NNLO QCD + NLO EW for diboson processes

Jonas M. Lindert

図
 University

Multi-Boson Interactions 2019
Thessaloniki, 26. August 2019

Status

Remarkable agreement of inclusive diboson cross sections with NNLO QCD

Allows for stringent SM tests
Dibosons important background for Higgs and BSM searches

Tails, tails, tails,....

NNLO QCD corrections vor VV

All VV processes known through NNLO QCD:
[Talk by M. Wiesemann]
\rightarrow inclusive/on-shell Z,W \& differential/off-shell Z,W (Ieptonic)
YY - inclusive and differential [Catani, Cieri, de Florian, Ferrera, Grazzini 'I2], [Campbell, Ellis, Li, Williams 'I6], [Grazzini, Kallweit, MW 'I7]
$\mathbf{Z}_{\boldsymbol{\gamma}}$ - inclusive/on-shell and differential/off-shell [Grazzini, Kallweit, Rathlev, Torre 'I3], [Grazzini, Kallweit, Rathlev 'I5]; see also: [Campbell et al. 'I7]
$\mathbf{W} \mathbf{\gamma}$ - inclusive/on-shell and differential/off-shell [Grazzini, Kallweit, Rathlev, Torre 'I3], [Grazzini, Kallweit, Rathlev 'I5]
$\mathbf{Z Z}$ - inclusive/On-shell [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi,Weihs 'I4]; see also: [Heinrich et al. 'I7]

- differential/off-shell [Grazzini, Kallweit, Rathlev 'I5], [Kallweit, MW 'I8]

WW - inclusive/On-shell [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, et al. 'I4]

- differential/off-shell [Grazzini, Kallweit, Pozzorini, Rathlev, MW 'I5]

WZ - inclusive/on-shell [Grazzini, Kallweit, Rathlev, MW 'I6]

- differential/off-shell [Grazzini, Kallweit, Rathlev, MW 'I7]

Perturbative expansion

$$
\begin{aligned}
& \mathrm{d} \sigma=\mathrm{d} \sigma_{\mathrm{LO}}+\alpha_{S} \mathrm{~d} \sigma_{\mathrm{NLO}}+\alpha_{\mathrm{EW}} \mathrm{~d} \sigma_{\text {NLO EW }} \\
& \quad \text { NLO QCD } \quad \text { NLO EW } \\
& \\
& +\alpha_{S}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO}}+\alpha_{\mathrm{EW}}^{2} \mathrm{~d} \sigma_{\text {NNLOEW }}+\alpha_{S} \alpha_{\mathrm{EW}} \mathrm{~d} \sigma_{\text {NNLO QCDxEW }}+\ldots \\
& \text { NNLO QCD } \quad \text { NNLO EW } \quad \text { NNLO QCD-EW }
\end{aligned}
$$

Numerically $\mathcal{O}(\alpha) \sim \mathcal{O}\left(\alpha_{s}^{2}\right) \Rightarrow$ NLO EW \sim NNLO QCD

NLO EW

-4I-DF-ZZ Biedermann, Denner, Dittmaier, Hofer, Jäger; 'I6,'I6
-2l-DF-WW Biedermann, Billoni, Denner, Dittmaier, Hofer, Jäger, Salfelder; 'I6
-2I-SF-ZZ \& 2l-SF-ZZWW \& 2l-DF-WW Kallweit, JML, Pozzorini, Schönherr, 'I7
-3I-DF-WZ \& 3I-DF-WZ Biedermann, Denner, Hofer, 'I7

Relevance of EW higher-order corrections: Sudakov logs in the tails

I. Possible large (negative) enhancement due to soft/collinear logs from virtual EW gauge bosons:

\rightarrow overall large (negative) effect in the tails of distributions: PT, $m_{\text {inv }}, H_{T}, \ldots$ (relevant for BSM searches!)

Relevance of EW higher-order corrections: collinear QED radiation

II. Possible large enhancement due to soft/collinear logs from photon radiation $\sim \alpha \log \left(\frac{m_{f}^{2}}{Q^{2}}\right)$ in sufficiently exclusive observables.

