EFT Validity and Unitarity for Tri/Multi-Boson Signatures

Rafael L. Delgado (work with C. García García, M.J. Herrero)
$p p \rightarrow W^{+} W^{-} j_{1} j_{2}$
by $W^{+} W^{-} \rightarrow W^{+} W^{-}$scattering
$p p \rightarrow W Z j_{1} j_{2}$
by $W Z \rightarrow W Z$ scattering

Multi-Boson Interactions 2019

Linear vs. non-linear: linear representation

- The ω^{a} and h fit in a left $S U(2)$ doublet.
- The Higgs always appears in the combination $h+v$.
- Typical situation when h is a fundamental field
- Based in a cutorf A expanston: $\mathcal{O}^{\prime}\left(\right.$ d $^{\prime} / \wedge^{\boldsymbol{d}-4}$ d and operator of dimension $d=4,6,8$
- The usual approach, based on considering a full basis, allows to make a well-defined biyection between bases, at the price of reaching a high number of operators ($>10^{3}$ for dim-8)
- EFT typically emerging from weakly interacting High Energy (HE) Theory.

Linear vs. non-linear: linear representation

- The ω^{a} and h fit in a left $S U(2)$ doublet.
- The Higgs always appears in the combination $h+v$.
- Typical situation when h is a fundamental field.
- Based in a cutoff Λ expansion:
dimension $d=4,6,8$
The usual approach, based on considering a full basis, allows to make a well-defined biyection between bases, at the price of reaching a high number of operators ($>10^{3}$ for dim-8)
- EFT typically emerging from weakly interacting High Energy (HE)

Linear vs. non-linear: linear representation

- The ω^{a} and h fit in a left $S U(2)$ doublet.
- The Higgs always appears in the combination $h+v$.
- Typical situation when h is a fundamental field.
dimension $d=4,6,8$,
The usual approach, based on considering a full basis, allows to make a well-defined biyection between bases, at the price of reaching a high number of operators ($>10^{3}$ for dim-8)
- FFT tynically emerging from weakly interacting High Energy (HE)

Linear vs. non-linear: linear representation

- The ω^{a} and h fit in a left $S U(2)$ doublet.
- The Higgs always appears in the combination $h+v$.
- Typical situation when h is a fundamental field.
- Based in a cutoff Λ expansion: $\mathcal{O}(d) / \Lambda^{d-4}, d$ and operator of dimension $d=4,6,8, \ldots$.
a well-defined biyection between bases, at the price of reaching a high number of operators ($>10^{3}$ for dim-8) EFT typically emerging from weakly interacting High Energy (HE)

Linear vs. non-linear: linear representation

- The ω^{a} and h fit in a left $S U(2)$ doublet.
- The Higgs always appears in the combination $h+v$.
- Typical situation when h is a fundamental field.
- Based in a cutoff Λ expansion: $\mathcal{O}(d) / \Lambda^{d-4}, d$ and operator of dimension $d=4,6,8, \ldots$.
- The usual approach, based on considering a full basis, allows to make a well-defined biyection between bases, at the price of reaching a high number of operators ($>10^{3}$ for dim-8).

Linear vs. non-linear: linear representation

- The ω^{a} and h fit in a left $S U(2)$ doublet.
- The Higgs always appears in the combination $h+v$.
- Typical situation when h is a fundamental field.
- Based in a cutoff Λ expansion: $\mathcal{O}(d) / \Lambda^{d-4}, d$ and operator of dimension $d=4,6,8, \ldots$.
- The usual approach, based on considering a full basis, allows to make a well-defined biyection between bases, at the price of reaching a high number of operators ($>10^{3}$ for dim-8).
- EFT typically emerging from weakly interacting High Energy (HE) Theory.

Linear vs. non-linear: non-linear representation

- Our work is based on this framework.
ECLh with $F(h)$ insertions
Dariwative axmansion $(\Leftrightarrow$ Chiral expansion $)$
Some higher order operators, like a_{4} and a_{5}, that were dim- 8 in the
linear renresentation, can contribute to a lomer order in the non-linear
one (dim-4 in the Chiral expansion)
Appropriate for composite models of the SBS (h as a GB)
EFT tynically emarging from strongly intaracting High Enargy (HE)
Theory and consistent with the presence of the GAP

Linear vs. non-linear: non-linear representation

- Our work is based on this framework.
- h is a $S U(2)$ singlet and ω^{a} are coordinates on a coset:

$$
S U(2)_{L} \times S U(2)_{R} / S U(2)_{V}=S U(2)=S^{3}
$$

ECLh with $F(h)$ insertions.
Derivative expansion (\leftrightarrow Chiral expansion) Some higher order operators, like a_{4} and a_{5}, that were dim- 8 in the linear representation, can contribute to a lower order in the non-linear one (dim-4 in the Chiral expansion) Appropriate for composite models of the SBS (h as a GB) EFT typically emerging from strongly interacting High Energy (HE) Thenry and consistent with the nresence of the GAP

Linear vs. non-linear: non-linear representation

- Our work is based on this framework.
- h is a $S U(2)$ singlet and ω^{a} are coordinates on a coset:

$$
S U(2)_{L} \times S U(2)_{R} / S U(2)_{V}=S U(2)=S^{3}
$$

- ECLh with $F(h)$ insertions.

Linear vs. non-linear: non-linear representation

- Our work is based on this framework.
- h is a $S U(2)$ singlet and ω^{a} are coordinates on a coset:

$$
S U(2)_{L} \times S U(2)_{R} / S U(2)_{V}=S U(2)=S^{3}
$$

- ECLh with $F(h)$ insertions.
- Derivative expansion (\leftrightarrow Chiral expansion)
\qquad one (dim-4 in the Chiral expansion) Appropriate for composite models of the SBS (h as a GB) EFT typically emerging from strongly interacting High Energy (HE) Theorv and consistent with the nresence of the GAP

Linear vs. non-linear: non-linear representation

- Our work is based on this framework.
- h is a $S U(2)$ singlet and ω^{a} are coordinates on a coset:

$$
S U(2)_{L} \times S U(2)_{R} / S U(2)_{V}=S U(2)=S^{3}
$$

- ECLh with $F(h)$ insertions.
- Derivative expansion (\leftrightarrow Chiral expansion)
- Some higher order operators, like a_{4} and a_{5}, that were dim-8 in the linear representation, can contribute to a lower order in the non-linear one (dim-4 in the Chiral expansion).

Linear vs. non-linear: non-linear representation

- Our work is based on this framework.
- h is a $S U(2)$ singlet and ω^{a} are coordinates on a coset:

$$
S U(2)_{L} \times S U(2)_{R} / S U(2)_{V}=S U(2)=S^{3}
$$

- ECLh with $F(h)$ insertions.
- Derivative expansion (\leftrightarrow Chiral expansion)
- Some higher order operators, like a_{4} and a_{5}, that were dim-8 in the linear representation, can contribute to a lower order in the non-linear one (dim-4 in the Chiral expansion).
- Appropriate for composite models of the SBS (h as a GB).

Linear vs. non-linear: non-linear representation

- Our work is based on this framework.
- h is a $S U(2)$ singlet and ω^{a} are coordinates on a coset:

$$
S U(2)_{L} \times S U(2)_{R} / S U(2)_{V}=S U(2)=S^{3}
$$

- ECLh with $F(h)$ insertions.
- Derivative expansion (\leftrightarrow Chiral expansion)
- Some higher order operators, like a_{4} and a_{5}, that were dim-8 in the linear representation, can contribute to a lower order in the non-linear one (dim-4 in the Chiral expansion).
- Appropriate for composite models of the SBS (h as a GB).
- EFT typically emerging from strongly interacting High Energy (HE) Theory and consistent with the presence of the GAP.

Other Monte-Carlo generators with unitarity or form-factors

- Whizard, model SM_km. Orign. based on [A.Alboteanu,W.Kilian, J.Reuter, JHEP0811 (2008) 010].

[^0]
Other Monte-Carlo generators with unitarity or form-factors

- Whizard, model SM_km. Orign. based on [A.Alboteanu,W.Kilian, J.Reuter, JHEP0811 (2008) 010].
- Caveat: usage of the K-matrix method. Now, upgraded to T-matrix.
on analytical continuation. Goal: estimàion or unitarity constraints over perturbative regime. Goal: inclusion of BSM resonances on $S M _k m$ as effective vertices Sirenma, Form Facior approach

Other Monte-Carlo generators with unitarity or form-factors

- Whizard, model SM_km. Orign. based on [A.Alboteanu,W.Kilian, J.Reuter, JHEP0811 (2008) 010].
- Caveat: usage of the K-matrix method. Now, upgraded to T-matrix.
- Basically, a form-factor to avoid breaking unitarity bound. Not based on analytical continuation.
- Goal: estimation of unitarity constraints over perturbative regime.

Goal: inclusion of BSM resonances on SM_km as effective vertices.
SHFRPA Form Factor annroach

Other Monte-Carlo generators with unitarity or form-factors

- Whizard, model SM_km. Orign. based on [A.Alboteanu,W.Kilian, J.Reuter, JHEP0811 (2008) 010].
- Caveat: usage of the K-matrix method. Now, upgraded to T-matrix.
- Basically, a form-factor to avoid breaking unitarity bound. Not based on analytical continuation.
- Goal: estimation of unitarity constraints over perturbative regime.

[^1]
Other Monte-Carlo generators with unitarity or form-factors

- Whizard, model SM_km. Orign. based on [A.Alboteanu,W.Kilian, J.Reuter, JHEP0811 (2008) 010].
- Caveat: usage of the K-matrix method. Now, upgraded to T-matrix.
- Basically, a form-factor to avoid breaking unitarity bound. Not based on analytical continuation.
- Goal: estimation of unitarity constraints over perturbative regime.
- Goal: inclusion of BSM resonances on SM_km as effective vertices.

SHERPA, Form Factor approach

Other Monte-Carlo generators with unitarity or form-factors

- Whizard, model SM_km. Orign. based on [A.Alboteanu,W.Kilian, J.Reuter, JHEP0811 (2008) 010].
- Caveat: usage of the K-matrix method. Now, upgraded to T-matrix.
- Basically, a form-factor to avoid breaking unitarity bound. Not based on analytical continuation.
- Goal: estimation of unitarity constraints over perturbative regime.
- Goal: inclusion of BSM resonances on SM_km as effective vertices.
- SHERPA, Form Factor approach.

Our approach

- We have theoretical background on comparing different unitarization procedures, and on their motivation: [Phys.Rev.Lett.114, 221803], [PRD91, 075017], [JHEP140, 149],...

Our approach

- We have theoretical background on comparing different unitarization procedures, and on their motivation: [Phys.Rev.Lett.114, 221803], [PRD91, 075017], [JHEP140, 149],...
- However, we were lacking an independent Monte Carlo implementation of the unitarized models.

Our approach

- We have theoretical background on comparing different unitarization procedures, and on their motivation: [Phys.Rev.Lett.114, 221803], [PRD91, 075017], [JHEP140, 149],...
- However, we were lacking an independent Monte Carlo implementation of the unitarized models.
- We are filling this gap [Work in progr.], [JHEP1811 010], [JHEP1811, 010], [JHEP1711, 098], [Eur.Phys.J.C77 no.7, 436], [Eur.Phys.J.C77 no.4].

Our approach

- We have theoretical background on comparing different unitarization procedures, and on their motivation: [Phys.Rev.Lett.114, 221803], [PRD91, 075017], [JHEP140, 149],...
- However, we were lacking an independent Monte Carlo implementation of the unitarized models.
- We are filling this gap [Work in progr.], [JHEP1811 010], [JHEP1811, 010], [JHEP1711, 098], [Eur.Phys.J.C77 no.7, 436], [Eur.Phys.J.C77 no.4].
- (Weak) couplings with other initial or final states: $\gamma \gamma, t \bar{t}$.

Our approach

- We have theoretical background on comparing different unitarization procedures, and on their motivation: [Phys.Rev.Lett.114, 221803], [PRD91, 075017], [JHEP140, 149],...
- However, we were lacking an independent Monte Carlo implementation of the unitarized models.
- We are filling this gap [Work in progr.], [JHEP1811 010], [JHEP1811, 010], [JHEP1711, 098], [Eur.Phys.J.C77 no.7, 436], [Eur.Phys.J.C77 no.4].
- (Weak) couplings with other initial or final states: $\gamma \gamma, t \bar{t}$.
- Developing a UFO model for MadGraph v5.

Our approach

- We have theoretical background on comparing different unitarization procedures, and on their motivation: [Phys.Rev.Lett.114, 221803], [PRD91, 075017], [JHEP140, 149],...
- However, we were lacking an independent Monte Carlo implementation of the unitarized models.
- We are filling this gap [Work in progr.], [JHEP1811 010], [JHEP1811, 010], [JHEP1711, 098], [Eur.Phys.J.C77 no.7, 436], [Eur.Phys.J.C77 no.4].
- (Weak) couplings with other initial or final states: $\gamma \gamma, t \bar{t}$.
- Developing a UFO model for MadGraph v5.
- We choose MadGraph v5 because of its easy interfacing with other programs in the Monte Carlo chain. Both from the analytical side (FeynRules) and on the computational one (Ihapdf6, Pythia, DELPHES, ExRootAnalysis, MadAnalysis 5,...).

