The EFT Interpretations in WZ production with Dim-6 and Dim-8 operators

Despina Sampsonidou,

Multi-Boson Interactions 2019, Thessaloniki, August 26th 2019

Overview

- Effective Field Theories
- Vector Boson Scattering
- WZ fully leptonic inclusive and WZ VBS
- Dim-6 Operators
 - WZ Inclusive
 - WZ VBS
- Dim-8 Operators
 - WZ VBS

Effective Field Theories

- Since there are no hints for New Physics through direct searches
 increased interest for indirect searches
- Assuming New Physics is heavy →EFTs emerge as the tool to look for deviations from the SM
- Low energy parametrization for unknown physics that can become reachable at very High Energy
- BSM terms added to the SM Lagrangian

tly separable from the EW VBS contribution. Hov can be suppressed by applying a requirement on the tribusion processes are suppressed in the EW VI

Effective Field Theories -II

First to look for Dim-6 and Dim-8 operators ٠

Experimental strategy: Associate Dim-6 and Dim-8 operators to vertices in ٠ forms of anomalous couplings

Effective Field Theories : Experimental strategy

- So far, no theory model includes both Dim6 and Dim8 operators
- Study the effect individually for Dim6 and Dim8
- In both cases, we aim to a combination of the EFT parameter limits
- How we plan to search:
 - 1. MC Modelling
 - 2. Data
 - 3. Limit setting on individual channels and by combining channels
- Where we should search:
 - Diboson processes → Could be sensitive to Dim-6 operators
 - VBS processes → Could be sensitive to Dim-6 and Dim-8 operators

Vector Boson Scattering

 Vector Boson Scattering: interaction of two vector bosons radiated from the initial-state quarks, yielding a final state with two bosons and two jets, VVjj, in a purely electroweak process

EWK production contains both VBS and non-VBS processes that cannot be dissociated

EWK VVjj non-VBS

EWK: QED<=6, QCD=0

VBS

VBS phenomenology

 $\mu^+\mu^+ i j$ Candidate Event

 $|\Delta v_{ii}| = 6.3$

mii=2800 GeV

- VBS events at LHC have distinct event topology: VVjj
 - Two energetic jets with large di-jet mass (m_{jj}) and high rapidity separation
 - diboson system, centrally produced with respect to the two forward jets

Current Status in WZ Inclusive from ATLAS

- Latest Publication on 13 TeV using 2015+2016 data
- Search for WZ leptonic decays
- Electrons and muons only
- Z -> ee,μμ: 2 high-p_T, isolated leptons with their invariant mass consistent with Z mass
- W -> ev, μv: 1 high-p_T, isolated and wellidentified lepton and MET, with their transverse mass consistent with W
- Four final states: eeev, eµµv, µeev, µµµv
- Unfolded distributions to variable sensitive to EFTs provided, but not limits

 $\sigma_{W^{\pm}Z \to \ell' \nu \ell \ell}^{\text{fid.}} = 63.7 \pm 1.0 \text{ (stat.)} \pm 2.3 \text{ (exp. syst.)} \pm 0.3 \text{ (mod. syst)} \pm 1.4 \text{ (lumi.) fb},$

Current status in WZjj from ATLAS: Event Selection

Current status in WZjj: Background estimation and cross section measurement

Irreducible Background

- WZjj-QCD, ZZjj, ttV: Use MC simulation and control regions to better constrain them
 - QCD: dominant background
 - ZZjj: second dominant background
- VVV, tZj: Use MC simulation to model them

Reducible Background

• Z+j, Zγ, ttbar, Wt, WW for prompt and fake leptons

• The electroweak production of $W\pm Z$ bosons in association with two jets is measured with observed significance of 5.3 σ .

 $\sigma_{WZjj-EW} = 0.57 + 0.14_{-0.13} \text{ (stat.)} + 0.05_{-0.04} \text{ (exp. syst.)} + 0.05_{-0.04} \text{ (mod. syst.)} + 0.01_{-0.01} \text{ (lumi.) fb}$

Dim-6 Operators

SMEFT

- The model: SMEFT
- The most general set of dimension-6 operators respecting the SM symmetries has 81 operators
- Can be reduced to 59 using the equivalence theorem
- These 59 operators, have 76 free parameters, if we consider only one generation of fermions. If we consider three independent generations, the number grows up to 2499 free parameters.
- The minimal basis of gauge-invariant non-redundant operators is called the "Warsaw Basis" *arXiv: 1008.4884*
- There are also other possible parameterizations: SILH, HISZ

