## The EFT Interpretations in WZ production with Dim-6 and Dim-8 operators

Despina Sampsonidou,
Partially funded by
 action

Multi-Boson Interactions 2019, Thessaloniki, August 26 ${ }^{\text {th }} 2019$

## Overview

- Effective Field Theories
- Vector Boson Scattering
- WZ fully leptonic inclusive and WZ VBS
- Dim-6 Operators
- WZ Inclusive
- WZ VBS
- Dim-8 Operators
- WZ VBS


## Effective Field Theories

- Since there are no hints for New Physics through direct searches $\rightarrow$ increased interest for indirect searches
- Assuming New Physics is heavy $\rightarrow$ EFTs emerge as the tool to look for deviations from the SM
- Low energy parametrization for unknown physics that can become reachable at very High Energy
- BSM terms added to the SM Lagrangian

$$
L=L^{S M}+\sum_{i} \frac{c_{i}}{\Lambda^{2}} O_{i}+\sum_{j} \frac{c_{j}}{\Lambda^{4}} O_{j}
$$

## Effective Field Theories -II

- First to look for Dim-6 and Dim-8 operators

$$
L_{E F T}=L_{S M}+\underbrace{}_{i=W W W, W, B, \Phi W, \Phi B} \frac{c_{i}}{\Lambda^{2}} O_{i}+\sum_{\substack{j=1,2 \\
\text { Pure Higgs } \\
\text { field }}}^{\sum_{S_{S, j}}^{\Lambda^{4}} O_{S, j}+\sum_{\begin{array}{c}
j=0, \ldots, 9 \\
\text { Mure Field- } \\
\text { strength } \\
\text { tensor }
\end{array}} \frac{f_{T, j}}{\Lambda^{4}} O_{T, j}+\sum_{j=0, \ldots, 7} \frac{f_{M}}{} \frac{f_{M j}}{\Lambda^{4}} O_{M, j}}
$$

- Experimental strategy: Associate Dim-6 and Dim-8 operators to vertices in forms of anomalous couplings


## Effective Field Theories: Experimental strategy



- How we plan to search:

1. MC Modelling
2. Data
3. Limit setting on individual channels and by combining channels

- Where we should search:
- Diboson processes $\rightarrow$ Could be sensitive to Dim-6 operators
- VBS processes $\rightarrow$ Could be sensitive to Dim-6 and Dim-8 operators



## Vector Boson Scattering

- Vector Boson Scattering: interaction of two vector bosons radiated from the initial-state quarks, yielding a final state with two bosons and two jets, $\mathrm{V} V \mathrm{jj}$, in a purely electroweak process

EWK production contains both VBS and non-VBS processes that cannot be dissociated

$E W K: Q E D<=6, Q C D=0$


Main background: Diboson QCD production in association with two jets


## VBS phenomenology

- VBS events at LHC have distinct event topology: V Vj
- Two energetic jets with large di-jet mass $\left(m_{j j}\right)$ and high rapidity separation
- diboson system, centrally produced with respect to the two forward jets
- Separation from Background (QCD production)



## Current Status in WZ Inclusive from ATLAS

- Latest Publication on 13 TeV using 2015+2016 data
- Search for WZ leptonic decays
- Electrons and muons only
- $Z$-> ee, $\mu \mu$ : 2 high $-p_{T}$, isolated leptons with their invariant mass consistent with $Z$ mass
- W -> ev, $\mu \mathrm{v}$ : 1 high- $\mathrm{p}_{\mathrm{T}}$, isolated and wellidentified lepton and MET, with their transverse mass consistent with W
- Four final states: eeev, e $\mu \mu \mathrm{v}, \mu \mathrm{eev}$, $\mu \mu \nu$
- Unfolded distributions to variable sensitive to EFTs provided, but not limits



$$
\sigma_{W^{ \pm} Z \rightarrow \ell^{\prime} v \ell \ell}^{\text {fid. }}=63.7 \pm 1.0 \text { (stat.) } \pm 2.3 \text { (exp. syst.) } \pm 0.3 \text { (mod. syst) } \pm 1.4 \text { (lumi.) fb, }
$$