Our approach

- We have theoretical background on comparing different unitarization procedures, and on their motivation: [Phys.Rev.Lett.114, 221803], [PRD91, 075017], [JHEP140, 149],...
- However, we were lacking an independent Monte Carlo implementation of the unitarized models.
- We are filling this gap [Work in progr.], [JHEP1811 010], [JHEP1811, 010], [JHEP1711, 098], [Eur.Phys.J.C77 no.7, 436], [Eur.Phys.J.C77 no.4].
- (Weak) couplings with other initial or final states: $\gamma \gamma, t \bar{t}$.
- Developing a UFO model for MadGraph v5.
- We choose MadGraph v5 because of its easy interfacing with other programs in the Monte Carlo chain. Both from the analytical side (FeynRules) and on the computational one (Ihapdf6, Pythia, DELPHES, ExRootAnalysis, MadAnalysis 5,...).
- But we acknowledge the big improvements of other options (like Whizard and SHERPA) on this topic.

Our approach: non-linear EFT

- We are interested in the collider phenomenology of Vector Bosons Scattering (in this work, WZ $\rightarrow W Z$ and $W W \rightarrow W W$), since it is very sensitive to new physics in the EW sector in the LHC.

not consider fermions in this work
- Simnlif to 4 narameters: $a h \partial_{1}, \varepsilon_{5}$. Custodial symmetry assum.

EWChL

$$
\begin{aligned}
& \mathcal{L}_{2}=\frac{v^{2}}{4}\left[1+2 a \frac{h}{v}+b\left(\frac{h}{v}\right)^{2}+\ldots\right] \operatorname{Tr}\left(D_{\mu} U^{\dagger} D_{\mu} U\right)+\frac{1}{2} \partial_{\mu} h \partial^{\mu} h+\ldots \\
& \mathcal{L}_{4}=a_{4}\left[\operatorname{Tr}\left(V_{\mu} V_{\nu}\right)\right]\left[\operatorname{Tr}\left(V^{\mu} V^{\nu}\right)\right]+a_{5}\left[\operatorname{Tr}\left(V_{\mu} V^{\mu}\right)\right]\left[\operatorname{Tr}\left(V_{\nu} V^{\nu}\right)\right]+\ldots \\
& V_{\mu}=\left(D_{\mu} U\right) U^{\dagger}, \quad U=\exp \left(\frac{i \omega^{a} \tau^{a}}{v}\right)
\end{aligned}
$$

Our approach: non-linear EFT

- We are interested in the collider phenomenology of Vector Bosons Scattering (in this work, WZ $\rightarrow W Z$ and $W W \rightarrow W W$), since it is very sensitive to new physics in the EW sector in the LHC.
- Bottom to Top approach: we construct an EFT for the EW sector. $S U(2)_{L} \times S U(2)_{R}$, EChL copy of ChPT in QCD.
- Degrees of freedom: Gauge Bosons $W^{ \pm}, Z+$ Higgs sector. We do not consider fermions in this work
- Simnlif. to 4 narameters: $a, b, a \wedge$, a. Custodial symmetry assum.

EWChL

$$
\begin{aligned}
& \mathcal{L}_{2}=\frac{v^{2}}{4}\left[1+2 a \frac{h}{v}+b\left(\frac{h}{v}\right)^{2}+\ldots\right] \operatorname{Tr}\left(D_{\mu} U^{\dagger} D_{\mu} U\right)+\frac{1}{2} \partial_{\mu} h \partial^{\mu} h+\ldots \\
& \mathcal{L}_{4}=a_{4}\left[\operatorname{Tr}\left(V_{\mu} V_{\nu}\right)\right]\left[\operatorname{Tr}\left(V^{\mu} V^{\nu}\right)\right]+a_{5}\left[\operatorname{Tr}\left(V_{\mu} V^{\mu}\right)\right]\left[\operatorname{Tr}\left(V_{\nu} V^{\nu}\right)\right]+\ldots \\
& V_{\mu}=\left(D_{\mu} U\right) U^{\dagger}, \quad U=\exp \left(\frac{i \omega^{a} \tau^{a}}{v}\right)
\end{aligned}
$$

Our approach: non-linear EFT

- We are interested in the collider phenomenology of Vector Bosons Scattering (in this work, WZ $\rightarrow W Z$ and $W W \rightarrow W W$), since it is very sensitive to new physics in the EW sector in the LHC.
- Bottom to Top approach: we construct an EFT for the EW sector. $S U(2)_{L} \times S U(2)_{R}$, EChL copy of ChPT in QCD.
- Degrees of freedom: Gauge Bosons $W^{ \pm}, Z+$ Higgs sector. We do not consider fermions in this work.
- Simplif. to 4 parameters: a, b, a_{4}, a_{5}. Custodial symmetry assum.

EWChL

$$
\begin{aligned}
& \mathcal{L}_{2}=\frac{v^{2}}{4}\left[1+2 a \frac{h}{v}+b\left(\frac{h}{v}\right)^{2}+\ldots\right] \operatorname{Tr}\left(D_{\mu} U^{\dagger} D_{\mu} U\right)+\frac{1}{2} \partial_{\mu} h \partial^{\mu} h+\ldots \\
& \mathcal{L}_{4}=a_{4}\left[\operatorname{Tr}\left(V_{\mu} V_{\nu}\right)\right]\left[\operatorname{Tr}\left(V^{\mu} V^{\nu}\right)\right]+a_{5}\left[\operatorname{Tr}\left(V_{\mu} V^{\mu}\right)\right]\left[\operatorname{Tr}\left(V_{\nu} V^{\nu}\right)\right]+\ldots \\
& V_{\mu}=\left(D_{\mu} U\right) U^{\dagger}, \quad U=\exp \left(\frac{i \omega^{a} \tau^{a}}{v}\right)
\end{aligned}
$$

Our approach: non-linear EFT

- We are interested in the collider phenomenology of Vector Bosons Scattering (in this work, WZ $\rightarrow W Z$ and $W W \rightarrow W W$), since it is very sensitive to new physics in the EW sector in the LHC.
- Bottom to Top approach: we construct an EFT for the EW sector. $S U(2)_{L} \times S U(2)_{R}$, EChL copy of ChPT in QCD.
- Degrees of freedom: Gauge Bosons $W^{ \pm}, Z+$ Higgs sector. We do not consider fermions in this work.
- Simplif. to 4 parameters: a, b, a_{4}, a_{5}. Custodial symmetry assum.

EWChL

$$
\begin{aligned}
& \mathcal{L}_{2}=\frac{v^{2}}{4}\left[1+2 a \frac{h}{v}+b\left(\frac{h}{v}\right)^{2}+\ldots\right] \operatorname{Tr}\left(D_{\mu} U^{\dagger} D_{\mu} U\right)+\frac{1}{2} \partial_{\mu} h \partial^{\mu} h+\ldots \\
& \mathcal{L}_{4}=a_{4}\left[\operatorname{Tr}\left(V_{\mu} V_{\nu}\right)\right]\left[\operatorname{Tr}\left(V^{\mu} V^{\nu}\right)\right]+a_{5}\left[\operatorname{Tr}\left(V_{\mu} V^{\mu}\right)\right]\left[\operatorname{Tr}\left(V_{\nu} V^{\nu}\right)\right]+\ldots \\
& V_{\mu}=\left(D_{\mu} U\right) U^{\dagger}, \quad U=\exp \left(\frac{i \omega^{a} \tau^{a}}{v}\right)
\end{aligned}
$$

Unitarity and Partial Waves

- The NLO-computed EFT grows with the CM energy like $A \sim s^{2}$. Eventually reaching the unitarity bound, becoming non-perturbative. Violation of unitarity of the S matrix. That is, an unphysical leak in the interaction probability among EW gauge bosons. Tool for studving this phenomena: partial waves. For $W Z \rightarrow W Z$ processes, [arXiv:1907.06668] J, total angular momentum; $\lambda=\lambda_{1}-\lambda_{2} ; \lambda^{\prime}=\lambda_{3}-\lambda_{4} ; \lambda_{i}$, helicity state of the i-nth external gauge boson; $d_{1}^{\prime},(\cos \theta)$, Wigner functions.

Unitarity and Partial Waves

- The NLO-computed EFT grows with the CM energy like $A \sim s^{2}$. Eventually reaching the unitarity bound, becoming non-perturbative.
- Violation of unitarity of the S matrix. That is, an unphysical leak in the interaction probability among EW gauge bosons.
J, total angular momentum; $\lambda=\lambda_{1}-\lambda_{2} ; \lambda^{\prime}=\lambda_{3}-\lambda_{4} ; \lambda_{i}$, helicity state of the inth ovternal raure hoson. dJ (cos A) M/irner functions.

Unitarity and Partial Waves

- The NLO-computed EFT grows with the CM energy like $A \sim s^{2}$. Eventually reaching the unitarity bound, becoming non-perturbative.
- Violation of unitarity of the S matrix. That is, an unphysical leak in the interaction probability among EW gauge bosons.
- Tool for studying this phenomena: partial waves.

functions.

Unitarity and Partial Waves

- The NLO-computed EFT grows with the CM energy like $A \sim s^{2}$. Eventually reaching the unitarity bound, becoming non-perturbative.
- Violation of unitarity of the S matrix. That is, an unphysical leak in the interaction probability among EW gauge bosons.
- Tool for studying this phenomena: partial waves.
- For $W Z \rightarrow W Z$ processes, [arXiv:1907.06668]

$$
a_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{J}(s)=\frac{1}{64 \pi} \int_{-1}^{1} d \cos \theta A_{W_{\lambda_{1}} Z_{\lambda_{2}} \rightarrow W_{\lambda_{3}} Z_{\lambda_{4}}(s, \cos \theta) d_{\lambda, \lambda^{\prime}}^{J}(\cos \theta), ~, ~}^{\text {and }}
$$

J, total angular momentum; $\lambda=\lambda_{1}-\lambda_{2} ; \lambda^{\prime}=\lambda_{3}-\lambda_{4} ; \lambda_{i}$, helicity state of the i-nth external gauge boson; $d_{\lambda, \lambda^{\prime}}^{J}(\cos \theta)$, Wigner functions.

Unitarity for generic partial waves

- Unit. cond. for S - matrix: $S S^{\dagger}=\mathbb{1}$,
- plus analytical properties of
matrix elements,
- plus time reversal ir variance,

Unitarity for generic partial waves

- Unit. cond. for S - matrix: $S S^{\dagger}=\mathbb{1}$,
- plus analytical properties of matrix elements,

$$
\operatorname{Im}(\mathrm{s})^{\wedge}
$$

Unitarity for generic partial waves

- Unit. cond. for S - matrix: $S S^{\dagger}=\mathbb{1}$,
- plus analytical properties of matrix elements,

Unitarity for generic partial waves

- Unit. cond. for S - matrix: $S S^{\dagger}=\mathbb{1}$,
- plus analytical properties of matrix elements,
- plus time reversal invariance,

Unitarity condition for partial waves

$$
\operatorname{Im} A_{I J, p_{i} \rightarrow k_{1}}(s)=\sum_{\{a, b\}} \sqrt{1-\frac{4 m_{q}^{2}}{s}}\left[A_{I J, p_{i} \rightarrow q_{i, a b}}(s)\right]\left[A_{I J, q_{i, a b} \rightarrow k_{i}}(s)\right]^{*}
$$

Unitarity for $W Z \rightarrow$ WZ Partial Waves

- Unitarity requires

$$
\operatorname{Im}\left[a_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{J}(s)\right]=\left|a_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{J}(s)\right|^{2}=\sum_{\lambda_{a}, \lambda_{b}, \lambda_{c}, \lambda_{d}}\left[a_{\lambda_{1} \lambda_{2} \lambda_{a} \lambda_{b}}^{J}(s)\right]\left[a_{\lambda_{c} \lambda_{d} \lambda_{3} \lambda_{4}}^{J}(s)\right]^{*}
$$

- Note that partial waves $a_{\lambda_{\ldots, \lambda_{n}, \lambda_{\ldots}, \lambda^{\prime}}^{J}}(s)$ carry the $d_{\lambda_{,}}^{J}(\cos \theta)$ Wigner functions. These stands for the algebra of polarization vectors λ_{i} ($i=a, b, c, d$) of internal WZ states.
- Unitarity expression can be rewritten as
- Because $a^{J}(s)$ scales with $\mathcal{O}\left(s^{n}\right)$ on EFT approach, such an expression allows us to compute a maximum energy scale after which the raw EFT breaks.

Unitarity for $W Z \rightarrow$ WZ Partial Waves

- Unitarity requires

$$
\operatorname{Im}\left[a_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{J}(s)\right]=\left|a_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{J}(s)\right|^{2}=\sum_{\lambda_{a}, \lambda_{b}, \lambda_{c}, \lambda_{d}}\left[a_{\lambda_{1} \lambda_{2} \lambda_{a} \lambda_{b}}^{J}(s)\right]\left[a_{\lambda_{c} \lambda_{d} \lambda_{3} \lambda_{4}}^{J}(s)\right]^{*}
$$

- Note that partial waves $a_{\lambda_{\cdot}, \lambda_{\cdot}, \lambda_{\cdot}, \lambda_{.}}^{J}(s)$ carry the $d_{\lambda_{,} \lambda^{\prime}}^{J}(\cos \theta)$ Wigner functions. These stands for the algebra of polarization vectors λ_{i} ($i=a, b, c, d$) of internal WZ states.

