

Precision Measurements of Di-boson Differential and Total cross sections from CMS

Alicia Calderón
Instituto de Física de Cantabria, CSIC-UC
On behalf of the CMS collaboration

Multi-Boson Interactions workshop Aristotle University of Thessaloniki August 2019

Introduction

- Why study di-boson processes at the LHC?
 - Stringent test of the standard model (SM) non-abelian character of the SU(2)₁xU(1) gauge group at TeV scale
 - Precision test of:
 - sensitive to higher order QCD / EW corrections at TeV scale
 - New physics (e.g. arXiv:1406.0848 [hep-ph])? Subsequent NNLO calculation agrees much better with measurement.
 - Model-independent means to search for new physics at the TeV scale.
 - allow for the possibility of new physics with mass scales very close to the Electroweak Scale
 - growing interest in indirect searches at LHC
 - Precise measurements help to constrain SM contribution (background) in searches of many new physics models and Higgs analysis.

Introduction

Di-boson inclusive production

$$\mathcal{L}_{GC} = \frac{1}{2} g_2 (\partial_\mu W^i_\nu - \partial_\nu W^i_\mu) \varepsilon_{ijk} W^{j\mu} W^{k\nu} - \frac{1}{4} g_2^2 \varepsilon_{ijk} \varepsilon_{imn} W^j_\mu W^k_\nu W^{m\mu} W^{n\nu}$$

- SU(2)xU(1) symmetry leads to several trilinear gauge bosons interactions in the electroweak sector of the SM.
- Only charged couplings allowed in SM (WWZ, WWy)
- No neutral couplings in the s-channel (ZZZ, ZZy, Zyy)
- New Physics shows up through virtual effects: modification to TGCs wrt to SM (aTGC)
 - Deviations from SM couplings result in large cross section changes

CMS Run 2

- Run 2 pp data taking efficiency 92.3 %
- A total of 137 fb⁻¹ in LHC Run 2 collected by CMS.
- 2018: largest dataset collected so far
- Most results shown here use 35.9/fb of data collected in 2015+2016
- Total uncertainty on the integrated luminosity ~ 2 – 2.5%
- Mean number of interactions per bunch crossing in the Run2 of 34

Overview of Run 2 CMS analysis

 Here presenting di-boson measurements performed by CMS in Run2 involving leptonic final states

Process	Final state	Dataset @ 13 TeV	Documents
WZ	IIIv	35.9/fb	JHEP 04 (2019) 122
ZZ	IIII	137.0/fb	SMP-19-001
ZZ	IIII	35.9/fb	Eur. Phys. J.C. (2018) 78
ZZ	IIII+jets	35.9/fb	SMP-18-008
WW	lvlv	2.3/fb	PAS-SMP-16-006

NNLO QCD and NLO EWK predictions available for many processes

The measurements

- Total cross section is obtained by correcting for acceptance, efficiency and branching ratio
- Low statistics → inclusive cross sections
- Decent statistics → differential cross sections

higher order QCD and QED perturbative corrections

probe any deviation from SM prediction more closely (tails)

WZ cross section

- Sensitive to charged WWZ gauge interaction
- Background to charged resonance searches (e.g. H[±])
- Measure both fiducial and total cross sections
 - with increased precision wrt previous results
- First differential cross-section measurement test of SM prediction at 13TeV
 - Transverse momentum of Z
 - Transverse momentum of WZ system
 - Mass of 3-lepton + pT_{miss} system
- $\sigma(W^+Z)/\sigma(W^-Z)$ is computed as well

POWHEG at NLO in QCD

WZ event selection

- Cut & count analysis:
 - Three well-identified leptons, measured with 4 final flavor states: eee, eeμ, eμμ, μμμ
 - N_{bjets}= 0
 - Inv. Mass (3I) > 100 GeV
- Main backgrounds Z+jet /top estimated from data (inverting lepton isolation), ZZ (from MC)
- Great agreement between data and simulation

WZ inclusive cross section

Total phase space: 3 light leptons and 60 GeV < m_z < 120 GeV at gen level

$$\sigma_{\text{tot}}(\text{pp} \to \text{WZ}) = 48.09^{+1.00}_{-0.96} \,(\text{stat})^{+0.44}_{-0.37} \,(\text{theo})^{+2.39}_{-2.17} \,(\text{syst}) \pm 1.39 \,(\text{lumi}) \,\,\text{pb}$$