## Current status in WZjj from ATLAS: Event Selection



- Exactly 3 leptons:
- $|n|<2.5$
- $\mathrm{p}^{1,2}>15 \mathrm{GeV}$
- $\left|M_{z}-M_{2}^{P D G}\right|<10 \mathrm{GeV}$
- $\mathrm{m}_{\mathrm{T}}{ }^{\mathrm{W}}>30 \mathrm{GeV}$
- At least 2 jets:
- $|n|<4.5$
- opposite hemispheres
$-\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{j}}>40 \mathrm{GeV}$
- $m_{\mathrm{jj}}>150 \mathrm{GeV}$
arxiv.org/abs/1812.09740



## Current status in WZjj: Background estimation and cross

 section measurement
## Irreducible Background

- WZjj-QCD, ZZjj, ttV: Use MC simulation and control regions to better constrain them
- QCD: dominant background
- ZZjj: second dominant background
- VVV, tZj: Use MC simulation to model them


## Reducible Background

- Z+j, Z $\gamma$, ttbar, Wt, WW for prompt and fake leptons

- The electroweak production of $W \pm Z$ bosons in association with two jets is measured with observed significance of $5.3 \sigma$.

$$
\sigma_{W Z j j-\mathrm{EW}}=0.577_{-0.13}^{+0.14}(\text { stat. })_{-0.04}^{+0.05}(\text { exp. syst. })_{-0.04}^{+0.05}(\text { mod. syst. })_{-0.01}^{+0.01} \text { (lumi.) fb }
$$

## Dim-6 Operators

## SMEFT

- The model: SMEFT
- The most general set of dimension-6 operators respecting the SM symmetries has 81 operators
- Can be reduced to 59 using the equivalence theorem
- These 59 operators, have 76 free parameters, if we consider only one generation of fermions. If we consider three independent generations, the number grows up to 2499 free parameters.
- The minimal basis of gauge-invariant non-redundant operators is called the "Warsaw Basis" arXiv: 1008.4884
- There are also other possible parameterizations: SILH, HISZ


## Dim-6 operators

- Dim-6 operators in Warsaw basis excluding the 4fermion ones
- Operators contributing across various channels
- Eventually aiming for a global fit across channels

| $X^{3}$ | $\varphi^{6}$ and $\varphi^{4} D^{2}$ | $\psi^{2} \varphi^{3}$ |  |
| :---: | :---: | :---: | :---: |
|  | $\left.\begin{array}{c\|c}Q_{\varphi} & \left(\varphi^{\dagger} \varphi\right)^{3} \\ Q_{\varphi \square} & \left(\varphi^{\dagger} \varphi\right) \square\left(\varphi^{\dagger} \varphi\right) \\ Q_{\varphi D} & H \\ \hline\end{array} \varphi^{\dagger} D^{\mu} \varphi\right)^{\star}\left(\varphi^{\dagger} D_{\mu} \varphi\right)$ | $\begin{gathered} Q_{e \varphi} \\ g_{S}^{S} S_{S} \\ Q_{d \varphi} \end{gathered}$ | $\begin{aligned} & \left(\varphi^{\dagger} \varphi\right)\left(\bar{l}_{p} e_{r} \varphi\right) \\ & \left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} u_{r} \widetilde{\varphi}\right) \\ & \left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} d_{r} \varphi\right) \end{aligned}$ |
| $X^{2} \varphi^{2}$ | $\psi^{2} X \varphi$ |  | $\psi^{2} \varphi^{2} D$ |
| $Q_{\varphi G}$ $\varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu}$ <br> $Q_{\varphi \widetilde{G}}$ $\varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}$ <br> $Q_{\varphi \nu}$ $\varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu}$ <br> $Q_{\varphi} \widetilde{V}$ $\varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu}$ <br> $Q_{\varphi}$ $\varphi^{\dagger} \operatorname{ligg}_{\mu \nu} S^{\mu \nu}$ <br> $Q_{\varphi \bar{B}}$ $\varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu}$ <br> $Q_{\varphi W B}$ $\varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu}$ <br> $Q_{\widetilde{W} B}$ $\dot{\Lambda}^{\dagger} \tau^{I} \varphi \widetilde{W}^{I} \mathcal{B}^{\mu \nu}$ |  | $\begin{array}{\|l\|} \hline \Omega^{(1)} \\ \hline Q_{\varphi l}^{(3)} \\ Q_{\varphi e} \\ Q_{\varphi q}^{(1)} \\ \left\lvert\, \begin{array}{l} Q_{\varphi q}^{(3)} \\ Q_{\varphi u} \\ Q_{\varphi d} \\ \hline \end{array} Q_{\varphi \varphi u}\right. \end{array}$ |  |