Because $a^{J}(s)$ scales with $O\left(s^{n}\right)$ on EFT approach, such an

 expression allows us to compute a maximum energy scale after which the raw EFT breaks.
Unitarity for $W Z \rightarrow$ WZ Partial Waves

- Unitarity requires

$$
\operatorname{Im}\left[a_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{J}(s)\right]=\left|a_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{J}(s)\right|^{2}=\sum_{\lambda_{a}, \lambda_{b}, \lambda_{c}, \lambda_{d}}\left[a_{\lambda_{1} \lambda_{2} \lambda_{a} \lambda_{b}}^{J}(s)\right]\left[a_{\lambda_{c} \lambda_{d} \lambda_{3} \lambda_{4}}^{J}(s)\right]^{*}
$$

- Note that partial waves $a_{\lambda^{\prime}, \lambda_{\cdot}, \lambda_{\cdot}, \lambda_{.}}^{J}(s)$ carry the $d_{\lambda_{,} \lambda^{\prime}}^{J}(\cos \theta)$ Wigner functions. These stands for the algebra of polarization vectors λ_{i} ($i=a, b, c, d$) of internal WZ states.
- Unitarity expression can be rewritten as

$$
\left|a^{J}(s)\right| \leq 1
$$

Unitarity for $W Z \rightarrow W Z$ Partial Waves

- Unitarity requires

$$
\operatorname{Im}\left[a_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{J}(s)\right]=\left|a_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}^{J}(s)\right|^{2}=\sum_{\lambda_{a}, \lambda_{b}, \lambda_{c}, \lambda_{d}}\left[a_{\lambda_{1} \lambda_{2} \lambda_{a} \lambda_{b}}^{J}(s)\right]\left[a_{\lambda_{c} \lambda_{d} \lambda_{3} \lambda_{4}}^{J}(s)\right]^{*}
$$

- Note that partial waves $a_{\lambda^{\prime}, \lambda_{\cdot}, \lambda_{\cdot}, \lambda_{.}}^{J}(s)$ carry the $d_{\lambda_{,} \lambda^{\prime}}^{J}(\cos \theta)$ Wigner functions. These stands for the algebra of polarization vectors λ_{i} ($i=a, b, c, d$) of internal WZ states.
- Unitarity expression can be rewritten as

$$
\left|a^{J}(s)\right| \leq 1
$$

- Because $a^{J}(s)$ scales with $\mathcal{O}\left(s^{n}\right)$ on EFT approach, such an expression allows us to compute a maximum energy scale after which the raw EFT breaks.

Unitarity for $W Z \rightarrow W Z$ Partial Waves

- The NLO-computed EFT grows with the CM energy like $A \sim s^{2}$. Hence, it will eventually reach the unitarity bound, becoming non-perturbative. Options:
Cut-Off: limit the validity range of the EFT to the perturbative region to the minimum value of s that saturates $\left|a^{J}(s)\right|=1$. The FFT is considered as a useful narameterization of slight deviations from the SM in the range under the TeV scale Form Factor (FF): instead of obviating part of the raw EFT results sunnress the nathological hehaviour via multinlving the nartial wave

Unitarity for $W Z \rightarrow W Z$ Partial Waves

- The NLO-computed EFT grows with the CM energy like $A \sim s^{2}$. Hence, it will eventually reach the unitarity bound, becoming non-perturbative. Options:
- Cut-Off: limit the validity range of the EFT to the perturbative region to the minimum value of s that saturates $\left|a^{J}(s)\right|=1$. The EFT is considered as a useful parameterization of slight deviations from the SM in the range under the TeV scale.
where Λ_{i}^{2} is the minimum value of s that breaks unitarity in channel

Unitarity for $W Z \rightarrow W Z$ Partial Waves

- The NLO-computed EFT grows with the CM energy like $A \sim s^{2}$. Hence, it will eventually reach the unitarity bound, becoming non-perturbative. Options:
- Cut-Off: limit the validity range of the EFT to the perturbative region to the minimum value of s that saturates $\left|a^{J}(s)\right|=1$. The EFT is considered as a useful parameterization of slight deviations from the SM in the range under the TeV scale.
- Form Factor (FF): instead of obviating part of the raw EFT results, suppress the pathological behaviour via multiplying the partial wave by a smooth, continuous function

$$
f_{i}^{\mathrm{FF}}=\left(1+s / \Lambda_{i}^{2}\right)^{-\varepsilon_{i}},
$$

where Λ_{i}^{2} is the minimum value of s that breaks unitarity in channel i and ε_{i}, the minimum exponent that fixs the pathological behaviour.

Unitarity for $W Z \rightarrow$ WZ Partial Waves

- Kink: similar to the FF approach. The main difference is that the suppression is not smooth, but through a step function

$$
f_{i}^{\text {Kink }}= \begin{cases}1, & \text { if } s \leq \Lambda_{i}^{2} \\ \left(s / \Lambda_{i}^{2}\right)^{-\varepsilon_{i}}, & \text { if } s>\Lambda_{i}^{2}\end{cases}
$$

Take advantage of the analytical properties of the S-Matrix

 encoded inside dispersion relations and unitar. proced., to study the non-nerturhative recion (Tel/ scale) of the theony. This is a theoretically motivated extension of the EFT Different unitarization procedures have been proposed T-Matrix N / D I $A M$
Unitarity for $W Z \rightarrow W Z$ Partial Waves

- Kink: similar to the FF approach. The main difference is that the suppression is not smooth, but through a step function

$$
f_{i}^{\text {Kink }}= \begin{cases}1, & \text { if } s \leq \Lambda_{i}^{2} \\ \left(s / \Lambda_{i}^{2}\right)^{-\varepsilon_{i}}, & \text { if } s>\Lambda_{i}^{2}\end{cases}
$$

- Take advantage of the analytical properties of the S-Matrix, encoded inside dispersion relations and unitar. proced., to study the non-perturbative region (TeV scale) of the theory. This is a theoretically motivated extension of the EFT.

Unitarity for $W Z \rightarrow W Z$ Partial Waves

- Kink: similar to the FF approach. The main difference is that the suppression is not smooth, but through a step function

$$
f_{i}^{\text {Kink }}= \begin{cases}1, & \text { if } s \leq \Lambda_{i}^{2} \\ \left(s / \Lambda_{i}^{2}\right)^{-\varepsilon_{i}}, & \text { if } s>\Lambda_{i}^{2}\end{cases}
$$

- Take advantage of the analytical properties of the S-Matrix, encoded inside dispersion relations and unitar. proced., to study the non-perturbative region (TeV scale) of the theory. This is a theoretically motivated extension of the EFT.
- Different unitarization procedures have been proposed: K-Matrix, T-Matrix, N/D, IAM,...

Unitarity for $W Z \rightarrow W Z$ Partial Waves

- Kink: similar to the FF approach. The main difference is that the suppression is not smooth, but through a step function

$$
f_{i}^{\text {Kink }}= \begin{cases}1, & \text { if } s \leq \Lambda_{i}^{2} \\ \left(s / \Lambda_{i}^{2}\right)^{-\varepsilon_{i}}, & \text { if } s>\Lambda_{i}^{2}\end{cases}
$$

- Take advantage of the analytical properties of the S-Matrix, encoded inside dispersion relations and unitar. proced., to study the non-perturbative region (TeV scale) of the theory. This is a theoretically motivated extension of the EFT.
- Different unitarization procedures have been proposed: K-Matrix, T-Matrix, N/D, IAM,...
- An extensive analysis has been carried out in [PRD91, 075017].

Unitarization procedures for elastic processes, generic

 $\omega \omega \rightarrow \omega \omega$$$
A^{I A M}(s)=\frac{\left[A^{(0)}(s)\right]^{2}}{A^{(0)}(s)-A^{(1)}(s)}
$$

PRD 91 (2015) 075017

Unitarization procedures for elastic processes, generic

 $\omega \omega \rightarrow \omega \omega$$$
\begin{aligned}
A^{I A M}(s) & =\frac{\left[A^{(0)}(s)\right]^{2}}{A^{(0)}(s)-A^{(1)}(s)} \\
A^{N / D}(s) & =\frac{A^{(0)}(s)+A_{L}(s)}{1-\frac{A_{R}(s)}{A^{(0)}(s)}+\frac{1}{2} g(s) A_{L}(-s)}
\end{aligned}
$$

$$
\begin{aligned}
g(s) & =\frac{1}{\pi}\left(\frac{B(\mu)}{D+E}+\log \frac{-s}{\mu^{2}}\right) \\
A_{L}(s) & =\pi g(-s) D s^{2} \\
A_{R}(s) & =\pi g(s) E s^{2}
\end{aligned}
$$

where

PRD 91 (2015) 075017

Unitarization procedures for elastic processes, generic

 $\omega \omega \rightarrow \omega \omega$$$
\begin{aligned}
A^{I A M}(s) & =\frac{\left[A^{(0)}(s)\right]^{2}}{A^{(0)}(s)-A^{(1)}(s)} \\
A^{N / D}(s) & =\frac{A^{(0)}(s)+A_{L}(s)}{1-\frac{A_{R}(s)}{A^{(0)}(s)}+\frac{1}{2} g(s) A_{L}(-s)}, \\
A^{I K}(s) & =\frac{A^{(0)}(s)+A_{L}(s)}{1-\frac{A_{R}(s)}{A^{(0)}(s)}+g(s) A_{L}(s)},
\end{aligned}
$$

$$
\begin{aligned}
g(s) & =\frac{1}{\pi}\left(\frac{B(\mu)}{D+E}+\log \frac{-s}{\mu^{2}}\right) \\
A_{L}(s) & =\pi g(-s) D s^{2} \\
A_{R}(s) & =\pi g(s) E s^{2}
\end{aligned}
$$

where

PRD 91 (2015) 075017

Unitarization procedures for elastic processes, generic

 $\omega \omega \rightarrow \omega \omega$$$
\begin{aligned}
& A^{\prime A M}(s)=\frac{\left[A^{(0)}(s)\right]^{2}}{A^{(0)}(s)-A^{(1)}(s)}, \\
& A^{N / D}(s)=\frac{A^{(0)}(s)+A_{L}(s)}{1-\frac{A_{R}(s)}{A^{0}(s)}\left(\frac{1}{2} g(s) A_{L}(-s)\right.}, \\
& A^{I K}(s)=\frac{A^{(0)}(s)+A_{L}(s)}{1-\frac{A_{P}(s)}{A^{0}(s)}+g(s) A_{L}(s)}, \\
& A_{0}^{\kappa}(s)=\frac{A_{0}(s)}{1-i A_{0}(s)}, \\
& \begin{aligned}
g(s) & =\frac{1}{\pi}\left(\frac{B(\mu)}{D+E}+\log \frac{-s}{\mu^{2}}\right) \\
A_{L}(s) & =\pi g(-s) D s^{2} \\
A_{R}(s) & =\pi g(s) E s^{2}
\end{aligned}
\end{aligned}
$$

where

PRD 91 (2015) 075017

Matricial versions of the methods, generic $\omega \omega \rightarrow \omega \omega$

$$
F^{I A M}(s)=\left[F^{(0)}(s)\right]^{-1} \cdot\left[F^{(0)}(s)-F^{(1)}(s)\right] \cdot\left[F^{(0)}(s)\right]^{-1}
$$

where $G(s), F_{L}(s), F_{R}(s)$ and $N_{0}(s)$ are defined as

Matricial versions of the methods, generic $\omega \omega \rightarrow \omega \omega$

$$
\begin{aligned}
& F^{I A M}(s)=\left[F^{(0)}(s)\right]^{-1} \cdot\left[F^{(0)}(s)-F^{(1)}(s)\right] \cdot\left[F^{(0)}(s)\right]^{-1}, \\
& F^{N / D}(s)=\left[1-F_{R}(s) \cdot\left(F^{(0)}(s)\right)^{-1}+\frac{1}{2} G(s) F_{L}(-s)\right]^{-1} \cdot N_{0}(s)
\end{aligned}
$$

where $G(s), F_{L}(s), F_{R}(s)$ and $N_{0}(s)$ are defined as

$$
\begin{aligned}
G(s) & =\frac{1}{\pi}\left(B(\mu)(D+E)^{-1}+\log \frac{-s}{\mu^{2}}\right) \\
F_{L}(s) & =\pi G(-s) D s^{2} \\
F_{R}(s) & =\pi G(s) E s^{2} \\
N_{0}(s) & =F^{(0)}(s)+F_{L}(s)
\end{aligned}
$$

Matricial versions of the methods, generic $\omega \omega \rightarrow \omega \omega$

$$
\begin{aligned}
F^{I A M}(s) & =\left[F^{(0)}(s)\right]^{-1} \cdot\left[F^{(0)}(s)-F^{(1)}(s)\right] \cdot\left[F^{(0)}(s)\right]^{-1} \\
F^{N / D}(s) & =\left[1-F_{R}(s) \cdot\left(F^{(0)}(s)\right)^{-1}+\frac{1}{2} G(s) F_{L}(-s)\right]^{-1} \cdot N_{0}(s) \\
F^{I K}(s) & =\left[1+G(s) \cdot N_{0}(s)\right]^{-1} \cdot N_{0}(s)
\end{aligned}
$$

where $G(s), F_{L}(s), F_{R}(s)$ and $N_{0}(s)$ are defined as

$$
\begin{aligned}
G(s) & =\frac{1}{\pi}\left(B(\mu)(D+E)^{-1}+\log \frac{-s}{\mu^{2}}\right) \\
F_{L}(s) & =\pi G(-s) D s^{2} \\
F_{R}(s) & =\pi G(s) E s^{2} \\
N_{0}(s) & =F^{(0)}(s)+F_{L}(s)
\end{aligned}
$$

Usability channel of unitarization procedures, generic $\omega \omega \rightarrow \omega \omega$

$I J$	00	02	11	20	22
Method of choice	Any	N/D IK	IAM	Any	N/D IK

- The IAM method cannot be used when $A^{(0)}=0$, because it would give a vanishing value.
\qquad
\qquad
\qquad

Usability channel of unitarization procedures, generic $\omega \omega \rightarrow \omega \omega$

$I J$	00	02	11	20	22
Method of choice	Any	N/D IK	IAM	Any	N/D IK

- The IAM method cannot be used when $A^{(0)}=0$, because it would give a vanishing value.
- The N/D and the IK methods cannot be used if $D+E=0$, because in this case computing $A_{L}(s)$ and $A_{R}(s)$ is not possible.
\qquad
\qquad
\qquad

Usability channel of unitarization procedures, generic

 $\omega \omega \rightarrow \omega \omega$| $I J$ | 00 | 02 | 11 | 20 | 22 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Method of choice | Any | N/D IK | IAM | Any | N/D IK |

- The IAM method cannot be used when $A^{(0)}=0$, because it would give a vanishing value.
- The N/D and the IK methods cannot be used if $D+E=0$, because in this case computing $A_{L}(s)$ and $A_{R}(s)$ is not possible.
- The naive K-matrix method,

$$
A_{0}^{K}(s)=\frac{A_{0}(s)}{1-i A_{0}(s)}
$$

fails because it is not analytical in the first Riemann sheet and, consequently, it is not a proper partial wave compatible with microcausality.

