov exponential in eq. (??) and obtain

d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.16)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain
d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.14)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
of eq. 2.9 contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (2.9) between the infrared scale ⇤ and Q is given by [1]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.15)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (2.9). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (2.9) we obtain the MiNLO0 formula [1], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.16)

Notice that eq. (2.11) corresponds precisely to eq. (??) for an observable

O(�) = �(�B(�)� �F ) �(pt(�)� pt). (2.17)

It is now natural to extend its precision up to NNLO (i.e. O(↵2
s(Q)) accuracy in the total

cross section). One observes that this requires the inclusion of all terms up to O(↵3
s(pT))

in the curly brackets of eq. (2.9)

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.18)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (2.5).

The regular terms not explicitly reported in eq. (2.12) arise from the O(↵3
s(pT)) expansion

of the term Rf (pT)/ exp[�S(pT)] in eq. (2.9), which vanish in the limit pT ! 0. The
absence of a 1/pT singularity, ensures that such terms give a N3LO contribution to the total
cross section, and therefore they can be ignored. We explicitly verified that their inclusion
yields a negligible numerical effect. Eq. (2.12) constitutes our master formula to build the
MiNNLOPS generator. This simply amounts to add to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.19)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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• introduce convolution, with (a) for one leg and (b) for the other

• kT for jet pT for system; use either "t", "T" OR "?"

• use d/dkT, d/dpT (not squared)

• change subscript to superscript for coefficients at specific order

• for P = write P(z) =, and other coefficients

• correct convolutions in following equations

• change Deltas in S expansion to S
(i)

• POWHEG-> PWG

• make equation 4.17 more powheg like

• change [dk2] to dPHIrad2

• 4.18 applies only to initial state radiation, but equation 4.19 assumes the full thing
(also final state radiation)

• b space derivation of initial formula

• other things that are missing:

– D3 expressions

– scale dependence

– possibility to exponentiate

2 Description of the procedure

In this section we present a simple illustration of the matching procedure, and we report
a detailed, and more rigorous derivation in Section 4. To achieve NNLO accuracy in a
parton shower simulation, we start by generalising the MiNLO0 procedure to include all
corrections of formal order O(↵

2
s) relative to the Born. We therefore start by identifying

the relevant corrections to the original MiNLO0 master formula from ref. [1].
We consider the production of a generic colour singlet system F of invariant mass Q

and transverse momentum pT in hadronic collisions. In particular, we discuss the above
reaction up to second order in QCD perturbation theory (i.e. O(↵

2
s) relative to the Born),

by keeping in mind that additional radiation will be included by a consistent matching to
the parton shower. As it will be shown in Section 4 (and also Appendix C), up to the
second perturbative order, the differential cross section in pT and the Born phase space �B

is described by the following formula

d�

d�BdpT

=
d

dpT

⇢
exp[�S(pT)]L(�B, pT)

)
+Rf (pT) (2.1)
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets of
eq. (??) contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (??) between the infrared scale ⇤ and Q is given by [? ]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.17)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (??). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit. The Sudakov form
factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q2

q2
+B(↵s(q))

◆
, (2.9)

with

A(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

A(k), B(↵s) =

2X

k=1

⇣↵s

2⇡

⌘
k

B(k) , (2.10)

and the factor L, defined in eq. (??) of Section ??, involves the parton luminosities, the Born
squared amplitude BF for the production of the colour-singlet system F , the hard virtual
corrections and the collinear coefficient functions up to second order, that constitute some
of the ingredients for the N3LL resummation. In the following, for ease of notation, we will
drop the �F dependence in L and Rf .

As it stands, eq. (??) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (??) as
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We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�(NLO)

FJ

d�FdpT

�
↵s(pT)

2⇡


d�sing

d�FdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�sing

d�FdpT

�(2)
, (2.14)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side of the above equation
is the NLO differential cross section for the production of the singlet F in association with
one jet J , namely
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As a second step, we factor out the Sudakov exponential in eq. (??) and obtain
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It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (??), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
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s(Q)) in the total cross section. After
performing this expansion in eq. (??) we obtain the MiNLO0 formula [? ], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.18)

We remind the reader that, in order for eq. (??) to have NLO accuracy, S must include
correctly terms of order up to O(↵2

s) which exactly reproduce the singular part of the cross
section and hence ensure that eq. (??) can be reassembled back as a total derivative to the
desired accuracy.