\rightarrow important for radiative tails, Higgs backgrounds etc.
\rightarrow typically considered via QED PS (PHOTOS / YFS)

Relevance of EW higher-order corrections: photon-induced channels

III. QED factorisation and thus photon luminosities needed to absorb IS photon singularities.
\rightarrow Possible large enhancement due to photon-induced channels in the tails of kinematic distributions,

\rightarrow large differences between different photon descriptions. Now settled: LUXqed superior
$\rightarrow \mathrm{O}(10 \%)$ contributions from photon-induced channels

Nontrivial features in NLO QCD \rightarrow NLO EW

I. QCD-EW interplay

3. virtual EW corrections more involved than QCD (many internal masses)

Automation of fixed-order NLO EW well advanced:
MadGraph_aMC@NLO, Sherpa+OpenLoops/Recola, MUNICH+OpenLoops, ...

Validation between tools

- There are subtle differences in implementation of these schemes in particular in the context of CMS (complex mass scheme).
\rightarrow Have been studied for ZZ in the context of [LHI7, I 803.07977]
a) $\operatorname{PSP} 1$
$B / 10^{-15}$
$V_{\text {finite }} / 10^{-16}$
$V_{1} / 10^{-17}$
$V_{2} / 10^{-17}$

Madoop 5.26592465401088 Recola 5.26592465401090 OpenLoops 5.26592465401100 GoSAm $\quad 5.26592465401086$ NLOX 5.26592465401084
c) $\operatorname{PSP} 1$

MadLoop 4.63762790127829
Recola 4.63762790127830 OpenLoops 4.63762790127838
GoSam 4.63762790127830
6.60297993618509 6.60088670209820 6.60088670210145 .60088670209788 6.60088670211436
$2.63915540074976-3.09566543908773$ $2.63915540075328-3.09566543908732$ $2.63915540078563-3.09566543905505$ $.63915540076095-3.09566543909091$ $2.63915540076702-3.09566543908783$

$$
V_{1} / 10^{-15} \quad V_{2} / 10^{-15}
$$

$4.07216839247769-2.23061748556626$ $4.07216839245629-2.23061748556050$ $4.07216839246097-2.23061748560388$ $4.07216839247955-2.23061748556541$
inclusive cross sections:

\rightarrow very convincing agreement between automated tools

Diboson production at NLO QCD+EW: Collinear QED radiation

[Kallweit, JML, Pozzorini, Schönherr; ' I 7]

YFS (Multi-Photon-Resummation) preserves resonance structure
\rightarrow EW effects agree at the few percent level.

Source of differences:

- Multi-poton effects in YFS
-Resonance-assignment in YFS

CSS (Catani-Seymour-Shower) unaware of resonance structure \rightarrow QED effects largely overestimated

- Fully consistent PS matching at NLO EW under development
- Naive NLO EW+PS matching available in Sherpa+OpenLoops (applicable at particle level)
\Rightarrow CSS dipole shower (not resonaonce aware) \Rightarrow significant mismodelling
\Rightarrow YFS resummation (resonaonce aware) \Rightarrow valid approximation

The need for off-shell calculations

[Biedermann, M. Billoni, A. Denner, S. Dittmaier, L. Hofer, B. Jäger, L. Salfelder ;'I 6]

$\vec{p}_{\mathrm{T}, \mathrm{e}^{-}}$

\Rightarrow sizeable differences in fully off-shell vs. double-pole approximation in tails

Combination of NNLO QCD and NLO EW

- In Matrix+OpenLoops all (massive) diboson processes are available at

NNLO QCD + NLO EW (parton-level) [M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; very soon]

41-SF-ZZ	$p p \rightarrow \ell^{+} \ell^{-} \ell^{+} \ell^{-}$	(ZZ)	
41-DF-ZZ	$p p \rightarrow \ell^{+} \ell^{-} \ell^{\prime+} \ell^{\prime-}$	(ZZ)	
2l-SF-ZZ	$p p \rightarrow \ell^{+} \ell^{-} \nu_{\ell^{\prime}}{\bar{\nu} \ell^{\prime}}$	(ZZ)	
2l-SF-ZZWW	$p p \rightarrow \ell^{+} \ell^{-} \nu_{\ell} \bar{\nu}_{\ell}$	(ZZ/WW)	(soon to be made public)
2l-DF-WW	$p p \rightarrow \ell^{+} \ell^{\prime-} \nu_{\ell} \bar{\nu}_{\ell^{\prime}}$	(WW)	
31-SF-WZ	$p p \rightarrow \ell^{+} \ell^{-} \ell \nu_{\ell}$	(WZ)	
31-DF-WZ	$p p \rightarrow \ell^{+} \ell^{-} \ell^{\prime} \nu_{\ell^{\prime}}$	(WZ)	