K-Matrix, $W Z \rightarrow W Z, J=1$

$$
a^{J ; \mathrm{K}-\text { Matrix }}(s)=\frac{a^{J}(s)}{1-i a^{J}(s)}
$$

K-Matrix, $W Z \rightarrow W Z, J=1$

$$
a^{J ; K-M a t r i x}(s)=\frac{a^{J}(s)}{1-i a^{J}(s)}
$$

- It has been extensively used in ChPT in QCD. It is a prescription applied to the partial wave amplitudes and basically projects the non-unitary ones into the Argand circle through a stereographic projection.
imaginary part is added ad hoc such that the uni- tarity limit is saturated
- It breaks some of the analytical properties of the S-matrix (poles in the first Riemann sheet)

K-Matrix, $W Z \rightarrow W Z, J=1$

$$
a^{J ; K-M a t r i x}(s)=\frac{a^{J}(s)}{1-i a^{J}(s)}
$$

- It has been extensively used in ChPT in QCD. It is a prescription applied to the partial wave amplitudes and basically projects the non-unitary ones into the Argand circle through a stereographic projection.
- It takes a real, non unitary partial wave amplitude to which an imaginary part is added ad hoc such that the uni- tarity limit is saturated.

K-Matrix, $W Z \rightarrow W Z, J=1$

$$
a^{J ; K-M a t r i x}(s)=\frac{a^{J}(s)}{1-i a^{J}(s)}
$$

- It has been extensively used in ChPT in QCD. It is a prescription applied to the partial wave amplitudes and basically projects the non-unitary ones into the Argand circle through a stereographic projection.
- It takes a real, non unitary partial wave amplitude to which an imaginary part is added ad hoc such that the uni- tarity limit is saturated.
- It breaks some of the analytical properties of the S-matrix (poles in the first Riemann sheet).

K-Matrix, $W Z \rightarrow W Z, J=1$

$$
a^{J ; K-M a t r i x}(s)=\frac{a^{J}(s)}{1-i a^{J}(s)}
$$

- It has been extensively used in ChPT in QCD. It is a prescription applied to the partial wave amplitudes and basically projects the non-unitary ones into the Argand circle through a stereographic projection.
- It takes a real, non unitary partial wave amplitude to which an imaginary part is added ad hoc such that the uni- tarity limit is saturated.
- It breaks some of the analytical properties of the S-matrix (poles in the first Riemann sheet).
- Updated to T-Matrix.

Inverse Amplitude Method (IAM), WZ $\rightarrow W Z, J=1$

$$
a^{J ; \mathrm{IAM}}(s)=\frac{\left[a^{J ;(2)}(s)\right]^{2}}{A^{J ;(2)}(s)-A^{J ;(4)}(s)}
$$

Inverse Amplitude Method (IAM), WZ $\rightarrow W Z, J=1$

$$
a^{J_{; i A M}}(s)=\frac{\left[a^{J ;(2)}(s)\right]^{2}}{A^{j ;(2)}(s)-A^{J ;(4)}(s)}
$$

- It is based on dispersion relations. The partial wave a^{J} is decomposed into two contributions in the chiral expansion, one of order $\mathcal{O}\left(p^{2}\right)$ and the other one of order $\mathcal{O}\left(p^{4}\right)$.

Inverse Amplitude Method (IAM), WZ $\rightarrow W Z, J=1$

$$
a^{J_{; i A M}}(s)=\frac{\left[a^{J ;(2)}(s)\right]^{2}}{A^{j ;(2)}(s)-A^{J ;(4)}(s)}
$$

- It is based on dispersion relations. The partial wave a^{J} is decomposed into two contributions in the chiral expansion, one of order $\mathcal{O}\left(p^{2}\right)$ and the other one of order $\mathcal{O}\left(p^{4}\right)$.
- With the IAM, we dinamically generate the resonances in VBS.

Inverse Amplitude Method (IAM), WZ $\rightarrow W Z, J=1$

$$
a^{J_{; i A M}}(s)=\frac{\left[a^{J ;(2)}(s)\right]^{2}}{A^{j ;(2)}(s)-A^{j ;(4)}(s)}
$$

- It is based on dispersion relations. The partial wave a^{J} is decomposed into two contributions in the chiral expansion, one of order $\mathcal{O}\left(p^{2}\right)$ and the other one of order $\mathcal{O}\left(p^{4}\right)$.
- With the IAM, we dinamically generate the resonances in VBS.
- In particular, the V^{+}, V^{-}, V^{0} isovector resonances $(J=1)$.

Partial waves for angular momentums and helicity combinations

$a^{J}(\sqrt{s})$ with $J=0$ (left), $J=1$ (middle), and $J=2$ (right), of the 81 helicity combinations of $W^{+} Z \rightarrow W^{+} Z \cdot \sqrt{s_{W Z}}=1 \mathrm{TeV}$ and $a_{4}=a_{5}=0.01$ (other parameters set to SM). Incoming and outgoing states can be interpreted indistinctly due to time-reversal invariance. 9 incoming $W Z$ and 9 outgoing $W Z$ states with two polarized gauge bosons, longitudinal (L) and/or transverse ($T^{+,-}$), denoted by: $L L, T^{+} T^{+}, T^{+} T^{-}, T^{-} T^{+}, T^{-} T^{-}, L T^{+}, L T^{-}, T^{+} L$ and $T^{-} L$.

Total cross section

Total cross section of $W^{+} Z \rightarrow W^{+} Z$ for: K matrix (purple), Kink (yellow), FF (blue) and IAM (dashed black), Non-unitarized EChL and SM are also displayed. Two benchmark: $a_{4}=a_{5}=0.01$ (left) and $a_{4}=-a_{5}=0.01$ (right). In all plots $a=1$ (or, equivalently, $\Delta a=0$).

Total cross section

Total cross section $W Z \rightarrow W Z$ (left panels). Channel $W W \rightarrow Z Z$ (right panels). $a_{\equiv}=0 \underline{\underline{D}} \bar{\equiv}$

95% confidence level exclusion in $\left[a_{4}, a_{5}\right]$, WZ final state

Exclusion in $\left[a_{4}, a_{5}\right]$, WZ final state at the LHC with $\sqrt{s}=8 \mathrm{TeV}_{\text {b }}$ Total overall exclusion $\underline{\underline{n}}^{\text {region }}$

Conclusions

- VBS by means of the Electroweak Chiral Lagrangian and several unitarization procedures.
The Electroweak Chiral Lagrangian is chosen because istrongly interacting scenarios.
г「T
underlying structure (bounded to specific energy scales!!)
Reliable, unitary predictions are needed to interpret experimental data
Option: cut-ofr
Option: ad-hoc form-factor: FF, Kint
Option: take advantage of mathematical properties of the S-Matrix
(unitarization)
There is a theoretical uncertainty in the experimental determination ofeffective theory parameters due to the unitarization scheme choice.
For the IAM, $M\left(V^{0}, V^{ \pm}\right)$and $\Gamma\left(V^{0}, V^{ \pm}\right)$, functions of the Chiral
parameters (low energy EWChL). NOT independent parameters.