We now notice that eq. (??) corresponds precisely to eq. (??) for an observable

O(�) = �(�FJ(�)� �FJ) �(pT(�)� pT), (2.19)

that upon integration leads to an observable of the form of eq. (??). In order to achieve
NNLO accuracy, it is now sufficient to guarantee that the pT integral of eq. (??) has
O(↵2

s(Q)) accuracy in the total cross section at fixed �F. This requires the inclusion of
all terms up to O(↵3

s(pT)) in the curly brackets of eq. (??) as follows

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.20)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (??). The

regular terms that we omitted in eq. (??) arise from the O(↵3
s(pT)) expansion of the term

Rf (pT)/ exp[�S(pT)] in eq. (??), which vanish in the limit pT ! 0. The absence of a 1/pT

singularity, ensures that such terms give a N3LO contribution to the total cross section,
and therefore can be ignored. We explicitly verified that their inclusion yields a negligi-
ble numerical effect. Eq. (??) constitutes the reference formula to build the MiNNLOPS

generator. This simply amounts to adding to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.21)

=
2

pT

✓
A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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where Rf contains terms that are non-singular in the small pT limit, while L contains powers
of logarithms of pT. The Sudakov form factor S reads

S(pT) = 2

Z
Q

pT

dq

q

✓
A(↵s(q)) ln

Q
2

q2
+B(↵s(q))

◆
, (2.2)

with

A(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

A
(k)

, B(↵s) =

2X

k=1

⇣
↵s

2⇡

⌘
k

B
(k)

, (2.3)

and the factor L, defined in eq. (4.31) of Section 4, involves the parton luminosities, the
Born squared amplitude, the hard virtual corrections and the collinear coefficient functions
up to second order, that constitute some of the ingredients for the N3LL resummation. In
the following, for ease of notation, we will drop the �B dependence in L.

As it stands, eq. (2.1) is such that its integral in pT between an infrared cutoff ⇤ and
Q reproduces the NNLO total cross section for the production of the colour singlet system.
We can recast eq. (2.1) as

d�

d�BdpT

=
d�

sing

d�BdpT

+Rf (pT),
d�

sing

d�BdpT

= exp[�S(pT)]D(pT) , (2.4)

with
D(pT) ⌘ �

dS(pT)

dpT

L(pT) +
dL(pT)

dpT

, (2.5)

and
dS(pT)

dpT

=
2

pT

✓
A(↵s(pT)) ln

Q
2

p2T
+B(↵s(pT))

◆
. (2.6)

We now make contact with the MiNLO0 procedure. We start by writing the regular
terms Rf to second order as

Rf (pT) =
d�

(NLO)
FJ

d�BdpT

�
↵s(pT)

2⇡


d�

sing

d�BdpT

�(1)
�

✓
↵s(pT)

2⇡

◆2 
d�

sing

d�BdpT

�(2)
, (2.7)

where the notation [X]
(i) stands for the coefficient of the i-th term in the perturbative

expansion of the quantity X. The first term on the right-hand-side is the NLO differential
cross section for the production of the singlet F in association with one jet J , namely

d�
(NLO)
FJ

d�BdpT

=
↵s(pT)

2⇡


d�FJ

d�BdpT

�(1)
+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�BdpT

�(2)
. (2.8)

As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain

d�

d�BdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.9)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
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As a second step, we factor out the Sudakov exponential in eq. (2.4) and obtain
d�

d�FdpT

= exp[�S(pT)]

⇢
D(pT) +

Rf (pT)

exp[�S(pT)]

�
. (2.14)

It is now important to observe that in order to preserve the perturbative accuracy of the
integral of eq. (2.9), it is sufficient to expand the curly bracket in powers of ↵s(pT) up to a
certain order. In fact, when expanded in powers of ↵s(pT), all terms in the curly brackets
of eq. 2.9 contain a 1/pT singularity, and at most (for the terms arising from the derivative
of S) a single logarithm of pT. The contribution of the terms of order ↵m

s (pT) ln
n pT

Q
to the

total integral of eq. (2.9) between the infrared scale ⇤ and Q is given by [1]
Z

Q

⇤
dpT

1

pT

↵m

s (pT) ln
n
pT

Q
exp(�S(pT)) ⇡ ↵

m�n+1
2

s (Q) . (2.15)

This crucially implies that, for the integral to be NLO (i.e. O(↵s)) accurate, one has
to include all terms up to order ↵2

s(pT) in the curly brackets of eq. (2.9). This guarantees
that the perturbative left over is of formal order O(↵2

s(Q)) in the total cross section. After
performing this expansion in eq. (2.9) we obtain the MiNLO0 formula [1], that reads

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)�
. (2.16)

Notice that eq. (2.11) corresponds precisely to eq. (??) for an observable

O(�) = �(�B(�)� �F ) �(pt(�)� pt). (2.17)

It is now natural to extend its precision up to NNLO (i.e. O(↵2
s(Q)) accuracy in the total

cross section). One observes that this requires the inclusion of all terms up to O(↵3
s(pT))

in the curly brackets of eq. (2.9)

d�

d�FdpT

= exp[�S(pT)]

⇢
↵s(pT)

2⇡


d�FJ

d�FdpT

�(1)✓
1 +

↵s(pT)

2⇡
[S(pT)]

(1)

◆

+

✓
↵s(pT)

2⇡

◆2 
d�FJ

d�FdpT

�(2)
+

✓
↵s(pT)

2⇡

◆3

[D(pT)]
(3)

+ regular terms

�
, (2.18)

where [D(pT)]
(3) is the third order term in the expansion of the D(pT) function (2.5).