- Systematic limited: ~ 5% (mainly from b tag and lepton ID)
- Uncertainty on inclusive cross section halved compared to previous results
- Compare to theoretical predictions, enough precision to be able to favor NNLO predictions over the NLO ones

```
MATRIX [arXiv:1604.08576] \sigma_{\rm NLO}({\rm pp} \to {\rm WZ}) = 45.09^{+4.9\%}_{-3.9\%} \, {\rm pb} Perturbative QCD from MATRIX [arXiv:1711.06631] \sigma_{\rm NNLO}({\rm pp} \to {\rm WZ}) = 49.98^{+2.2\%}_{-2.0\%} POWHEG + PYTHIA \sigma^{\rm NLO}_{\rm Pow} = 42.5^{+1.6}_{-1.4} \, ({\rm scale}) \pm 0.6 \, ({\rm PDF}) \, {\rm pb}.
```


Charge-dependent measurements

- Production cross section depending on the W boson charge: W⁺Z, W⁻Z and the ratio
- Potential observable to constrain the u/d PDF
- Exactly the same procedure as in the inclusive case: most systematics cancelled in the ratio

$$\sigma_{\text{tot}}(pp \to W^{+}Z) = 28.91^{+0.63}_{-0.61} \text{ (stat)}^{+0.28}_{-0.25} \text{ (theo)}^{+1.43}_{-1.31} \text{ (syst)} \pm 0.80 \text{ (lumi) pb},$$

$$\sigma_{\text{tot}}(pp \to W^{-}Z) = 19.55^{+0.45}_{-0.44} \text{ (stat)}^{+0.17}_{-0.15} \text{ (theo)}^{+0.97}_{-0.88} \text{ (syst)} \pm 0.55 \text{ (lumi) pb}.$$

$$A_{\rm WZ}^{+-} = \frac{\sigma_{\rm tot}({\rm pp} \to {\rm W}^{+}{\rm Z})}{\sigma_{\rm tot}({\rm pp} \to {\rm W}^{-}{\rm Z})} = 1.48 \pm 0.06\,({\rm stat}) \pm 0.02\,({\rm syst}) \pm 0.01\,({\rm theo})$$

$$A_{\rm WZ}^{+-}(NLO) = 1.43_{-0.05}^{+0.06}$$

WZ differential cross section

- Fiducial region at gen level defined by imposing requirements that mimic the lepton kinematic characteristics in the signal region:
 - 3 isolated leptons in the detector acceptance region (including tau decays)
 - Inv. Mass (3I) > 100 GeV
 - Z candidate mass window 60 GeV < m₇ < 120 GeV
- Unfolded (Tikhonov method) data to dressed-lepton level
 - Lepton momentum corrected by adding final-stateradiation photon
- Response Matrix using NLO MC (POWHEG)
 - Alternative MC MADGRAPH5_aMC @NLO
- Differences between generators are included as an additional systematic uncertainty.

Additional 15% added in the error bar to account for NLO/NNLO

WZ differential cross section

- **p**_T^Z: typical probe to BSM physics (at high values).
- p-j1: boost of the WZ system (recoil from ISR).
- M_{WZ}: variable used for the aTGC search (BSM physics sensitivity).
- Measurements and predictions agree well. Statistical uncertainties and background subtraction dominate.

WZ differential cross section

 First look at charge-dependent differential cross sections with thousands of WZ candidate events

ZZ->4l cross section

- Smallest diboson cross section but ...
 - Clean experimental signature with virtually zero background
 - Main background to standard model Higgs → 4ℓ
- No TGC contribution in the SM
- Dominant process qq→ZZ. Sizeable higher order corrections.
 - NNLO QCD available for qq→ZZ
- gg→ZZ contributes to total rate.
 - NLO QCD available for gg→ZZ.
 - NLO correction for gg→ZZ is large (k=1.7) [*Phys. Rev. D* 92, 094028]
- Measure both fiducial and total cross sections for non resonant ZZ production, and both Z bosons on-shell in the mass range $60~{\rm GeV} < m_Z < 120~{\rm GeV}$