Conclusions

- VBS by means of the Electroweak Chiral Lagrangian and several unitarization procedures.
- The Electroweak Chiral Lagrangian is chosen because it is more suitable for strongly interacting scenarios.

```
EFTs, typically, suffer from unitarity violation issues, because of the
underlying structure (bounded to specific energy scales!!).
Relia''le, unitary predic:ions are heeded':o interpret experimental data
Option: cut-off.
Op:ion: ad-'ooc form-factor: FF, Kint.
Option: take advantage of mathematical properties of the S-Matrix
(unitarization).
There is a theoretical uncertainty in the experimental determination of
effective theory parameters due to the unitarization scheme choice.
parameters (low energy EWChL). NOT independent parameters.

\section*{Conclusions}
- VBS by means of the Electroweak Chiral Lagrangian and several unitarization procedures.
- The Electroweak Chiral Lagrangian is chosen because it is more suitable for strongly interacting scenarios.
- EFTs, typically, suffer from unitarity violation issues, because of the underlying structure (bounded to specific energy scales!!).
\(\qquad\) Option: take advantage of mathematical properties of the S-Matrix (unitarization).
- There is a theoretical uncertainty in the experimental determination of effective theory parameters due to the unitarization scheme choice.

\section*{Conclusions}
- VBS by means of the Electroweak Chiral Lagrangian and several unitarization procedures.
- The Electroweak Chiral Lagrangian is chosen because it is more suitable for strongly interacting scenarios.
- EFTs, typically, suffer from unitarity violation issues, because of the underlying structure (bounded to specific energy scales!!).
- Reliable, unitary predictions are needed to interpret experimental data.

Option: ad-hoc form-factor: FF, Kint.
Option: take advantage of mathematical properties of the S-Matrix (unitarization).
- There is a theoretical uncertainty in the experimental determination of parameters (low energy EWChL). NOT independent parameters.

\section*{Conclusions}
- VBS by means of the Electroweak Chiral Lagrangian and several unitarization procedures.
- The Electroweak Chiral Lagrangian is chosen because it is more suitable for strongly interacting scenarios.
- EFTs, typically, suffer from unitarity violation issues, because of the underlying structure (bounded to specific energy scales!!).
- Reliable, unitary predictions are needed to interpret experimental data.
- Option: cut-off.
- Option: ad-hoc form-factor: FF, Kint.
- Option: take advantage of mathematical properties of the S-Matrix (unitarization)
- There is a theoretical uncertainty in the experimental determination of parameters (low energy EWChL). NOT independent parameters.

\section*{Conclusions}
- VBS by means of the Electroweak Chiral Lagrangian and several unitarization procedures.
- The Electroweak Chiral Lagrangian is chosen because it is more suitable for strongly interacting scenarios.
- EFTs, typically, suffer from unitarity violation issues, because of the underlying structure (bounded to specific energy scales!!).
- Reliable, unitary predictions are needed to interpret experimental data.
- Option: cut-off.
- Option: ad-hoc form-factor: FF, Kint.

parameters (low energy EWChL). NOT independent parameters.

\section*{Conclusions}
- VBS by means of the Electroweak Chiral Lagrangian and several unitarization procedures.
- The Electroweak Chiral Lagrangian is chosen because it is more suitable for strongly interacting scenarios.
- EFTs, typically, suffer from unitarity violation issues, because of the underlying structure (bounded to specific energy scales!!).
- Reliable, unitary predictions are needed to interpret experimental data.
- Option: cut-off.
- Option: ad-hoc form-factor: FF, Kint.
- Option: take advantage of mathematical properties of the S-Matrix (unitarization).
。
parameters (low energy EWChL). NOT independent parameters.

\section*{Conclusions}
- VBS by means of the Electroweak Chiral Lagrangian and several unitarization procedures.
- The Electroweak Chiral Lagrangian is chosen because it is more suitable for strongly interacting scenarios.
- EFTs, typically, suffer from unitarity violation issues, because of the underlying structure (bounded to specific energy scales!!).
- Reliable, unitary predictions are needed to interpret experimental data.
- Option: cut-off.
- Option: ad-hoc form-factor: FF, Kint.
- Option: take advantage of mathematical properties of the S-Matrix (unitarization).
- There is a theoretical uncertainty in the experimental determination of effective theory parameters due to the unitarization scheme choice.


\section*{Conclusions}
- VBS by means of the Electroweak Chiral Lagrangian and several unitarization procedures.
- The Electroweak Chiral Lagrangian is chosen because it is more suitable for strongly interacting scenarios.
- EFTs, typically, suffer from unitarity violation issues, because of the underlying structure (bounded to specific energy scales!!).
- Reliable, unitary predictions are needed to interpret experimental data.
- Option: cut-off.
- Option: ad-hoc form-factor: FF, Kint.
- Option: take advantage of mathematical properties of the S-Matrix (unitarization).
- There is a theoretical uncertainty in the experimental determination of effective theory parameters due to the unitarization scheme choice.
- For the IAM, \(M\left(V^{0}, V^{ \pm}\right)\)and \(\Gamma\left(V^{0}, V^{ \pm}\right)\), functions of the Chiral parameters (low energy EWChL). NOT independent parameters.

\section*{BACKUP SLIDES}

\section*{Isovector Resonance, \(V^{ \pm}, V^{0}[J H E P 1711,098]\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline BP & \(M_{v}(\mathrm{GeV})\) & \(\Gamma_{v}(\mathrm{GeV})\) & \(g_{v}\left(M_{V}^{2}\right)\) & \(a\) & \(a_{4} \cdot 10^{4}\) & \(a_{5} \cdot 10^{4}\) \\
\hline BP1 & 1476 & 14 & 0.033 & 1 & 3.5 & -3 \\
\hline BP2 & 2039 & 21 & 0.018 & 1 & 1 & -1 \\
\hline BP3 & 2472 & 27 & 0.013 & 1 & 0.5 & -0.5 \\
\hline BP1' \(^{\prime}\) & 1479 & 42 & 0.058 & 0.9 & 9.5 & -6.5 \\
\hline BP2' \(^{\prime}\) & 1980 & 97 & 0.042 & 0.9 & 5.5 & -2.5 \\
\hline BP3' \(^{\prime}\) & 2480 & 183 & 0.033 & 0.9 & 4 & -1 \\
\hline
\end{tabular}

These BPs have been selected for vector resonances emerging at mass \(M_{V}\) and width \(\Gamma_{V}\) values that are of phenomenological interest for the LHC. Note that \(M_{v}, \Gamma_{v}\) and \(g_{v}\left(M_{v}^{2}\right)\) are extracted from the EFT parameters \(b=a^{2}, a_{4}\) and \(a_{5}\).

\section*{Our EFT approach for Monte Carlo: Effective Proca Lagrangian}
- We are using the Non-linear Electroweak Chiral Lagrangian + the Inverse Amplitude Method (IAM).

Issue: Monte Carlo programs like MadGraph only understand Feynman Rules. Solution: an effective Proca Lagrangian is used to mimic the IAM amplitudes using the language of (effective) Feynman diagrams. SHERPA. In the end, effective vertices on a BSM Monte-Carlo. However, this Effective Proca Lagrangian is meant to mimic the hehaviour of unitarized amnlitudes motivated on the analvtical

\section*{Our EFT approach for Monte Carlo: Effective Proca Lagrangian}
- We are using the Non-linear Electroweak Chiral Lagrangian + the Inverse Amplitude Method (IAM).
- Issue: We need to plug the unitarized (IAM) scattering amplitudes (like \(w w \rightarrow w w\) and \(w z \rightarrow w z\) ) inside a bigger chain of hard scattering processes starting on partons, like: \(p p \rightarrow W^{+} W^{-} j j, \boldsymbol{W}^{+} \boldsymbol{W}^{-} \rightarrow \boldsymbol{W}^{+} \boldsymbol{W}^{-}\)(IAM), \(W^{+} \rightarrow j j, W^{-} \rightarrow j j\)

\section*{Our EFT approach for Monte Carlo: Effective Proca Lagrangian}
- We are using the Non-linear Electroweak Chiral Lagrangian + the Inverse Amplitude Method (IAM).
- Issue: We need to plug the unitarized (IAM) scattering amplitudes (like \(w w \rightarrow w w\) and \(w z \rightarrow w z\) ) inside a bigger chain of hard scattering processes starting on partons, like: \(p p \rightarrow W^{+} W^{-} j j, \boldsymbol{W}^{+} \boldsymbol{W}^{-} \rightarrow \boldsymbol{W}^{+} \boldsymbol{W}^{-}\)(IAM), \(W^{+} \rightarrow j j, W^{-} \rightarrow j j\)
- Issue: Monte Carlo programs like MadGraph only understand Feynman Rules.

\section*{Our EFT approach for Monte Carlo: Effective Proca Lagrangian}
- We are using the Non-linear Electroweak Chiral Lagrangian + the Inverse Amplitude Method (IAM).
- Issue: We need to plug the unitarized (IAM) scattering amplitudes (like \(w w \rightarrow w w\) and \(w z \rightarrow w z\) ) inside a bigger chain of hard scattering processes starting on partons, like: \(p p \rightarrow W^{+} W^{-} j j, \boldsymbol{W}^{+} \boldsymbol{W}^{-} \rightarrow \boldsymbol{W}^{+} \boldsymbol{W}^{-}\)(IAM), \(W^{+} \rightarrow j j, W^{-} \rightarrow j j\)
- Issue: Monte Carlo programs like MadGraph only understand Feynman Rules.
- Solution: an effective Proca Lagrangian is used to mimic the IAM amplitudes using the language of (effective) Feynman diagrams.
\(\qquad\) However, this Effective Proca Lagrangian is meant to mimic the behaviour of unitarized amplitudes motivated on the analytical

\section*{Our EFT approach for Monte Carlo: Effective Proca Lagrangian}
- We are using the Non-linear Electroweak Chiral Lagrangian + the Inverse Amplitude Method (IAM).
- Issue: We need to plug the unitarized (IAM) scattering amplitudes (like \(w w \rightarrow w w\) and \(w z \rightarrow w z\) ) inside a bigger chain of hard scattering processes starting on partons, like: \(p p \rightarrow W^{+} W^{-} j j, \boldsymbol{W}^{+} \boldsymbol{W}^{-} \rightarrow \boldsymbol{W}^{+} \boldsymbol{W}^{-}\)(IAM), \(W^{+} \rightarrow j j, W^{-} \rightarrow j j\)
- Issue: Monte Carlo programs like MadGraph only understand Feynman Rules.
- Solution: an effective Proca Lagrangian is used to mimic the IAM amplitudes using the language of (effective) Feynman diagrams.
- This approach reminds those based on Form Factors, like Whizard or SHERPA. In the end, effective vertices on a BSM Monte-Carlo.

\section*{Our EFT approach for Monte Carlo: Effective Proca Lagrangian}
- We are using the Non-linear Electroweak Chiral Lagrangian + the Inverse Amplitude Method (IAM).
- Issue: We need to plug the unitarized (IAM) scattering amplitudes (like \(w w \rightarrow w w\) and \(w z \rightarrow w z\) ) inside a bigger chain of hard scattering processes starting on partons, like:
\[
p p \rightarrow W^{+} W^{-} j j, \boldsymbol{W}^{+} \boldsymbol{W}^{-} \rightarrow \boldsymbol{W}^{+} \boldsymbol{W}^{-}(\mathrm{IAM}), W^{+} \rightarrow j j, W^{-} \rightarrow j j
\]
- Issue: Monte Carlo programs like MadGraph only understand Feynman Rules.
- Solution: an effective Proca Lagrangian is used to mimic the IAM amplitudes using the language of (effective) Feynman diagrams.
- This approach reminds those based on Form Factors, like Whizard or SHERPA. In the end, effective vertices on a BSM Monte-Carlo.
- However, this Effective Proca Lagrangian is meant to mimic the behaviour of unitarized amplitudes motivated on the analytical properties of the S-Matrix. Not a simple form factor.

\section*{Diagrams for \(W W \rightarrow W W\)}

\section*{EWChL}

\section*{Eff. Proca}


\section*{Channels: \(W^{+} W^{-} \rightarrow W^{+} W^{-}\)}

- We are extending our UFO for including \(W^{+} W^{-} \rightarrow W^{+} W^{-}\).