## Current Picture in ATLAS in WZ

## a.

- Latest results for WZ Inclusive in aTGCs in ATLAS
- Results for both parametrizations:
a. anomalous couplings aproach
b. EFT approach
- So far the results are in HISZ basis

|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| b. |  |  |  |
|  | Couplaset | Coupling | Expected $\left[\mathrm{TeV}^{-2}\right]$ |
| Observed $\left[\mathrm{TeV}^{-2}\right]$ |  |  |  |
| 13 TeV | $c_{W} / \Lambda_{\mathrm{NP}}^{2}$ | $[-4.1 ; 7.6]$ | $[-3.8 ; 8.6]$ |
|  | $c_{B} / \Lambda_{\mathrm{NP}}^{2}$ | $[-261 ; 193]$ | $[-280 ; 163]$ |
|  | $c_{W W W} / \Lambda_{\mathrm{NP}}^{2}$ | $[-3.6 ; 3.4]$ | $[-3.9 ; 3.7]$ |
| 8 and 13 TeV | $c_{W} / \Lambda_{\mathrm{NP}}^{2}$ | $[-3.4 ; 6.9]$ | $[-3.6 ; 7.3]$ |
|  | $c_{B} / \Lambda_{\mathrm{NP}}^{2}$ | $[-221 ; 166]$ | $[-253 ; 136]$ |
|  | $c_{W W W} / \Lambda_{\mathrm{NP}}^{2}$ | $[-3.2 ; 3.0]$ | $[-3.3 ; 3.2]$ |



## Dim-6 operators in WZ Inclusive

- HISZ Vs. Warsaw basis $\rightarrow$ Different operators and different associated vertices

- Since moving to Warsaw basis, need to test sensitivities of the operators
- Already there are constraints from electroweak precision data

For measurements of LEPI near $Z$ pole data and $W$ mass at LO: $Q_{H W B}, Q_{H D}, Q_{H \ell}^{(1)}, Q_{H \ell}^{(3)}, Q_{H}^{(1)}, Q_{H_{q}}^{(3)}, Q_{H c}, Q_{H u}, Q_{H d}, Q_{t t}$

## WZ Inclusive:Setup

| Generator: | • Madgraph 2.6.5 |
| :---: | :--- |
| Model: | • SMEFTSim |
| Process: | $p p \rightarrow e+e-\mu-\overline{\nu_{\mu}}$ |
| Number of events | • 5 k |
| Level: | • generator level only |
| Method: | • "Decomposition" of the total sample |

## Decomposition method

- Need to produce big number of samples on various values of EFT parameters
- So far, reweighting was used
- Now, Madgraph gives the opportunity to decompose the samples production to terms:
- SM term
- SM-EFT interference terms
- pure EFT terms
- cross EFT terms
$\left|\mathcal{A}_{\mathrm{SM}}+\sum_{i} c_{i} \mathcal{A}_{i}\right|^{2}=\left|\mathcal{A}_{\mathrm{SM}}\right|^{2}+\sum_{i} c_{i} 2 \operatorname{Re}\left(\mathcal{A}_{\mathrm{SM}}^{\star} \mathcal{A}_{i}\right)+\sum_{i} c_{i}^{2}\left|\mathcal{A}_{i}\right|^{2}+\sum_{i j, \geqslant \neq j} c_{i} c_{j} 2 \operatorname{Re}\left(\mathcal{A}_{i}^{\star} \mathcal{A}_{j}\right)$


## SMEFT Operators in WZ Inclusive

- Comparative study of the effect of Dim-6 operators (SMEFT model) on inclusive cross section for $\mathrm{c}_{\mathrm{i}}=3$, $\wedge=1 \mathrm{TeV}$

| Operators | Cross section [fb] | Effect [\%] | Effect>10\% |
| :---: | :---: | :---: | :---: |
| cW | 38.8 | 115.56 | X |
| cHWB | 12.1 | 32.78 | X |
| cHD | 10.48 | 41.78 | X |
| cHI 3 | 4.769 | 73.51 | X |
| $\mathrm{cll1}$ | 41.89 | 132.72 | X |
| cHq 3 | 92.05 | 411.39 | X |
| cHI 1 | 17.89 | 0.61 |  |
| cHe | 18.16 | 0.89 |  |
| cHu | 13.51 | 24.94 | X |
| cHd | 17.91 | 0.50 |  |