- Combination of QCD and EW
additive: $\quad \mathrm{d} \sigma_{\mathrm{QCD}+\mathrm{EW}}^{(\mathrm{N}) \mathrm{NLO}}=\mathrm{d} \sigma^{\mathrm{LO}}\left(1+\delta_{\mathrm{QCD}}^{(\mathrm{N}) \mathrm{NLO}}+\delta_{\mathrm{EW}}\right)+\mathbf{d} \sigma^{\mathrm{ggLO}}$
multiplicative: $\quad \mathbf{d} \sigma_{\mathbf{Q C D} \times \mathbf{E W}}^{(\mathrm{N}) \mathbf{N L O}}=\mathrm{d} \sigma^{\mathrm{LO}}\left(1+\delta_{\mathbf{Q C D}}^{(\mathrm{N}) \mathrm{NLO}}\right)\left(1+\delta_{\mathrm{EW}}\right)+\mathbf{d} \sigma^{\mathrm{ggLO}}$

Combination of NNLO QCD and NLO EW

- In Matrix+OpenLoops all (massive) diboson processes are available at

NNLO QCD + NLO EW (parton-level) [M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; very soon]

41-SF-ZZ	$p p \rightarrow \ell^{+} \ell^{-} \ell^{+} \ell^{-}$	(ZZ)	
41-DF-ZZ	$p p \rightarrow \ell^{+} \ell^{-} \ell^{\prime+} \ell^{\prime-}$	(ZZ)	
2l-SF-ZZ	$p p \rightarrow \ell^{+} \ell^{-} \nu_{\ell^{\prime}} \bar{\nu}_{\ell^{\prime}}$	(ZZ)	
2l-SF-ZZWW	$p p \rightarrow \ell^{+} \ell^{-} \nu_{\ell} \bar{\nu}_{\ell}$	(ZZ/WW)	(soon to be made public)
2l-DF-WW	$p p \rightarrow \ell^{+} \ell^{\prime-} \nu_{\ell} \bar{\nu}_{\ell^{\prime}}$	(WW)	
31-SF-WZ	$p p \rightarrow \ell^{+} \ell^{-} \ell \nu_{\ell}$	(WZ)	
3l-DF-WZ	$p p \rightarrow \ell^{+} \ell^{-} \ell^{\prime} \nu_{\ell^{\prime}}$	(WZ)	

- Combination of QCD and EW
additive: $\quad \mathrm{d} \sigma_{\mathrm{QCD}+\mathrm{EW}}^{(\mathrm{N}) \mathrm{NLO}}=\mathrm{d} \sigma^{\mathrm{LO}}\left(1+\delta_{\mathrm{QCD}}^{(\mathrm{N}) \mathrm{NLO}}+\delta_{\mathrm{EW}}\right)+\mathbf{d} \sigma^{\mathrm{ggLO}}$
multiplicative: $\quad \mathbf{d} \sigma_{\mathbf{Q C D} \times \mathbf{E W}}^{(\mathrm{N}) \mathbf{N L O}}=\mathrm{d} \sigma^{\mathrm{LO}}\left(1+\delta_{\mathbf{Q C D}}^{(\mathrm{N}) \mathrm{NLO}}\right)\left(1+\delta_{\mathrm{EW}}\right)+\mathbf{d} \sigma^{\mathrm{ggLO}}$

Giant K-factors and EW corrections

Giant K-factors and EW corrections

- NLO QCD/LO=~<1.5
("normal K-factor")
- Reliable estimate of O (as a) from

$$
\mathrm{d} \sigma_{\mathrm{QCD}+\mathrm{EW}}^{(\mathrm{N}) \mathrm{NLO}} \text { vs. } \mathbf{d} \sigma_{\mathrm{QCD} \times \mathrm{EW}}^{(\mathrm{N}) \mathrm{NLO}}
$$