- On the longer term, we consider completing the EW model for including \(Z Z \rightarrow Z Z\).
- The UFO model, actually, works.
- We have been granted 150kh of computer time of C2PAP for testing the new UFO.

\section*{Excellence Cluster Universe}


\section*{Channels: \(W^{+} W^{-} \rightarrow W^{+} W^{-}\)}

- We are extending our UFO for including \(W^{+} W^{-} \rightarrow W^{+} W^{-}\).
- We expect to be able to deal with \(W Z \rightarrow W Z, W W \rightarrow Z Z, Z Z \rightarrow W W\), \(W^{+} W^{-} \rightarrow W^{+} W^{-}, W^{ \pm} W^{ \pm} \rightarrow W^{ \pm} W^{ \pm}\).
- On the longer term, we consider completing the EW model for including \(Z Z \rightarrow Z Z\).
- The uro model, actually, worl.s.
- We have been granted 150kh of computer time of C2PAP for testing the new UFO.

\section*{Excellence Cluster Universe}


\section*{Channels: \(W^{+} W^{-} \rightarrow W^{+} W^{-}\)}

- We are extending our UFO for including \(W^{+} W^{-} \rightarrow W^{+} W^{-}\).
- We expect to be able to deal with \(W Z \rightarrow W Z, W W \rightarrow Z Z, Z Z \rightarrow W W\), \(W^{+} W^{-} \rightarrow W^{+} W^{-}, W^{ \pm} W^{ \pm} \rightarrow W^{ \pm} W^{ \pm}\).
- On the longer term, we consider completing the EW model for including \(Z Z \rightarrow Z Z\).
- The UFO model, actually, works.

\section*{Excellence Cluster Universe}


\section*{Channels: \(W^{+} W^{-} \rightarrow W^{+} W^{-}\)}

- We are extending our UFO for including \(W^{+} W^{-} \rightarrow W^{+} W^{-}\).
- We expect to be able to deal with \(W Z \rightarrow W Z, W W \rightarrow Z Z, Z Z \rightarrow W W\), \(W^{+} W^{-} \rightarrow W^{+} W^{-}, W^{ \pm} W^{ \pm} \rightarrow W^{ \pm} W^{ \pm}\).
- On the longer term, we consider completing the EW model for including \(Z Z \rightarrow Z Z\).
- The UFO model, actually, works.


\section*{Excellence Cluster Universe}


\section*{Channels: \(W^{+} W^{-} \rightarrow W^{+} W^{-}\)}

- We are extending our UFO for including \(W^{+} W^{-} \rightarrow W^{+} W^{-}\).
- We expect to be able to deal with \(W Z \rightarrow W Z, W W \rightarrow Z Z, Z Z \rightarrow W W\), \(W^{+} W^{-} \rightarrow W^{+} W^{-}, W^{ \pm} W^{ \pm} \rightarrow W^{ \pm} W^{ \pm}\).
- On the longer term, we consider completing the EW model for including \(Z Z \rightarrow Z Z\).
- The UFO model, actually, works.
- We have been granted 150 kh of computer time of C2PAP for testing the new UFO.

\section*{Excellence Cluster Universe}


\section*{Fully leptonic and fully hadronic channels, cuts}
- On both analyses, we use standard VBS cuts. I.e., 2 jets (comming from parton scattering) with \(2<\left|\eta_{j i}\right|<5, p_{T}\left(j_{i}\right)>20 \mathrm{GeV}\) \((i=1,2), M\left(j_{1} j_{2}\right)>500 \mathrm{GeV}, \eta_{j_{1}} \cdot \eta_{j_{2}}<0\).
reconstruction (anti-kT, \(R=0.5\) ) are used here.

\section*{Fully leptonic and fully hadronic channels, cuts}
- On both analyses, we use standard VBS cuts. I.e., 2 jets (comming from parton scattering) with \(2<\left|\eta_{j i}\right|<5, p_{T}\left(j_{i}\right)>20 \mathrm{GeV}\) \((i=1,2), M\left(j_{1} j_{2}\right)>500 \mathrm{GeV}, \eta_{j_{1}} \cdot \eta_{j_{2}}<0\).
- Pythia 8 for hadronization + DELPHES (\& FastJet) for jet reconstruction (anti- \(k T, R=0.5\) ) are used here.

\section*{Fully leptonic and fully hadronic channels, cuts}
- On both analyses, we use standard VBS cuts. I.e., 2 jets (comming from parton scattering) with \(2<\left|\eta_{j i}\right|<5, p_{T}\left(j_{i}\right)>20 \mathrm{GeV}\) \((i=1,2), M\left(j_{1} j_{2}\right)>500 \mathrm{GeV}, \eta_{j_{1}} \cdot \eta_{j_{2}}<0\).
- Pythia 8 for hadronization + DELPHES (\& FastJet) for jet reconstruction (anti- \(k T, R=0.5\) ) are used here.
- Neutrino problem: Missing Transverse Energy (MET) is an experimental observable at the LHC (hadron collider). BUT the component of the Missing Energy in the beamline direction is LOST.

\section*{Fully leptonic and fully hadronic channels, cuts}
- On both analyses, we use standard VBS cuts. I.e., 2 jets (comming from parton scattering) with \(2<\left|\eta_{j i}\right|<5, p_{T}\left(j_{i}\right)>20 \mathrm{GeV}\) \((i=1,2), M\left(j_{1} j_{2}\right)>500 \mathrm{GeV}, \eta_{j_{1}} \cdot \eta_{j_{2}}<0\).
- Pythia 8 for hadronization + DELPHES (\& FastJet) for jet reconstruction (anti- \(k T, R=0.5\) ) are used here.
- Neutrino problem: Missing Transverse Energy (MET) is an experimental observable at the LHC (hadron collider). BUT the component of the Missing Energy in the beamline direction is LOST.
- \(\boldsymbol{W}^{+} \boldsymbol{Z} \rightarrow \boldsymbol{I}^{+} \boldsymbol{\nu} \boldsymbol{I}^{+} \boldsymbol{I}^{-}, 1\) single \(\nu\) lost. Still, reconstructed transverse invariant mass \(M_{I I L}^{T}\) shows a peak.

\section*{Fully leptonic and fully hadronic channels, cuts}
- On both analyses, we use standard VBS cuts. I.e., 2 jets (comming from parton scattering) with \(2<\left|\eta_{j i}\right|<5, p_{T}\left(j_{i}\right)>20 \mathrm{GeV}\) \((i=1,2), M\left(j_{1} j_{2}\right)>500 \mathrm{GeV}, \eta_{j_{1}} \cdot \eta_{j_{2}}<0\).
- Pythia 8 for hadronization + DELPHES (\& FastJet) for jet reconstruction (anti- \(k T, R=0.5\) ) are used here.
- Neutrino problem: Missing Transverse Energy (MET) is an experimental observable at the LHC (hadron collider). BUT the component of the Missing Energy in the beamline direction is LOST.
- \(\boldsymbol{W}^{+} \boldsymbol{Z} \rightarrow \boldsymbol{I}^{+} \boldsymbol{\nu} \boldsymbol{I}^{+} \boldsymbol{I}^{-}, 1\) single \(\nu\) lost. Still, reconstructed transverse invariant mass \(M_{I I I}^{T}\) shows a peak.
- \(\boldsymbol{W}^{+} \boldsymbol{W}^{-} \rightarrow \boldsymbol{I}^{+} \boldsymbol{I}^{-} \boldsymbol{\nu}_{\boldsymbol{I}} \overline{\boldsymbol{\nu}}_{\boldsymbol{I}}, 2 \nu\) lost in fully leptonic channel. Reconstruction of a peak on \(M_{\| \nu \nu}^{T}\) is not feasible.

\section*{Fully leptonic and fully hadronic channels, cuts}
- On both analyses, we use standard VBS cuts. I.e., 2 jets (comming from parton scattering) with \(2<\left|\eta_{j i}\right|<5, p_{T}\left(j_{i}\right)>20 \mathrm{GeV}\) \((i=1,2), M\left(j_{1} j_{2}\right)>500 \mathrm{GeV}, \eta_{j_{1}} \cdot \eta_{j_{2}}<0\).
- Pythia 8 for hadronization + DELPHES (\& FastJet) for jet reconstruction (anti- \(k T, R=0.5\) ) are used here.
- Neutrino problem: Missing Transverse Energy (MET) is an experimental observable at the LHC (hadron collider). BUT the component of the Missing Energy in the beamline direction is LOST.
- \(\boldsymbol{W}^{+} \boldsymbol{Z} \rightarrow \boldsymbol{I}^{+} \boldsymbol{\nu} \boldsymbol{I}^{\boldsymbol{I}} \boldsymbol{I}^{-}\), 1 single \(\nu\) lost. Still, reconstructed transverse invariant mass \(M_{I I I}^{T}\) shows a peak.
- \(\boldsymbol{W}^{+} \boldsymbol{W}^{-} \rightarrow \boldsymbol{I}^{+} \boldsymbol{I}^{-} \boldsymbol{\nu} \boldsymbol{I}^{\boldsymbol{\nu}}, 2 \nu\) lost in fully leptonic channel. Reconstruction of a peak on \(M_{l / \nu \nu}^{T}\) is not feasible.
- Our present research is on fully hadronic channel for \(W^{+} W^{-}\), no MET. We assume boosted ( \(p_{T}>200 \mathrm{GeV}\) ) vector gauge bosons, that are recognized as a single fast jet on the detectors.

\section*{Boosted vector gauge bosons}
- Hypothesis: we have hadronic decays \(W^{+} \rightarrow j j, W^{-} \rightarrow j j\). But all the jets comming from a vector boson are reconstructed as a single fat jet \((J)\) due to the original \(W\) being highly boosted, \(p_{T}(J)>200 \mathrm{GeV}\).

\section*{Boosted vector gauge bosons}
- Hypothesis: we have hadronic decays \(W^{+} \rightarrow j j, W^{-} \rightarrow j j\). But all the jets comming from a vector boson are reconstructed as a single fat jet \((J)\) due to the original \(W\) being highly boosted, \(p_{T}(J)>200 \mathrm{GeV}\).
- We reconstruct the original vector boson via de 4-momenta of the identified fat-jet. As a \(W\)-tagging, we use the invariant mass of the fat-jet (on a first approach). At the moment, \(\left|\eta_{J}\right|<2\), \(p_{T}(J)>200 \mathrm{GeV}\) and \(R=0.8\).

\section*{Boosted vector gauge bosons}
- Hypothesis: we have hadronic decays \(W^{+} \rightarrow j j, W^{-} \rightarrow j j\). But all the jets comming from a vector boson are reconstructed as a single fat jet \((J)\) due to the original \(W\) being highly boosted, \(p_{T}(J)>200 \mathrm{GeV}\).
- We reconstruct the original vector boson via de 4-momenta of the identified fat-jet. As a \(W\)-tagging, we use the invariant mass of the fat-jet (on a first approach). At the moment, \(\left|\eta_{J}\right|<2\), \(p_{T}(J)>200 \mathrm{GeV}\) and \(R=0.8\).
- We are considering \(\tau_{21}, M(J)\) for \(W\)-tagging. See, for instance:

\section*{Boosted vector gauge bosons}
- Hypothesis: we have hadronic decays \(W^{+} \rightarrow j j, W^{-} \rightarrow j j\). But all the jets comming from a vector boson are reconstructed as a single fat jet \((J)\) due to the original \(W\) being highly boosted, \(p_{T}(J)>200 \mathrm{GeV}\).
- We reconstruct the original vector boson via de 4-momenta of the identified fat-jet. As a \(W\)-tagging, we use the invariant mass of the fat-jet (on a first approach). At the moment, \(\left|\eta_{J}\right|<2\), \(p_{T}(J)>200 \mathrm{GeV}\) and \(R=0.8\).
- We are considering \(\tau_{21}, M(J)\) for \(W\)-tagging. See, for instance:
- JHEP 12 (2014) 017, CMS-JME-13-006, CERN-PH-EP-2014-241

\section*{Boosted vector gauge bosons}
- Hypothesis: we have hadronic decays \(W^{+} \rightarrow j j, W^{-} \rightarrow j j\). But all the jets comming from a vector boson are reconstructed as a single fat jet \((J)\) due to the original \(W\) being highly boosted, \(p_{T}(J)>200 \mathrm{GeV}\).
- We reconstruct the original vector boson via de 4-momenta of the identified fat-jet. As a \(W\)-tagging, we use the invariant mass of the fat-jet (on a first approach). At the moment, \(\left|\eta_{J}\right|<2\), \(p_{T}(J)>200 \mathrm{GeV}\) and \(R=0.8\).
- We are considering \(\tau_{21}, M(J)\) for \(W\)-tagging. See, for instance:
- JHEP 12 (2014) 017, CMS-JME-13-006, CERN-PH-EP-2014-241
- CERN-EP-2018-192, arXiv:1808.07858 [hep-ex]

\section*{Boosted vector gauge bosons}
- Hypothesis: we have hadronic decays \(W^{+} \rightarrow j j, W^{-} \rightarrow j j\). But all the jets comming from a vector boson are reconstructed as a single fat jet \((J)\) due to the original \(W\) being highly boosted, \(p_{T}(J)>200 \mathrm{GeV}\).
- We reconstruct the original vector boson via de 4-momenta of the identified fat-jet. As a \(W\)-tagging, we use the invariant mass of the fat-jet (on a first approach). At the moment, \(\left|\eta_{J}\right|<2\), \(p_{T}(J)>200 \mathrm{GeV}\) and \(R=0.8\).
- We are considering \(\tau_{21}, M(J)\) for \(W\)-tagging. See, for instance:
- JHEP 12 (2014) 017, CMS-JME-13-006, CERN-PH-EP-2014-241
- CERN-EP-2018-192, arXiv:1808.07858 [hep-ex]
- See next slide: https://indico.cern.ch/event/576047/contributions/ 2356506/attachments/1380679/2098953/161130CMS_WZTagging.pdf

\section*{Boosted vector gauge bosons: [Cristina Mantilla Suarez (Johns Hopkins)]}

\section*{W/Z boosted topologies}

Vector bosons with \(\mathbf{p T} \mathbf{> 2 0 0} \mathbf{~ G e V}\) merged into single \(R=0.8\) jet

CMS-JME-13-006

\(\Delta \mathrm{R}_{\text {qq }}<0.8\)

Challenge: Jet mass
Jet substructure