- Effect on SM cross section for $\mathrm{c}_{\mathrm{w}}=3$ : 115.1\%
- Here, $\mathrm{c}_{\mathrm{w}}=1,-1$
- $5 k$ Events
- $\quad \mathrm{p}_{\mathrm{T}}$ of the di-electron system and the W -muon
- Interference affects low pt bins
- Increase in the cross section comes from the quadratic term


## SMEFT operators in WZ VBS

- Dim-6 operators (SMEFT) operators expected to contribute in VBS processes

Corrections to SM couplings/propagators

$$
\begin{aligned}
& \mathcal{Q}_{H D}=\left(H^{\dagger} D_{\mu} H\right)^{*}\left(H^{\dagger} D^{\mu} H\right) \\
& \mathcal{Q}_{H \square}=\left(H^{\dagger} H\right)\left(H^{\dagger} \square H\right) \\
& \mathcal{Q}_{W}=\varepsilon_{i j k} W_{\mu \nu}^{i} W^{j \nu \rho} W_{\rho}^{k \mu} \\
& \mathcal{Q}_{H B}=\left(H^{\dagger} H\right) B_{\mu \nu} B^{\mu \nu} \\
& \mathcal{Q}_{H W}=\left(H^{\dagger} H\right) W_{\mu \nu}^{i} W^{i \mu \nu} \\
& \mathcal{Q}_{H W B}=\left(H^{\dagger} \sigma^{i} H\right) W_{\mu \nu}^{i} B^{\mu \nu} \\
& \mathcal{Q}_{\|}=\left(\bar{I} \gamma_{\mu} I\right)\left(\bar{I} \gamma^{\mu} I\right) \\
& =\operatorname{Vff}\left(\Gamma_{w, z}\right) \quad=\text { TGC/QGC } \\
& =h V V\left(\Gamma_{h}\right) \\
& =m_{W}
\end{aligned}
$$

## WZ VBS: Setup

| Generator: | • Madgraph 2.6.5 |
| :---: | :--- |
| Model: | • SMEFTSim |
| Process: | $p p \rightarrow W^{-} Z j j$ |
| Number of events | • 5 k |
| Level: | • generator level only |
| Method: | • "Decomposition" of the total sample |

## SMEFT operators in WZ VBS

- Cross section results for SM+ 1 non-zero EFT operator
- Increase and decrease to cross section
- Decrease due to interference
- SM cross section: 0.22 fb

| Coefficients | xsection (fb) | Effect>5\% | Effect>10\% | Effect>15\% |
| :---: | :---: | :---: | :---: | :---: |
| cHD | 0.1082 | X | X | X |
| cHBOX | 0.251 |  |  |  |
| $\mathbf{c W}$ | 0.2535 |  |  |  |
| $\mathbf{c H B}$ | 0.2558 |  |  |  |
| $\mathbf{c H W}$ | 0.3034 | X | X |  |
| $\mathbf{c H W B}$ | 0.1378 | X | X | X |
| $\mathbf{c l l 1}$ | 0.7754 | X | X | X |
| $\mathbf{c H I 1}$ | 0.2679 |  | X |  |
| $\mathbf{c H I 3}$ | 0.1821 | X | X | X |
| $\mathbf{c H q 1}$ | 0.4181 | X | X | X |
| $\mathbf{c H q 3}$ | 1.083 | X | X | X |
| $\mathbf{c H e}$ | 0.2761 | X |  |  |
| $\mathbf{c H u}$ | 0.2339 | X | X |  |
| $4 / 1 \mathbf{6 H d}$ | 0.2535 |  |  |  |



## SMEFT operators in WZ VBS



- The effect on the cross section can be positive or negative
- Negative due to interference
- Constraints from EWPD not taken into account here


## Dim-8 Operators

## Dim-8 Operators Theory Framework

- aQGCs can be parametrized in terms of Dimension-8 operators by the assumption that the Dimension-6 can already by constrained elsewhere
- Use EFT parametrization from Eboli, Gonzales-Garcia model
- Measurements of aQGC $\rightarrow$ constrain the following operators
- Effort to combine limits from ATLAS and CMS within the VBSCan network