Dim-6 operators

- Dim-6 operators in Warsaw basis excluding the 4fermion ones
- Operators contributing across various channels
- Eventually aiming for a global fit across channels

	X^3		φ^6 and $\varphi^4 D^2$	$\psi^2 arphi^3$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(l_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	ggs	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK} W^{I\nu} W^{J\rho} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho} W^{K\mu}_{\rho}$					
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_r$	$O_{I}^{(1)}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{l}_p \gamma^\mu l_r)$	
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(ar{i}_p \sigma^{\mu u} e_r) arphi B_{\mu u}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}iD^{I}_{\mu}\varphi)^{(\bar{I}}_{\chi}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	$Q_{2,s}$	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{\varphi \widetilde{V}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{arphi B}$	$arphi^{\dagger} arphi^{B} B^{\mu u}_{\mu u} B^{\mu u}$	G uB	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$	
$Q_{arphi \hat{B}}$	$arphi^{\dagger} arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^r \omega_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi d}$	$(\varphi^{\dagger}_{i}\overleftrightarrow{\Sigma}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	i($\widetilde{\varphi}^{\dagger}$ <u>H</u> Mildner	

Current Picture in ATLAS in WZ

- Latest results for WZ Inclusive in aTGCs in ATLAS
- Results for both parametrizations:
 - a. anomalous couplings aproach
 - b. EFT approach

1

• So far the results are in HISZ basis

			b.	
	Dataset	Coupling	Expected [TeV ⁻²]	Observed [TeV ⁻²]
	13 TeV	$\frac{c_W/\Lambda_{\rm NP}^2}{c_B/\Lambda_{\rm NP}^2}$ $\frac{c_WWW}{\Delta_{\rm NP}^2}$	[-4.1; 7.6] [-261; 193] [-3.6; 3.4]	[-3.8; 8.6] [-280; 163] [-3.9; 3.7]
1/	8 and 13 TeV 27/19	$\frac{c_W/\Lambda_{\rm NP}^2}{c_B/\Lambda_{\rm NP}^2}$ $\frac{c_WWW}{\Delta_{\rm NP}^2}$	[-3.4; 6.9] [-221; 166] [-3.2; 3.0]	[-3.6; 7.3] [-253; 136] [-3.3; 3.2]

Dim-6 operators in WZ Inclusive

HISZ Vs. Warsaw basis → Different operators and different associated vertices

- Since moving to Warsaw basis, need to test sensitivities of the operators
- Already there are constraints from electroweak precision data

For measure	ements of LE	PI near Z pole data and \	V mass at LO:
Q _{HWB}	$, Q_{HD}, Q_{H\ell}^{(1)}$	$Q_{H \ell}^{(3)}, Q_{H q}^{(1)}, Q_{H q}^{(3)}, Q_{H q}^{(3)}, Q_{H e}, Q$	$_{Hu}, Q_{Hd}, Q_{\ell \ell}$
>~	-~<	Jum	X

WZ Inclusive:Setup

Generator:	 Madgraph 2.6.5
Model:	• SMEFTSim
Process:	$pp \rightarrow e + e - \mu - \bar{\nu_{\mu}}$
Number of events	• 5k
Level:	 generator level only
Method:	 "Decomposition" of the total sample

Decomposition method

- Need to produce big number of samples on various values of EFT parameters
- So far, reweighting was used
- Now, Madgraph gives the opportunity to decompose the samples production to terms:
 - SM term
 - SM-EFT interference terms
 - pure EFT terms
 - cross EFT terms

$$|\mathcal{A}_{\rm SM} + \sum_{i}^{i} c_i \mathcal{A}_i|^2 = |\mathcal{A}_{\rm SM}|^2 + \sum_{i}^{i} c_i 2\operatorname{Re}\left(\mathcal{A}_{\rm SM}^{\star} \mathcal{A}_i\right) + \sum_{i}^{i} c_i^2 |\mathcal{A}_i|^2 + \sum_{ij,i \neq j}^{i} c_i c_j 2\operatorname{Re}\left(\mathcal{A}_i^{\star} \mathcal{A}_j\right)$$

SMEFT Operators in WZ Inclusive

• Comparative study of the effect of Dim-6 operators (SMEFT model) on inclusive cross section for c_i =3, Λ =1TeV