\section*{Considered background: hadronic channel, \(W^{+} W^{-}\)}
- Signal: \(p p \rightarrow j j W^{+} W^{-}, W^{+} \rightarrow j j, W^{-} \rightarrow j j\). Note that we only identify fat jets, \(W^{ \pm} \rightarrow J\).
usual VBS cuts. However, it is extremely challenging to simulate.

\section*{Considered background: hadronic channel, \(W^{+} W^{-}\)}
- Signal: \(p p \rightarrow j j W^{+} W^{-}, W^{+} \rightarrow j j, W^{-} \rightarrow j j\). Note that we only identify fat jets, \(W^{ \pm} \rightarrow J\).
- Pure SM-EW Background, amplitude of order \(\mathcal{O}\left(\alpha_{\mathrm{em}}^{2}\right)\). Followed by hadronic decay of WW.

\section*{Considered background: hadronic channel, \(W^{+} W^{-}\)}
- Signal: \(p p \rightarrow j j W^{+} W^{-}, W^{+} \rightarrow j j, W^{-} \rightarrow j j\). Note that we only identify fat jets, \(W^{ \pm} \rightarrow J\).
- Pure SM-EW Background, amplitude of order \(\mathcal{O}\left(\alpha_{\text {em }}^{2}\right)\). Followed by hadronic decay of WW.
- Mixed SM-EWQCD Background, amplitude of order \(\mathcal{O}\left(\alpha_{\mathrm{em}} \alpha_{\mathrm{s}}\right)\). Followed by hadronic decay of WW.

\section*{Considered background: hadronic channel, \(W^{+} W^{-}\)}
- Signal: \(p p \rightarrow j j W^{+} W^{-}, W^{+} \rightarrow j j, W^{-} \rightarrow j j\). Note that we only identify fat jets, \(W^{ \pm} \rightarrow J\).
- Pure SM-EW Background, amplitude of order \(\mathcal{O}\left(\alpha_{\text {em }}^{2}\right)\). Followed by hadronic decay of WW.
- Mixed SM-EWQCD Background, amplitude of order \(\mathcal{O}\left(\alpha_{\mathrm{em}} \alpha_{\mathrm{s}}\right)\). Followed by hadronic decay of WW.
- QCD Background: all LO-QCD \(p p \rightarrow 4 j\) processes, that mimic a signal with 2 jets +2 fat-jet \(\left(M(J) \sim M_{W}\right)\). This background is both high and very difficult to remove. W-tagging techniques from our experimentalist colleagues (previous slides) are helpful for dealing with this background.

\section*{Considered background: hadronic channel, \(W^{+} W^{-}\)}
- Signal: \(p p \rightarrow j j W^{+} W^{-}, W^{+} \rightarrow j j, W^{-} \rightarrow j j\). Note that we only identify fat jets, \(W^{ \pm} \rightarrow J\).
- Pure SM-EW Background, amplitude of order \(\mathcal{O}\left(\alpha_{\text {em }}^{2}\right)\). Followed by hadronic decay of WW.
- Mixed SM-EWQCD Background, amplitude of order \(\mathcal{O}\left(\alpha_{\mathrm{em}} \alpha_{\mathrm{s}}\right)\). Followed by hadronic decay of WW.
- QCD Background: all LO-QCD \(p p \rightarrow 4 j\) processes, that mimic a signal with 2 jets +2 fat-jet \(\left(M(J) \sim M_{W}\right)\). This background is both high and very difficult to remove. W-tagging techniques from our experimentalist colleagues (previous slides) are helpful for dealing with this background.
- \(\boldsymbol{t} \overline{\boldsymbol{t}}\) Background: processes like \(p p \rightarrow t \bar{t} \rightarrow b \bar{b} W^{+} W^{-}\), where the pair \(b \bar{b}\) mimics the 2 light jet signal comming from a VBS event. This background, in practise, is greatly removed by b-tagging and usual VBS cuts. However, it is extremely challenging to simulate. Work in progress.

\section*{WW hadronic final state, PRELIMINAR: BP1}


2 fat-jets \(\left(p_{T}>200 \mathrm{GeV}\right)\), anti- \(k T(R=0.8)\), up to 4 extra thin-jets. \(M(V V)\), MadGraph 5, before Pythia8+DELPHES.

Note: SM QCD, factor \(10^{-2}\) !!

\section*{WW hadronic final state, PRELIMINAR: BPi}


2 fat-jets \(\left(p_{T}>200 \mathrm{GeV}\right)\), anti- \(k T(R=0.8)\), up to 4 extra thin-jets. \(M(V V)\), MadGraph 5, before Pythia8+DELPHES.

Note: SM QCD, factor \(10^{-2}\) !!

\section*{WW hadronic final state, PRELIMINAR: BP i'}


2 fat-jets \(\left(p_{T}>200 \mathrm{GeV}\right)\), anti- \(k T(R=0.8)\), up to 4 extra thin-jets. \(M(V V)\), MadGraph 5, before Pythia8+DELPHES.

Note: SM QCD, factor \(10^{-2}\) !!

\section*{WW hadronic final state, PRELIMINAR: \(\tau_{21}\)}


2 fat-jets \(\left(p_{T}>200 \mathrm{GeV}\right)\), anti- \(k T(R=0.8)\), up to 4 extra thin-jets. \(M(V V)\), MadGraph 5, before Pythia8+DELPHES.

Note: SM QCD, factor \(10^{-2}\) !!

\section*{Expected events for WW (fully hadronic), preliminar}
\begin{tabular}{c|cccccc}
\hline \hline & BP1' & BP2' & BP3' & BP1 & BP2 & BP3 \\
\hline\(\sigma_{\mathrm{QCD}, W^{+} W^{+}, t{ }^{\prime}}\) & 4.63 & 2.96 & 0.900 & 1.82 & 0.565 & 0.209 \\
\(\sigma_{\mathrm{QCD}}\) & 4.74 & 3.14 & 0.922 & 1.88 & 0.596 & 0.215 \\
\(\sigma_{\mathrm{EW}}\) & 21.0 & 8.36 & 3.88 & 6.96 & 1.64 & 0.907 \\
\(N_{s}\) & 127 & 19.3 & 3.23 & 41.9 & 6.25 & 1.13 \\
\(N_{\mathrm{EW}}\) & 24.0 & 3.54 & 0.494 & 15.0 & 3.28 & 0.494 \\
\(N_{W+W^{+}}\) & 11.0 & 1.53 & 0.231 & 6.93 & 1.43 & 0.231 \\
\(N_{t \bar{t}}\) & 0.247 & - & - & 0.247 & - & - \\
\(N_{\mathrm{QCD}}\) & 449 & 21.5 & 8.28 & 190 & 21.5 & 8.28 \\
\hline\(p_{T}^{J_{1}, \mathrm{GeV}}\) & \(>200\) & \(>200\) & \(>600\) & \(>200\) & \(>200\) & \(>600\) \\
\(p_{T}^{J_{2}}, \mathrm{GeV}\) & \(>200\) & \(>200\) & \(>300\) & \(>200\) & \(>200\) & \(>300\) \\
\(\tau_{21}\left(J_{1}\right)\) & \(0.1-0.3\) & \(0.1-0.3\) & \(0.1-0.3\) & \(0.1-0.3\) & \(0.1-0.3\) & \(0.1-0.3\) \\
\(\tau_{21}\left(J_{2}\right)\) & \(0.1-0.4\) & \(0.1-0.3\) & \(0.1-0.3\) & \(0.1-0.3\) & \(0.1-0.3\) & \(0.1-0.3\) \\
\(M\left(J_{1}\right), \mathrm{GeV}\) & \(60-100\) & \(60-100\) & \(60-100\) & \(60-100\) & \(60-100\) & \(60-100\) \\
\(\left|\Delta R\left(J_{1}, J_{2}\right)\right|\) & all & all & \(2.5-4.5\) & all & \(2.5-4.5\) & \(2.5-4.5\) \\
\(\left|\Delta \eta\left(J_{1}, J_{2}\right)\right|\) & \(>1.0\) & all & all & \(>1.0\) & all & all \\
\(M(J J), \mathrm{TeV}\) & \(1.50 \pm 0.25\) & \(2.00 \pm 0.25\) & \(2.50 \pm 0.25\) & \(1.50 \pm 0.25\) & \(2.00 \pm 0.25\) & \(2.50 \pm 0.25\) \\
\hline \hline
\end{tabular}

Table 2: Selection of cuts and their associate significance for \(L=3000 \mathrm{fb}^{-1}\). In all the cases, \(M\left(J_{2}\right)>20 \mathrm{GeV}\) and no restriction over \(\Delta \eta\left(J_{1}, J_{2}\right)\). A maximum of 4 additional thin-jets \(j_{i}(i>2, i \leq 4)\), are allowed, all of them with \(\Delta R\left(j_{i}, J\right)<0.8\) for some reconstructed fat-jet \(J\). A maximum of 2 extra fat-jets is also allowed.

\section*{Diagrams for \(W Z \rightarrow W Z\)}

\section*{EWChL}



\section*{Eff. Proca}


\section*{Legend}

Grey circles: BSM Chiral parameters, \(a, b, a_{4}, a_{5}\).
Grey boxes: effective Proca couplings.

\section*{Channels: \(W Z \rightarrow W Z\)}


- We are using MadGraph v5 capability of integrating Fortran code inside UFO.
- We encode the Proca processes (those involving the resonace \(V\) ) as effective vertices inside the UFO.
- The parameters of the Proca Lagrangian are adjusted to the IAM results [dynamic \(\left.M_{v}, \Gamma v, g_{v}\left(M_{v}^{2}\right)\right]\) via a custom niece of
- Currently, \(W^{+} Z \rightarrow W^{+} Z\) tested

\section*{Channels: \(W Z \rightarrow W Z\)}

- We are using MadGraph v5 capability of integrating Fortran code inside UFO.
- We encode the Proca processes (those involving the resonace \(V\) ) as effective vertices inside the UFO.
- The parameters of the Proca Lagrangian are adjusted to the IAM results [dynamic software
- Leptonic channel studied: \(p p \rightarrow w^{+} z j j\)

\section*{Channels: \(W Z \rightarrow W Z\)}

- We are using MadGraph v5 capability of integrating Fortran code inside UFO.
- We encode the Proca processes (those involving the resonace \(V\) ) as effective vertices inside the UFO.
- The parameters of the Proca Lagrangian are adjusted to the IAM results [dynamic \(\left.M_{V}, \Gamma_{V}, g_{V}\left(M_{V}^{2}\right)\right]\) via a custom piece of software.

\section*{Channels: \(W Z \rightarrow W Z\)}

- We are using MadGraph v5 capability of integrating Fortran code inside UFO.
- We encode the Proca processes (those involving the resonace \(V\) ) as effective vertices inside the UFO.
- The parameters of the Proca Lagrangian are adjusted to the IAM results [dynamic \(\left.M_{V}, \Gamma_{V}, g_{V}\left(M_{V}^{2}\right)\right]\) via a custom piece of software.
- Currently, \(W^{+} Z \rightarrow W^{+} Z\) tested.

\section*{Channels: \(W Z \rightarrow W Z\)}

- We are using MadGraph v5 capability of integrating Fortran code inside UFO.
- We encode the Proca processes (those involving the resonace \(V\) ) as effective vertices inside the UFO.
- The parameters of the Proca Lagrangian are adjusted to the IAM results [dynamic \(\left.M_{V}, \Gamma_{V}, g_{V}\left(M_{V}^{2}\right)\right]\) via a custom piece of software.
- Currently, \(W^{+} Z \rightarrow W^{+} Z\) tested.
- Leptonic channel studied: \(p p \rightarrow w^{+} z j\), \(w^{+} \rightarrow I^{+} \nu, z \rightarrow I^{+} I^{-}\)

\section*{Considered background: leptonic channel, \(W^{+} Z\)}
- Signal: \(p p \rightarrow j j W^{+} Z, W^{+} \rightarrow I^{+} \nu, Z \rightarrow I^{+} I^{-}\)
- Pure SM-EW Background, amplitude of order \(\mathcal{O}\left(\alpha_{\text {em }}^{2}\right)\). Followed by leptonic decay of \(W^{+} Z\).
Mixed SM-EWQCD Back Followed by leptonic decay of \(W^{+} Z\).

\section*{Considered background: leptonic channel, \(W^{+} Z\)}
- Signal: \(p p \rightarrow j j W^{+} Z, W^{+} \rightarrow I^{+} \nu, Z \rightarrow I^{+} I^{-}\)
- Pure SM-EW Background, amplitude of order \(\mathcal{O}\left(\alpha_{\mathrm{em}}^{2}\right)\). Followed by leptonic decay of \(W^{+} Z\).

\section*{Considered background: leptonic channel, \(W^{+} Z\)}
- Signal: \(p p \rightarrow j j W^{+} Z, W^{+} \rightarrow I^{+} \nu, Z \rightarrow I^{+} I^{-}\)
- Pure SM-EW Background, amplitude of order \(\mathcal{O}\left(\alpha_{\mathrm{em}}^{2}\right)\). Followed by leptonic decay of \(W^{+} Z\).
- Mixed SM-EWQCD Background, amplitude of order \(\mathcal{O}\left(\alpha_{\mathrm{em}} \alpha_{\mathrm{s}}\right)\). Followed by leptonic decay of \(W^{+} Z\).

\section*{Expected events for WZ (leptonic)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{\[
\begin{aligned}
& T \\
& \text { ep } \\
& 0 \\
& 0 \\
& 0 \\
& \| \\
& U
\end{aligned}
\]} & & BP1 & BP2 & BP3 & BP1 & BP2 & BP3 \\
\hline & \(\mathrm{N}_{W Z}^{\mathrm{IAM}-\mathrm{MC}}\) & 89 (147) & 19 (25) & 4 (9) & 226 (412) & 71 (151) & 33 (59) \\
\hline & \(\mathrm{N}_{W Z}^{\text {SM }}\) & 6 (17) & 2 (4) & 0.3 (2) & 11 (45) & 5 (27) & 3 (14) \\
\hline & \(\sigma_{W Z}^{\text {stat }}\) & 34.8 (31.1) & 10.8 (9.7) & 6 (5.4) & 64.9 (54.4) & 28.9 (23.8) & 16.1 (12) \\
\hline \multirow[t]{3}{*}{1
0
0
0
4
4
4} & \[
\mathrm{N}_{W Z}^{\mathrm{IAM}-\mathrm{MC}}
\] & 298 (488) & 64 (82) & 13 (30) & 752 (1374) & 237 (504) & 110 (196) \\
\hline & \(\mathrm{N}_{W Z}^{\text {SM }}\) & 19 (57) & 8 (15) & 1 (6) & 36 (151) & 17 (90) & 11 (46) \\
\hline & \(\sigma_{W Z}^{\text {stat }}\) & 63.5 (56.8) & 19.8 (17.7) & 11 (9.9) & 118.5 (99.4) & 52.7 (43.5) & 29.3 (22) \\
\hline \multirow[t]{3}{*}{1
T
0
0
0
0
II
4} & \(\mathrm{N}_{W Z}^{\text {IAM-MC }}\) & 893 (1465) & 193 (246) & 39 (89) & 2255 (4122) & 710 (1511) & 331 (589) \\
\hline & \(\mathrm{N}_{W Z}^{\text {SM }}\) & 58 (172) & 24 (44) & 3 (17) & 109 (454) & 52 (271) & 34 (139) \\
\hline & \(\sigma_{W Z}^{\text {stat }}\) & 110 (98.5) & 34.3 (30.6) & 19 (17.1) & 205.3 (172.2) & 91.3 (75.3) & 50.8 (38.1) \\
\hline
\end{tabular}