|  | WWWW | WWZZ | ZZZZ | WWAZ | WWAA | ZZZA | ZZAA | ZAAA | AAAA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathcal{L}_{S, 0}, \mathcal{L}_{S, 1}$ | X | X | X | O | O | O | O | O | O |
| $\mathcal{L}_{M, 0}, \mathcal{L}_{M, 1}, \mathcal{L}_{M, 6}, \mathcal{L}_{M, 7}$ | X | X | X | X | X | X | X | O | O |
| $\mathcal{L}_{M, 2} \mathcal{L}_{M, 3}, \mathcal{L}_{M, 4}, \mathcal{L}_{M, 5}$ | O | X | X | X | X | X | X | O | O |
| $\mathcal{L}_{T, 0}, \mathcal{L}_{T, 1}, \mathcal{L}_{T, 2}$ | X | X | X | X | X | X | X | X | X |
| $\mathcal{L}_{T, 5}, \mathcal{L}_{T, 6}, \mathcal{L}_{T, 7}$ | O | X | X | X | X | X | X | X | X |
| $\mathcal{L}_{T, 9}, \mathcal{L}_{T, 9}$ | O | O | X | O | O | X | X | X | X |

## Current results

## Published results from ATLAS and CMS on Dim-8 operators limits

May 2019 c


## Current results

## Published results from ATLAS and CMS on Dim-8 operators limits



## CMS

## Setup

| Model: | •Eboli, Gonzales-Garcia model, SM_LST |
| :---: | :--- |
| Process: | $d d \rightarrow e+e-\mu-\overline{\nu_{\mu}} u d$ |
| Number of events | •200k |
| Level: | • generator level only |
| Method: | • "Decomposition" of the total sample |
| EFT parameter values: | •Tested at the latest limit values for the WZjij provided by CMS x 5 |
| Dynamical Scale Choice | • option 3 |

## EFT Parameter: $\mathrm{f}_{\mathrm{S} 1}$

- $\mathrm{f}_{\mathrm{s} 1}=42 \mathrm{TeV}^{-4}$
- Decomposition Validation in the total phase space (Loose PS on WZjj final state)

| SM xsec(fb) | INT xsec(fb) | QUAD xsec(fb) | TOTAL xsec(fb) | SUM xsec(fb) | Difference $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1065 | -0.0003 | 0.0091 | 0.1151 | 0.1153 | 0.17 |

- Fiducial Phase space: (truth selection for WZ VBS final state)





## EFT Parameter: $\mathrm{f}_{\text {To }}$

- $\mathrm{f}_{\mathrm{T} 0}=0.8 \mathrm{TeV}^{-4}$
- Decomposition Validation in the total phase space (Loose PS on WZjj final state)

| SM | INT | QUADRATIC | TOTAL | SUM | Difference \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1065 | -0.0004 | 0.0051 | 0.1103 | 0.1113 | 0.87 |

- Fiducial Phase space: (truth selection for WZ VBS final state)





## EFT Parameter: $\mathrm{f}_{\mathrm{T} 1}$

- $\mathrm{f}_{\mathrm{T} 1}=0.55 \mathrm{TeV}^{-4}$
- Decomposition Validation in the total phase space (Loose PS on WZjj final state)

| SM | INT | QUADRATIC | TOTAL | SUM | Difference \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1065 | -0.001 | 0.0057 | 0.1103 | 0.1112 | 0.83 |

- Fiducial Phase space: (truth selection for WZ VBS final state)




## Unitarization Method: Clipping

Anomalous coupling

- The cross section "explodes" for high sqrt(s-hat), violating unitarity
- Clipping: Step function form factor
- The anomalous signal contribution is set to 0 for $\sqrt{\hat{s}}>E_{c}$
- Data and background remains unchanged

- Can be applied "by hand" to the BSM parts of the Monte Carlo samples. By using Decomposition method, we apply the cut to interference and quadratic terms



## Example of clipping in $\mathrm{m}_{T}{ }^{\mathrm{WZ}}$

- Comparison of the distributions of the total generated sample and the clipped distributions
- Clipping the interference and the quadratic term only at various values of the



## Positivity Constraints

- Publication by C.Zhang
- Certain areas of the EFT parameter space are forbidden due to UV completion
- New set of theoretical constraints on the Dim-8 operators


## Conclusions

- EFTs is the tool to look for BSM effects
- WZ in the inclusive and the VBS phase space serves as a good candidate for the search
- Dimension-6 operators are investigated using the SMEFTSim model
- Dimension-8 operators are investigated using the Eboli,Gonzales-Garcia model
- With the full Run II data, better limits in Effective Field theory operators are expected with higher statistics and after combining the results with other final states


## Thank you!