Operators	Cross section [fb]	Effect [%]	Effect>10%
cW	38.8	115.56	Х
cHWB	12.1	32.78	Х
cHD	10.48	41.78	Х
cHI3	4.769	73.51	Х
cll1	41.89	132.72	Х
cHq3	92.05	411.39	Х
cHI1	17.89	0.61	
сНе	18.16	0.89	
cHu	13.51	24.94	Х
cHd	17.91	0.50	

11/2//19

C_w: Distributions

- Effect on SM cross section for c_W =3: 115.1%
- Here, c_w=1, -1
- 5k Events
- p_T of the di-electron system and the W-muon
- Interference affects low pt bins
- Increase in the cross section comes from the quadratic term

19

SMEFT operators in WZ VBS

Corrections to SM couplings/propagators

 Dim-6 operators (SMEFT) operators expected to contribute in VBS processes

 $\mathcal{Q}_{HI}^{(1)} = (H^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu} H)(\bar{I}\gamma^{\mu}I)$ $\mathcal{Q}_{HD} = (H^{\dagger} D_{\mu} H)^* (H^{\dagger} D^{\mu} H)$ $\mathcal{Q}_{HI}^{(3)} = (H^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu}^{i} H)(\bar{l}\sigma^{i}\gamma^{\mu}l)$ $\mathcal{Q}_{H_{\square}} = (H^{\dagger}H)(H^{\dagger} \square H)$ $\mathcal{Q}_{Ha}^{(1)} = (H^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} H)(\bar{q}\gamma^{\mu}q)$ $\mathcal{Q}_W = arepsilon_{ijk} W^i_{\mu
u} W^{j
u
ho} W^{k\mu}_o$ $\mathcal{Q}_{Ha}^{(3)} = (H^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu}' H)(\bar{q}\sigma^{i}\gamma^{\mu}q)$ $Q_{HB} = (H^{\dagger}H)B_{\mu\nu}B^{\mu\nu}$ $Q_{He} = (H^{\dagger}i \overleftrightarrow{D}_{\mu} H)(\bar{e}\gamma^{\mu}e)$ $Q_{HW} = (H^{\dagger}H)W^{i}_{\mu\nu}W^{i\mu\nu}$ $Q_{HWB} = (H^{\dagger}\sigma^{i}H)W^{i}_{\mu\nu}B^{\mu\nu}$ $\mathcal{Q}_{Hu} = (H^{\dagger} i \overleftrightarrow{D}_{\mu} H)(\bar{u}\gamma^{\mu}u)$ $\mathcal{Q}_{Hd} = (H^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu} H)(\bar{d}\gamma^{\mu}d)$ $\mathcal{Q}_{II} = (\bar{I}\gamma_{\mu}I)(\bar{I}\gamma^{\mu}I)$ = Vff ($\Gamma_{W,Z}$) = TGC/QGC= hVV (Γ_h) $= m_W$

WZ VBS: Setup

Generator:	 Madgraph 2.6.5
Model:	• SMEFTSim
Process:	$pp \to W^- Zjj$
Number of events	• 5k
Level:	 generator level only
Method:	 "Decomposition" of the total sample

SMEFT operators in WZ VBS

- Cross section results for SM+ 1 non-zero EFT operator
- Increase and decrease to cross section
- Decrease due to interference
- SM cross section: 0.22 fb

4/

Coefficients	xsection (fb)	Effect>5%	Effect>10%	Effect>15%
cHD	0.1082	Х	Х	Х
cHBOX	0.251			
cW	0.2535			
сНВ	0.2558			
cHW	0.3034	Х	Х	
cHWB	0.1378	Х	Х	Х
cll1	0.7754	Х	Х	Х
cHI1	0.2679			
cHI3	0.1821	Х	Х	Х
cHq1	0.4181	Х	Х	Х
cHq3	1.083	Х	Х	Х
сНе	0.2761	Х		
cHu	0.2339	Х	Х	
19/19 cHd	0.2535			

SMEFT operators in WZ VBS

- The effect on the cross section can be positive or negative
- Negative due to interference
- Constraints from EWPD not taken into account here

Dim-8 Operators

Dim-8 Operators Theory Framework

- aQGCs can be parametrized in terms of Dimension-8 operators by the assumption that the Dimension-6 can already by constrained elsewhere
- Use EFT parametrization from Eboli, Gonzales-Garcia model
- Measurements of aQGC \rightarrow constrain the following operators
 - Effort to combine limits from ATLAS and CMS within the VBSCan network