$p p \rightarrow \mathrm{e}^{-} \mathrm{e}^{+} \nu_{\mu} \bar{\nu}_{\mu}$
$\xrightarrow[\text { jet veto }]{\longrightarrow}$
$H_{\mathrm{T}}^{\text {jet }}<0.2 H_{\mathrm{T}}^{\text {lep }}$
-However:
additional uncertainty due to efficiency of jet veto

Photon-induced contributions

Photon-induced contributions

Giant K-factors and EW corrections: pTII

inclusive

- Same features as pTVI

Giant K-factors and EW corrections: pTII

Without giant K-factors: stable predictions for pTV2

inclusive

Reliable estimate of O (as a) from

Without giant K-factors: stable predictions for mVV

inclusive

Reliable estimate of O (as a) from

$$
\begin{gathered}
\mathrm{d} \sigma_{\mathrm{QCD}+\mathrm{EW}}^{(\mathrm{N}) \mathrm{NLO}} \\
\mathrm{VS} . \\
\mathbf{d} \sigma_{\mathrm{QCD} \times \mathrm{EW}}^{(\mathrm{N}) \mathrm{NLO}}
\end{gathered}
$$

Without giant K-factors: stable predictions for mVV

Giant K-factors and EW corrections: MET

inclusive

- in WW at large MET>MW: W's are forced off-shell

- very large NLO QCD corrections (back-to-back opens up)
arge gamma-induced
(also here Bremsstrahlung opens up back-to-back)

Giant K-factors and EW corrections: MET

Conclusions

- NNLO QCD + NLO EW available in MATRIX+OpenLoops for all (massive) diboson processes
- soon public
- V +gamma in the making
- QCD uncertainties at NNLO often reach few percent level.
- EW corrections enhanced at high energies reaching several tens of percent.
- In observables subject to 'giant K-factors': QCD+EW vs. QCDxEW introduces O(I) uncert.
- Can be cured via jet-veto.
- Relevant contribution of photon-induced processes
- Open issues:
- When measuring diboson processes at large pTVI/MET/mVV should always a jet veto be considered? Increased sensitivity to aTGCs?
- How to obtain reliable inclusive predictions? In particular relevant for background simulations.
- MEPS@NLO multi-jet merging including EW corrections (see $\mathrm{V}+$ jets, I 5 I I .08692)
\Rightarrow how to retain NNLO QCD precision?
- How to estimate NNLO EW - O($\left.\boldsymbol{\alpha}^{2}\right)$?

BACKUP

Relevance of EW higher-order corrections I

Numerically $\mathcal{O}(\alpha) \sim \mathcal{O}\left(\alpha_{s}^{2}\right) \Rightarrow$ NLO EW ~NNLO QCD
Possible large (negative) enhancement due to soft/collinear logs from virtual EW gauge bosons:

Universality and factorisation: [Denner, Pozzorini; '0 I]

$$
\delta \mathcal{M}_{\mathrm{LL}+\mathrm{NLL}}^{1-\mathrm{loop}}=\frac{\alpha}{4 \pi} \sum_{k=1}^{n}\left\{\frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{ \pm}} I^{a}(k) I^{\bar{a}}(l) \ln ^{2} \frac{\hat{s}_{k l}}{M^{2}}+\gamma^{\mathrm{ew}}(k) \ln \frac{\hat{s}}{M^{2}}\right\} \mathcal{M}_{0}
$$

\rightarrow overall large effect in the tails of distributions: $\mathrm{PT}, \mathrm{m}_{\mathrm{inv}}, \mathrm{H}_{\mathrm{T}}, \ldots$

Relevance of EW higher-order corrections II

Real photon radiation

- soft/coll. photon unresolved
- needed to cancel QED singularities

Photon initial states

- QED factorisation needed to absorb IS photon singularities
- possible strong enhancement, e.g. for V

Real W,Z,h radiation (HBR)

- partial cancellation with virtual Sudakov logs (KLN theorem not applicable)
(strongly dependent on experimental selection)
- free from singularities \Rightarrow separate processes
- themselves receive large virtual EW corrections
\& inclusion requires care (double-counting issues)