POWHEG (or MG5 aMC@NLO) at NLO in QCD (NNLO normalization: k= 1.1)

MCFM LO (NLO normalization: k= 1.7)

ZZ event selection

- Cut & count analysis:
 - Four well-identified leptons, measured with 3 final flavor states: eeee, eeμμ, μμμμ
 - $60 < Inv. Mass (Z_i) < 120 GeV$
- Main backgrounds Z+jets estimated from data (no lepton isolation), VVV ≥ 4 prompt leptons (from MC)
- Great agreement between data and simulation

ZZ inclusive cross section

- Total phase space: 4 final state leptons, each Z candidate within $60 \text{ GeV} < m_{Zi} < 120 \text{ GeV}$ at gen level
- ZZ result with full Run-II data: 137/fb: total cross section measurement using 41.5 fb-1 (2017) and 59.7 fb-1 (2018) data, combined with 2016 result

$$\sigma_{tot} = 17.1 \pm 0.3 \, (\text{stat}) \pm 0.4 \, (\text{syst}) \pm 0.4 \, (\text{theo}) \pm 0.3 \, (\text{lumi}) \, \text{pb}$$

- Systematic + theory ~3%. Dominant uncertainty from lepton Identification
- Good Agreement with NNLO predictions: Including NLO EW and QCD corrections

MATRIX Perturbative QCD [arXiv:1711.06631] $\sigma^{NNLO\ QCD} = 16.2^{+0.6}_{-0.4}\ pb$

Phys. Rev. D**97**, 032005 (2018) Eur. Phys. J. C 78 (2018) 165

$$\sigma^{NLO\ QCD} = 15.0^{+0.7}_{-0.6}(PDF) \pm 0.2(scale)\ pb$$

(qd)

ZZ differential cross section

- Fiducial region at gen level defined by imposing requirements that mimic the lepton kinematic characteristics in the signal region:
 - 4 isolated leptons in the detector acceptance region (excluding tau decays)
 - Each Z candidate within 60 GeV < m_{Zi} < 120 GeV
- Unfolded (iterative technique) data to dressedlepton level
- In general good agreements with predictions
 - Slightly softer pt spectrum of the ZZ system

More distributions in the paper Eur. Phys. J. C 78 (2018) 165

ZZ+jets differential cross section

- $\sigma(ZZ \rightarrow IIII)$ on the jet multiplicity and the kinematic properties of two pT-leading jets
- Provide an important test of the QCD corrections to ZZ production

EWK qq \rightarrow Z + 2jets: PHANTOM (including tribosons ZZV(V \rightarrow jets) as well as diagrams with quartic vertices)

- Overall statistically dominated in the unfolding.
- Njets discrepancies in same direction as the pt of the ZZ system
- Some key VBS variables $(\Delta \eta_{jj})$ are less well modeled

WW cross section

 $qq \rightarrow W^+W^-$ POWHEG at NLO in QCD (NNLO normalization)

- W⁺W⁻ production cross section larger than W[±]Z and ZZ production.
- qq→WW known to NNLO [arXiv:1408.5243] and gg→WW NLO [arXiv: 1511.08617].
- Resonant production (gg → H → WW) considered as background in his analysis (only 3% of expected signal yields).
- The 0-jet (or 1-jet bin) veto applied in this analysis makes the kinematical distributions particularly sensitive to higher-order QCD corrections.
 - reweight $p_T(WW)$ of the qq \rightarrow WW MC to a NNLO+NNLL p_T resummation calculation

gg \rightarrow W⁺W⁻ (~ 5%) MCFM at LO in QCD (NLO normalization: k=1.4) Including interference term with gg \rightarrow H

WW event selection

- Preliminary result from a cut & count analysis (only 2.3/fb)
 - Two well-identified leptons in the eµ channel.
 - Missing transverse momentum > 20 GeV
 - min(proj. MET, proj. Track MET) > 20 GeV
 - Separated between events with 0 or 1 reconstructed jet with $E_T > 30$ GeV and $|\eta| < 4.7$
 - N_{bjets}= 0
- Main backgrounds non-promt leptons estimated from data (inverting lepton isolation), Z→ττ and top (from MC)
- Great agreement between data and simulation testimony of incredible effort from both theory and experimental communities.