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{L}_{S,0}, \mathcal{L}_{S,1}$	Х	Х	Х	0	0	0	0	0	0
$\mathcal{L}_{M,0}, \mathcal{L}_{M,1}, \mathcal{L}_{M,6}, \mathcal{L}_{M,7}$	Х	Х	Х	Х	Х	Х	Х	0	0
$\mathcal{L}_{M,2}$, $\mathcal{L}_{M,3}$, $\mathcal{L}_{M,4}$, $\mathcal{L}_{M,5}$	0	Х	Х	Х	Х	Х	Х	0	0
$\mathcal{L}_{T,0}$, $\mathcal{L}_{T,1}$, $\mathcal{L}_{T,2}$	Х	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,5}$, $\mathcal{L}_{T,6}$, $\mathcal{L}_{T,7}$	0	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,9}$, $\mathcal{L}_{T,9}$	0	0	Х	0	0	Х	Х	Х	Х

Current results

CMS ATLAS

Current results

CMS

Setup

Model:	• Eboli, Gonzales-Garcia model, SM_LST		
Process:	$dd ightarrow e + e - \mu - \bar{ u_{\mu}}ud$		
Number of events	• 200k		
Level:	generator level only		
Method:	"Decomposition" of the total sample		
EFT parameter values:	• Tested at the latest limit values for the WZjj provided by CMS X 5		
Dynamical Scale Choice	• option 3		

EFT Parameter: f_{S1}

- f_{s1}=42 TeV⁻⁴
- Decomposition Validation in the total phase space (Loose PS on WZjj final state)

SM xsec(fb)	INT xsec(fb)	QUAD xsec(fb)	TOTAL xsec(fb)	SUM xsec(fb)	Difference %
0.1065	-0.0003	0.0091	0.1151	0.1153	0.17

• Fiducial Phase space: (truth selection for WZ VBS final state)

EFT Parameter: f_{T0}

- f_{T0}=0.8 TeV⁻⁴
- Decomposition Validation in the total phase space (Loose PS on WZjj final state)

SM	INT	QUADRATIC	TOTAL	SUM	Difference %
0.1065	-0.0004	0.0051	0.1103	0.1113	0.87

• Fiducial Phase space: (truth selection for WZ VBS final state)

EFT Parameter: f_{T1}

- f_{T1}=0.55 TeV⁻⁴
- Decomposition Validation in the total phase space (Loose PS on WZjj final state)

SM	INT	QUADRATIC	TOTAL	SUM	Difference %
0.1065	-0.001	0.0057	0.1103	0.1112	0.83

• Fiducial Phase space: (truth selection for WZ VBS final state)

Unitarization Method: Clipping

- The cross section "explodes" for high sqrt(s-hat), violating unitarity
- Clipping: Step function form factor
 - The anomalous signal contribution is set to 0 for $\sqrt{\hat{s}} > E_c$
- Data and background remains unchanged
- Can be applied "by hand" to the BSM parts of the Monte Carlo samples. By using Decomposition method, we apply the cut to interference and quadratic terms

Example of clipping in m_T^{WZ}

- Comparison of the distributions of the total generated sample and the clipped distributions
 - Clipping the interference and the quadratic term only at various values of the

Positivity Constraints

- Publication by • C.Zhang
- Certain areas of the • EFT parameter space are forbidden due to UV completion
- New set of theoretical • constraints on the **Dim-8 operators**

$f_{S,0}$	$f_{S,1}$	$f_{S,2}$	$f_{M,0}$	$f_{M,1}$	$f_{M,2}$	$f_{M,3}$	$f_{M,4}$	$f_{M,5}$
+	+	+	Х	—	Ο	—	Ο	Х
$f_{M,7}$	$f_{T,0}$	$f_{T,1}$	$f_{T,2}$	$f_{T,5}$	$f_{T,6}$	$f_{T,7}$	$f_{T,8}$	$f_{T,9}$
+	+	+	+	Х	+	Х	+	+

TABLE I: Positivity constraints on individual VBS operator coefficients. +/- means the coefficient must be non-negative or non-positive. X means only f = 0 is allowed, and O means no constraints.

11/27/19

Conclusions

- EFTs is the tool to look for BSM effects
- WZ in the inclusive and the VBS phase space serves as a good candidate for the search
- Dimension-6 operators are investigated using the SMEFTSim model
- Dimension-8 operators are investigated using the Eboli,Gonzales-Garcia model
- With the full Run II data, better limits in Effective Field theory operators are expected with higher statistics and after combining the results with other final states

Thank you!