The regular terms not explicitly reported in eq. (2.12) arise from the O(↵3
s(pT)) expansion

of the term Rf (pT)/ exp[�S(pT)] in eq. (2.9), which vanish in the limit pT ! 0. The
absence of a 1/pT singularity, ensures that such terms give a N3LO contribution to the total
cross section, and therefore they can be ignored. We explicitly verified that their inclusion
yields a negligible numerical effect. Eq. (2.12) constitutes our master formula to build the
MiNNLOPS generator. This simply amounts to add to the MiNLO0 formula the new term

[D(pT)]
(3)

= �


dS(pT)

dpT

�(1)
[L(pT)]

(2)
�


dS(pT)

dpT

�(2)
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
(2.19)

=
2

pT
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A(1)

ln
Q2

p2T
+B(1)

◆
[L(pT)]

(2)
+

2

pT

✓
A(2)

ln
Q2

p2T
+B(2)

◆
[L(pT)]

(1)
+


dL(pT)

dpT

�(3)
,
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MiNNLOPS results
[Monni, Nason, Re, MW, Zanderighi '19]
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Figure 3. Distribution in the rapidity of the leading-jet (left) and its rapidity difference with the
Higgs boson (right) for MiNNLOPS (blue, solid) and MiNLO0 (black, dotted).

curve. The bands correspond to the residual uncertainties that are computed from scale
variations as indicated in section 5.1.

The transverse-momentum distribution of the Higgs boson (pT,H) is shown in the left
panel of figure 2. At fixed order this distribution diverges in the pT,H ! 0 limit, and the
accuracy is effectively reduced to NLO across the spectrum. By comparing MiNNLOPS

and MiNLO0 curves, we observe that the NNLO corrections are included consistently in
the low-pT,H region through the MiNNLOPS procedure. The additional NNLO (two-loop)
contributions in the MiNNLOPS matching are spread in a way that is similar in spirit to
how analytic resummations are combined with fixed order. This is enforced through the use
of the modified logarithms in eq. (3.8). At large pT,H, where the MiNNLOPS and MiNLO0

predictions have both NLO accuracy, we expect the MiNNLOPS procedure not to alter the
MiNLO0 distribution, as can be seen from the figure. The harder tail of the NNLO curve
is due to the different (less appropriate) scale choice in the fixed-order calculation, set to
the Higgs-boson mass rather than to pT,H.

The rapidity distribution of the Higgs boson (yH) in the right panel of figure 2 is the
most relevant observable for which MiNNLOPS needs to be validated against the NNLO
result. Indeed, we find that up to statistical fluctuations the NNLO/MiNNLOPS ratio of
the distribution is completely flat, which shows their equivalence. Henceforth, the difference
of the two results is purely due to the normalisation, i.e. the total inclusive cross section,
which has been discussed in detail in section 5.2 and requires no further comments. In
particular, the conclusions about the uncertainty bands and the size of the corrections
drawn from table 1 hold also for the rapidity distribution shown in figure 2.

We conclude our discussion of the results for Higgs-boson production by looking at jet-
related distributions. We note that the transverse-momentum distribution of the leading
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MiNNLOPS results
[Monni, Nason, Re, MW, Zanderighi '19]
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Figure 5. Distribution in the transverse momentum (left) and rapidity (right) of the negatively
charged lepton for MiNNLOPS (blue, solid), MiNLO0 (black, dotted), and NNLO (red, dashed).

arising from the decay of the Z boson.
Figure 4 shows the transverse-momentum distribution of the Z boson (pT,Z) in the left

panel, and its rapidity distribution (yZ) in the right panel. As seen before, the corrections
are smaller in the case of the DY process, but the general behaviour is the same as for
Higgs-boson production: At large pT,Z the MiNNLOPS result is essentially identical to
the MiNLO0 one, while the additional NNLO terms enter at smaller values of pT,Z. The
NNLO spectrum diverges at small pT,Z, and is harder in the tail due to the different scale
setting. For the yZ distribution, the MiNNLOPS uncertainties are significantly reduced
with respect to the MiNLO0 ones. In the central region (|yZ| < 3) the NNLO/MiNNLOPS

ratio is nicely flat up to statistical fluctuations, and the two results agree within their
respective uncertainties. For very forward Z bosons (|yZ| > 3), on the other hand, we
observe a slight increase of the NNLO/MiNNLOPS ratio. We have checked explicitly that
without the Pythia8 parton shower, i.e. at the level of Les Houches events, this effect is
more moderate and the NNLO and MiNNLOPS uncertainty bands overlap in the forward
region. In fact, we noticed that already for the MiNLO0 prediction, Pythia8 has the same
effect, making the Z-boson rapidity distribution slightly more central.9