WW inclusive cross section

- Total cross section measured for the independent 0-jet and 1jet categories and the combined result.
- Combination result with a precisión ~ 5% (stat.), 10% (syst.)
 - Experimental systematics are the dominant ones

Category	Value \pm stat. \pm exp. syst. \pm theo. syst. \pm lumi. [pb]
0-jet	$113.6 \pm 6.3 \pm 5.1 \pm 6.5 \pm 3.3$
1-jet	$135.3 \pm 15.4 \pm 34.0 \pm 14.4 \pm 6.0$
Combination	$115.3 \pm 5.8 \pm 5.7 \pm 6.4 \pm 3.6$

Compatible with NNLO predictions

qq NNLO Perturbative QCD + gg NLO
$$\sigma^{\rm NNLO}(pp \to W^+W^-) = 120.3 \pm 3.6~\rm pb$$

 Working on a final result with more statistic and differential cross section distributions.

[ATLAS collaboration (2012 – 2017), CMS collaboration (2012 – 2016)]

CMS VV measurements

Conclusions

- Most of the results of diboson measurements at 13 TeV in the fully leptonic decay channels are done with partly run 2 data
 - ZZ total cross section already produced with the full Run2 data
 - Reached precision of ~ 5%
 - Good agreement with predictions at NNLO in QCD
- We have entered the era of precision cross section measurements in multiboson physics
 - Inclusive measurement no longer statistically limited
 - We should consciously be mapping out a program to even better precision (2% ... 1%?)
- Differential measurements
 - We now have sufficient sensitivity to see differences with state of the art MCs
 - We should move quickly to any better predictions and MCs
- Full results on Run 2 data at 13 TeV on going:
 - Will reduce statistical uncertainty
 - Larger luminosity opens the possibility of more detailed studies in tails
 - EW corrections become more important: especially in the tails of diboson production, etc...

Backup slides

Ingredients for precision measurements

- Object performance is a fundamental key for any precision measurement
- Stable in the barrel (tracker coverage)
- Larger variations due to detector transition and acceptance

Muons

High efficiency on lepton reco and identification

WZ theory predictions

- POWHEG (NLO QCD sample) + Pythia: "nominal" simple.
 - Additional partons at ME using the merging scheme FxFx
- Matrix at NLO in QCD
- Matrix at NNLO
- PDF: NNPDF30NLO
- aTGC: reweighted at LO signal samples generated with Madgraph at NLO or different pt^Z to enrich in the high energy regions.
- At generator level to avoid infrared divergences: veto events with M(II`) > 4 GeV

WZ selection

- tt bar background (mainly ttZ and tZq):
 - inv. Mass of Z candidate within 15 GeV the Z mass peak
 - B veto requirement (medium WP for CSV, ~70% efficiency)
- Non prompt (mainly Z+jets):
 - MET > 30 GeV
- ZZZ (tri-leptons): vetoing events with a 4th loose lepton

- Non-prompt leptons (Z+jets, tt) from tight to loose method
- ZZ from MC

$$q_{\rm ZZ} = 0.99 \pm 0.09$$
.

WZ uncertainties

- B tagging identification ~2.5 %
- Lepton identification and trigger efficiency ~2%
- Non-promp background estimation ~1%

 Theoretical uncertainties: scale factorization and renormalization and PDF+alpha s