Next, we consider the transverse-momentum distribution of the negatively charged lep-
ton (p

T,`�) and its rapidity distribution (y`�) in the left and right panels of figure 5, respec-
tively. For the rapidity distribution the relative behaviour between MiNNLOPS, MiNLO0,
and NNLO is essentially identical to the one of the Z-boson rapidity and does not require
any further discussion. As far as the transverse-momentum spectrum is concerned, the

9We observed that part of this effect can be attributed to the global recoil adopted by Pythia8 for ISR.
The difference from the NNLO prediction is reduced if one uses a more local scheme for the parton-shower
recoil, e.g. via the flag SpaceShower:dipoleRecoil=1.
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Figure 6. Distribution in the rapidity of the leading-jet (left) and its rapidity difference with the
Z boson (right) for MiNNLOPS (blue, solid) and MiNLO0 (black, dotted).

NNLO result shows a very peculiar behaviour for p
T,`� = mZ/2, which reflects the pertur-

bative instability associated with the fact that the leptons at LO are back-to-back and can
share only the available partonic centre-of-mass energy

p
ŝ = mZ, so that their transverse

momenta can be at most p
T,`�  mZ/2. Beyond this value the NNLO result is therefore

effectively only NLO accurate, which can be also seen from the increased uncertainty band.
Since such an instability is related to soft-gluon effects, this feature is cured in both the
MiNNLOPS and MiNLO0 results, which are in good agreement with each other in terms of
shape. Again the MiNNLOPS uncertainty band is significantly smaller than the MiNLO0

one, and we observe a rather constant correction, of the order of ⇠ 5 � 10%, due to the
additional NNLO terms.

Finally, also for the DY process the jet-related observables are fully consistent within
uncertainties when comparing MiNNLOPS and MiNLO0 predictions, as can be seen in
figure 6. However, the size of their uncertainty bands is very different. This is due to the
fact that in the original MiNLO0 prediction a different prescription for the scale variation
was adopted, that also involved the integration boundaries of the Sudakov form factor.
We have checked that by using our prescription in MiNLO0 the uncertainty band becomes
comparable to the MiNNLOPS one. We stress again that we have tested a variety of pT,J

thresholds in the jet definition, and also looked at the azimuthal angle between the leading
jet and the Z boson, and found consistent results throughout.

6 Summary

In this article we have presented a novel approach, dubbed MiNNLOPS, to combine NNLO
QCD calculations with parton showers for colour-singlet production at the LHC. The
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dileptons with certain cuts (and photon final states) are special
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Figure 2: Dependence of the NNLO cross sections on rcut for various processes. The NNLO
results at fixed values of rcut are normalized to the rcut ! 0 extrapolation obtained by using
rcut � 0.15%. The blue band represents the combined numerical and extrapolation uncertainty.
For processes with a large rcut dependence, the extrapolated result and uncertainty obtained by
using rcut � 0.05% is shown in red. Where available, rcut-independent reference results are black.
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Figure 2: Dependence of the NNLO cross sections on the qT -subtraction cut, rcut, for various
processes. The normalization is the result extrapolated to rcut = 0 by taking into account the
rcut dependence above rcut � 0.15 (default value). The blue bands is the combined numerical
and extrapolation uncertainty estimated by Matrix in every run.
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MATRIX features on one slide
Colourless 2→1 and 2→2 reactions (decays, off-shell effects, spin correlations; previous slide)

physics features:
NNLO accuracy based on qT subtraction

loop-induced gg component part of NNLO cross section (effectively LO accurate)

CKM for W-boson production

essential fiducial cuts, dynamical scales and distributions already pre-defined for each process

final-state particles directly accessible (for distributions, cuts, scales)

scale uncertainty estimated automatically estimated (7- or 9-point) with every run

NEW: automatic extrapolation of qT-subtraction cut-off to zero (with extrapolation uncertainty)

technical features:
Core: C++ code;  steered by Python interface (compilation/running/job submission/result collection)

only requirements: LHAPDF 5 or 6 pre-installed & Python 2.7 with numpy

Otherwise fully automatic! (download/compilation of external packages; inputs via interface etc.)

local and cluster support: LSF (lxplus), HT-Condor (lxplus), condor, SLURM, Torque/PBS, SGE

option to reduce workload (output) on slow file systems

all relevant references in CITATION.bib (provided with every run)

comprehensive manual shipped with the code

→ missing your favourite cluster? Let us know!