Source	Combined	eee	$ee\mu$	$e\mu\mu$	$\mu\mu\mu$
Electron efficiency	1.9	5.9	3.9	1.9	_
Electron energy scale	0.3	0.9	0.2	0.6	_
Muon efficiency	1.9	> -	0.8	1.8	2.6
Muon momentum scale	0.5		0.7	0.3	0.9
Trigger efficiency	1.9	\geq 2.0	1.9	1.9	1.8
Jet energy scale	0.9	1.6	1.0	1.7	0.8
b-tagging (id.)	2.6	\geq 2.7	2.6	2.6	2.4
b-tagging (mis-id.)	0.9	1.0	0.9	1.0	0.7
Pileup	0.8	0.9	0.3	1.3	1.4
ZZ	0.6	0.7	0.4	0.8	0.5
Nonprompt norm.	1.2	>2.0	1.2	1.5	1.0
Nonprompt (EWK subtr.)	1.0	1.5	1.0	1.3	0.8
VVV norm.	0.5	0.6	0.6	0.6	0.5
VH norm.	0.2	0.2	0.3	0.2	0.2
$t\overline{t}$ V norm.	0.5	0.5	0.5	0.5	0.5
tZq norm.	0.1	0.1	0.1	0.1	0.1
$X+\gamma$ norm.	0.3	0.8	< 0.1	0.7	< 0.1
Total systematic	4.7	7.8	5.8	5.4	4.6
Integrated luminosity	2.8	2.9	2.8	2.9	2.8
Statistical	2.1	6.0	4.8	4.1	3.1
Total experimental	6.0	10.8	8.0	7.5	6.3
Theoretical	0.9	0.9	0.9	0.9	0.9

ZZ theory predictions

- POWHEG (NLO QCD sample) for qq production and LO for quarkgluon.
 - Scaled to NNLO (k=1.1)
- gg simulated with MCFM at LO (including ZZ, Zg*, Z, g*g* and gg→H)
 - Scaled to NLO both ZZ and Higgs (k=1.7=)
- Higgs boson decay is modelled with JHUGEN
- PDF: NNPD31_lo_as_0130 (NNPDF3.0 for ZZ+jets analysis)
- aTGC:
- At generator level to avoid infrared divergences: veto events with M(II`) > 4 GeV

ZZ uncertainties

 Dominated by lepton identification: ~2-8 %

- Theoretical uncertainties: scale factorization and renormalization and PDF+alpha_s
- Additional systematic from NLO to NNLO (or LO to NLO in gg): ~1%

Uncertainty	Range of values
Lepton efficiency	2–8%
Trigger efficiency	1–2%
Background	0.6-1.3%
Pileup	1%
PDF	1%
$\mu_{\mathrm{R}}, \mu_{\mathrm{F}}$	1%
Integrated luminosity	2.3% (2017) 2.5% (2018)

WW selection

Variable	Selection
$q_{\ell_1} imes q_{\ell_2}$	< 0
p_{T}^{ℓ} [GeV]	> 20
PFE_{T}^{miss} [GeV]	> 20
$min(proj. E_T^{miss}, proj. trackE_T^{miss})$ [GeV]	> 20
$p_{\mathrm{T}}^{\ell\ell}$ [GeV]	> 30
$m_{\ell\ell}$ [GeV]	> 12
Additional leptons ($p_{ m T}^\ell > 10$ GeV)	veto
Top-tagging veto	applied

- Tight lepton ID/Isolation
- min(proj. MET, proj. Track MET) > 20 GeV
- Apply top-veto based on jet b-tagging and soft muon tagging
- Reject events with a third lepton passing identification requirements

W→lv + jets (jet→fake lepton)

Z→tautau + jets (fake MET)

tW and ttbar production

WZ backg.

WW uncertainties

- Experimental uncertainty dominant ~4.9%:
 - Lepton ID, trigger, btag
 - MET and JES, JEC
- Theoretical uncertainties ~5%:
 - NNLL reweithing
 - UE and PS
- Non promp background ~3%

Uncertainty source	Propagation to cross section (%)
Experimental uncertainties	4.9
QCD scales and higher order effects	3.2
PDFs	0.4
Underlying event and parton shower	3.7
Non-prompt normalization	3.0
Top-quark normalization	2.0
$W\gamma^*$ normalization	0.3
Simulation and data control regions sample size	1.4
Total systematic uncertainty	7.4
Total statistical uncertainty	5.0
Luminosity	3.0
Total uncertainty	9.5

Prospects for HL-LHC

- Future LHC upgrades will probe mass scales of a few TeV at 14 TeV with 3 ab⁻¹, or potentially even up to ten TeV at 27 TeV with 15ab⁻¹.
- gg becomes important contribution of the total NNLO cross section at $\sqrt{s} = 14$ (27) TeV (i.e. gg \rightarrow ZZ 8%(11%))
- Significant improvement in sensitivity on aTGC

W+W-(blue) W±Z(green) ZZ(orange)

at14TeV (dashed) and 27TeV (solid).