Table 2: Predicted number of \(p p \rightarrow W^{+} Z j j\) events of the IAM-MC, \(\mathrm{N}_{W Z}^{\mathrm{IAM}-\mathrm{MC}}\), for the selected BP scenarios in Table 1 and of the SM background (EW+QCDEW), \(\mathrm{N}_{W Z}^{\mathrm{SM}}\), at 14 TeV , for different LHC luminosities: \(\mathcal{L}=300 \mathrm{fb}^{-1}, \mathcal{L}=1000 \mathrm{fb}^{-1}\) and \(\mathcal{L}=3000 \mathrm{fb}^{-1}\). We also present the corresponding statistical significances, \(\sigma_{W Z}^{\text {stat }}\), calculated according to Eq. (33). These numbers have been computed summing events in the bins contained in the interval of \(\pm 0.5 \Gamma_{V}\left( \pm 2 \Gamma_{V}\right)\) around each resonance mass, \(M_{V}\). The cuts in Eq. (32) have been applied.

\section*{RESULTS: WZ in final state}

\section*{JHEP1711, 098}


\section*{RESULTS: WZ in leptonic final state}

\section*{JHEP1711, 098}

Transverse Mass \(M_{I I I \nu}^{T}\) used here: \(\nu\) longitudinal momentum lost!!

\(a=1 ; a_{4} \cdot 10^{4}=3.5\) (BP1), 1 (BP2), 0.5 (BP3);
\(-a_{5} \cdot 10^{4}=3\) (BP1), 1 (BP2), 0.5 (BP3).

\section*{WW hadronic final state, PRELIMINAR: BP1}

BP1

parton lev. \(M(W W)\) NO PY8/DELPH. (cyan); \(M(W W)\), DELPHES cuts (blue)
fat jet reconstr. \(M(J J)\) (red); SM-EW backgr. (black)
\[
70 \mathrm{GeV}<M(J)<90 \mathrm{GeV} ; \quad \mathrm{BP} 1: M(V)=1476 \mathrm{GeV}, \Gamma(V)=14 \mathrm{GeV}
\]

\section*{WW hadronic final state, PRELIMINAR: BP2}

\section*{BP2}

parton lev. \(M(W W)\) NO PY8/DELPH. (cyan); \(M(W W)\), DELPHES cuts (blue)
fat jet reconstr. \(M(J J)\) (red); SM-EW backgr. (black)
\[
70 \mathrm{GeV}<M(J)<90 \mathrm{GeV} ; \quad \mathrm{BP} 2: M(V)=2039 \mathrm{GeV}, \Gamma(V)=21 \mathrm{GeV} .
\]

\section*{WW hadronic final state, PRELIMINAR: BP3}

BP3

parton lev. \(M(W W)\) NO PY8/DELPH. (cyan); \(M(W W)\), DELPHES cuts (blue)
fat jet reconstr. \(M(J J)\) (red); SM-EW backgr. (black)
\[
70 \mathrm{GeV}<M(J)<90 \mathrm{GeV} ; \quad \text { BP3: } M(V)=2472 \mathrm{GeV}, \Gamma(V)=27 \mathrm{GeV}
\]

\section*{WW hadronic final state: QCD background vs BP3}


\section*{BP3 signal (red);}

SM-QCDEW backgr. (green);
\(70 \mathrm{GeV}<M(J)<90 \mathrm{GeV} ; \quad\) ВР3: \(M(V)=2472 \mathrm{GeV}, \Gamma(V)=27 \mathrm{GeV}\).

\section*{WW hadronic final state: QCD background vs BP3}


BP3 signal (red);
SM-QCDEW backgr. (green);

SM-EW backgr. (black)
\(M(J J)\), QCD background (blue)
\(70 \mathrm{GeV}<M(J)<90 \mathrm{GeV} ; \quad\) BP3: \(M(V)=2472 \mathrm{GeV}, \Gamma(V)=27 \mathrm{GeV}\).

\section*{WW hadronic final state: QCD background vs BP3}


BP3 signal (red);
SM-QCDEW backgr. (green);

SM-EW backgr. (black)
\(M(J J)\), QCD background (blue)
\(75 \mathrm{GeV}<M(J)<85 \mathrm{GeV} ; \quad\) BP3: \(M(V)=2472 \mathrm{GeV}, \Gamma(V)=27 \mathrm{GeV}\).

\section*{WW hadronic final state: QCD background vs BP3}


BP3 signal (red);
SM-QCDEW backgr. (green);
\(75 \mathrm{GeV}<M(J)<85 \mathrm{GeV} ; \quad\) ВP3: \(M(V)=2472 \mathrm{GeV}, \Gamma(V)=27 \mathrm{GeV}\).

\section*{Experimental constraints}

\section*{JHEP1711, 098}


\section*{EW Chiral Lagrangian}
\[
\begin{aligned}
\mathcal{L}_{2}= & -\frac{1}{2 g^{2}} \operatorname{Tr}\left(\hat{W}_{\mu \nu} \hat{W}^{\mu \nu}\right)-\frac{1}{2 g^{\prime 2}} \operatorname{Tr}\left(\hat{B}_{\mu \nu} \hat{B}^{\mu \nu}\right) \\
& +\frac{v^{2}}{4}\left[1+2 a \frac{H}{v}+b \frac{H^{2}}{v^{2}}\right] \operatorname{Tr}\left(D^{\mu} U^{\dagger} D_{\mu} U\right)+\frac{1}{2} \partial^{\mu} H \partial_{\mu} H+\ldots, \\
\mathcal{L}_{4}= & a_{1} \operatorname{Tr}\left(U \hat{B}_{\mu \nu} U^{\dagger} \hat{W}^{\mu \nu}\right)+i a_{2} \operatorname{Tr}\left(U \hat{B}_{\mu \nu} U^{\dagger}\left[\mathcal{V}^{\mu}, \mathcal{V}^{\nu}\right]\right)-i a_{3} \operatorname{Tr}\left(\hat{W}_{\mu \nu}\left[\mathcal{V}^{\mu}, \mathcal{V}^{\nu}\right]\right. \\
& +a_{4}\left[\operatorname{Tr}\left(\mathcal{V}_{\mu} \mathcal{V}_{\nu}\right)\right]\left[\operatorname{Tr}\left(\mathcal{V}^{\mu} \mathcal{V}^{\nu}\right)\right]+a_{5}\left[\operatorname{Tr}\left(\mathcal{V}_{\mu} \mathcal{V}^{\mu}\right)\right]\left[\operatorname{Tr}\left(\mathcal{V}_{\nu} \mathcal{V}^{\nu}\right)\right] \\
- & c
\end{aligned} \frac{H}{v} \operatorname{Tr}\left(\hat{W}_{\mu \nu} \hat{W}^{\mu \nu}\right)-c_{B} \frac{H}{v} \operatorname{Tr}\left(\hat{B}_{\mu \nu} \hat{B}^{\mu \nu}\right)+\ldots, ~ \$
\]

\section*{Proca Lagrangian}
\[
\begin{aligned}
\mathcal{L}_{V} & =-\frac{1}{4} \operatorname{Tr}\left(\hat{V}_{\mu \nu} \hat{V}^{\mu \nu}\right)+\frac{1}{2} M_{V}^{2} \operatorname{Tr}\left(\hat{V}_{\mu} \hat{V}^{\mu}\right) \\
& +\frac{f_{V}}{2 \sqrt{2}} \operatorname{Tr}\left(\hat{V}_{\mu \nu} \nu_{+}^{\mu \nu}\right)+\frac{i g_{V}}{2 \sqrt{2}} \operatorname{Tr}\left(\hat{V}_{\mu \nu}\left[u^{\mu}, u^{\nu}\right]\right)
\end{aligned}
\]

\section*{Channels: \(W Z \rightarrow W Z\)}
- Our Proca Lagrangian needs \(g_{v}=g_{v}(z, s)\)
\[
\begin{aligned}
& g_{V}^{2}(z)=g_{V}^{2}\left(M_{V}^{2}\right) \frac{M_{V}^{2}}{z} \text { for } s<M_{V}^{2} \\
& g_{V}^{2}(z)=g_{V}^{2}\left(M_{V}^{2}\right) \frac{M_{V}^{4}}{z^{2}} \text { for } s>M_{V}^{2}
\end{aligned}
\]
\(z=s, t, u\) depending on the channel where \(V\) propagates. Fully crossing symmetry leads to a moderate violation of the Froissart bound.
- We encode the Proca processes (those

\section*{Channels: \(W Z \rightarrow W Z\)}
- Our Proca Lagrangian needs \(g_{v}=g_{v}(z, s)\)
\[
\begin{aligned}
& g_{V}^{2}(z)=g_{V}^{2}\left(M_{V}^{2}\right) \frac{M_{V}^{2}}{z} \text { for } s<M_{V}^{2} \\
& g_{V}^{2}(z)=g_{V}^{2}\left(M_{V}^{2}\right) \frac{M_{V}^{4}}{z^{2}} \text { for } s>M_{V}^{2}
\end{aligned}
\]
\(z=s, t, u\) depending on the channel where
\(V\) propagates. Fully crossing symmetry leads to a moderate violation of the Froissart bound.
- We are using MadGraph v5 capability of integrating Fortran code inside UFO.

\section*{Channels: \(W Z \rightarrow W Z\)}
- Our Proca Lagrangian needs \(g_{v}=g_{v}(z, s)\)
\[
\begin{aligned}
& g_{V}^{2}(z)=g_{V}^{2}\left(M_{V}^{2}\right) \frac{M_{V}^{2}}{z} \text { for } s<M_{V}^{2} \\
& g_{V}^{2}(z)=g_{V}^{2}\left(M_{V}^{2}\right) \frac{M_{V}^{4}}{z^{2}} \text { for } s>M_{V}^{2}
\end{aligned}
\]
\(z=s, t, u\) depending on the channel where
\(V\) propagates. Fully crossing symmetry leads to a moderate violation of the Froissart bound.
- We are using MadGraph v5 capability of integrating Fortran code inside UFO.
- We encode the Proca processes (those involving the resonace \(V\) ) as effective vertices inside the UFO.

\section*{Channels: \(W Z \rightarrow W Z\)}
- Our Proca Lagrangian needs \(g_{v}=g_{v}(z, s)\)
\[
\begin{aligned}
& g_{V}^{2}(z)=g_{V}^{2}\left(M_{V}^{2}\right) \frac{M_{V}^{2}}{z} \text { for } s<M_{V}^{2} \\
& g_{V}^{2}(z)=g_{V}^{2}\left(M_{V}^{2}\right) \frac{M_{V}^{4}}{z^{2}} \text { for } s>M_{V}^{2}
\end{aligned}
\]
\(z=s, t, u\) depending on the channel where
\(V\) propagates. Fully crossing symmetry leads to a moderate violation of the Froissart bound.
- We are using MadGraph v5 capability of integrating Fortran code inside UFO.
- We encode the Proca processes (those involving the resonace \(V\) ) as effective vertices inside the UFO.
- The parameters of the Proca Lagrangian are adjusted to the IAM results [dynamic \(M_{V}, \Gamma_{V}, g_{V}\left(M_{V}^{2}\right)\) ] via a custom piece of software.

\section*{Channels: \(W Z \rightarrow W Z\)}
- Our Proca Lagrangian needs \(g_{v}=g_{v}(z, s)\)
\[
\begin{aligned}
& g_{V}^{2}(z)=g_{V}^{2}\left(M_{V}^{2}\right) \frac{M_{V}^{2}}{z} \text { for } s<M_{V}^{2} \\
& g_{V}^{2}(z)=g_{V}^{2}\left(M_{V}^{2}\right) \frac{M_{V}^{4}}{z^{2}} \text { for } s>M_{V}^{2}
\end{aligned}
\]
\(z=s, t, u\) depending on the channel where
\(V\) propagates. Fully crossing symmetry leads to a moderate violation of the Froissart bound.
- We are using MadGraph v5 capability of integrating Fortran code inside UFO.
- We encode the Proca processes (those involving the resonace \(V\) ) as effective vertices inside the UFO.
- The parameters of the Proca Lagrangian are adjusted to the IAM results [dynamic \(M_{V}, \Gamma_{V}, g_{V}\left(M_{V}^{2}\right)\) ] via a custom piece of software.

\section*{Channels: \(W Z \rightarrow W Z\)}
- Our Proca Lagrangian needs \(g_{v}=g_{v}(z, s)\)
\[
\begin{aligned}
& g_{V}^{2}(z)=g_{V}^{2}\left(M_{V}^{2}\right) \frac{M_{V}^{2}}{z} \text { for } s<M_{V}^{2} \\
& g_{V}^{2}(z)=g_{V}^{2}\left(M_{V}^{2}\right) \frac{M_{V}^{4}}{z^{2}} \text { for } s>M_{V}^{2}
\end{aligned}
\]
\(z=s, t, u\) depending on the channel where
\(V\) propagates. Fully crossing symmetry leads to a moderate violation of the Froissart bound.
- We are using MadGraph v5 capability of integrating Fortran code inside UFO.
- We encode the Proca processes (those involving the resonace \(V\) ) as effective vertices inside the UFO.
- The parameters of the Proca Lagrangian are adjusted to the IAM results [dynamic \(M_{V}, \Gamma_{V}, g_{V}\left(M_{V}^{2}\right)\) ] via a custom piece of software.

\section*{Unitarization procedures for elastic processes}
\[
A^{I A M}(s)=\frac{\left[A^{(0)}(s)\right]^{2}}{A^{(0)}(s)-A^{(1)}(s)}
\]

PRD 91 (2015) 075017

\section*{Unitarization procedures for elastic processes}
\[
\begin{aligned}
& A^{\prime A M}(s)=\frac{\left[A^{(0)}(s)\right]^{2}}{A^{(0)}(s)-A^{(1)}(s)}, \\
& A^{N / D}(s)=\frac{A^{(0)}(s)+A_{L}(s)}{1-\frac{A_{f}(s)}{A^{0}(s)}+\frac{1}{2} g(s) A_{L}(-s)},
\end{aligned}
\]
\[
\begin{aligned}
g(s) & =\frac{1}{\pi}\left(\frac{B(\mu)}{D+E}+\log \frac{-s}{\mu^{2}}\right) \\
A_{L}(s) & =\pi g(-s) D s^{2} \\
A_{R}(s) & =\pi g(s) E s^{2}
\end{aligned}
\]
where
\[
\text { PRD } 91 \text { (2015) } 075017
\]

\section*{Unitarization procedures for elastic processes}
\[
\begin{aligned}
A^{1 A M}(s) & =\frac{\left[A^{(0)}(s)\right]^{2}}{A^{(0)}(s)-A^{(1)}(s)}, \\
A^{N / D}(s) & =\frac{A^{(0)}(s)+A^{\prime}(s)}{1-\frac{A_{f}(s)}{A^{( }(s)}+\frac{1}{2} g(s) A_{L}(-s)}, \\
A^{\prime K}(s) & =\frac{A^{0(0)}(s)+A_{L}(s)}{1-\frac{A_{f}(s)}{A^{0}(s)}+g(s) A_{L}(s)},
\end{aligned}
\]
\[
\begin{aligned}
g(s) & =\frac{1}{\pi}\left(\frac{B(\mu)}{D+E}+\log \frac{-s}{\mu^{2}}\right) \\
A_{L}(s) & =\pi g(-s) D s^{2} \\
A_{R}(s) & =\pi g(s) E s^{2}
\end{aligned}
\]
where
\[
\text { PRD } 91 \text { (2015) } 075017
\]

\section*{Unitarization procedures for elastic processes}
\[
\begin{array}{rlrl}
A^{\prime A M}(s) & =\frac{\left[A^{(0)}(s)\right]^{2}}{A^{(0)}(s)-A^{(1)}(s)}, & \\
A^{N / D}(s) & =\frac{A^{(0)}(s)+A_{L}(s)}{1-\frac{A_{R}(s)}{A^{(0)}(s)}+\frac{1}{2} g(s) A_{L}(-s)}, & \\
A^{\prime K}(s) & =\frac{A^{(0)}(s)+A_{L}(s)}{1-\frac{A_{R}(s)}{A^{(0)}(s)}+g(s) A_{L}(s)}, & g(s) & =\frac{1}{\pi}\left(\frac{B(\mu)}{D+E}+\log \frac{-s}{\mu^{2}}\right) \\
A_{0}^{K}(s) & =\frac{A_{0}(s)}{1-i A_{0}(s)}, & A_{L}(s) & =\pi g(-s) D s^{2} \\
A_{R}(s) & =\pi g(s) E s^{2}
\end{array}
\]
where
PRD 91 (2015) 075017

\section*{Matricial versions of the methods}
\[
F^{I A M}(s)=\left[F^{(0)}(s)\right]^{-1} \cdot\left[F^{(0)}(s)-F^{(1)}(s)\right] \cdot\left[F^{(0)}(s)\right]^{-1}
\]


\section*{Matricial versions of the methods}
\[
\begin{aligned}
& F^{I A M}(s)=\left[F^{(0)}(s)\right]^{-1} \cdot\left[F^{(0)}(s)-F^{(1)}(s)\right] \cdot\left[F^{(0)}(s)\right]^{-1} \\
& F^{N / D}(s)=\left[1-F_{R}(s) \cdot\left(F^{(0)}(s)\right)^{-1}+\frac{1}{2} G(s) F_{L}(-s)\right]^{-1} \cdot N_{0}(s)
\end{aligned}
\]
where \(G(s), F_{L}(s), F_{R}(s)\) and \(N_{0}(s)\) are defined as
\[
\begin{aligned}
G(s) & =\frac{1}{\pi}\left(B(\mu)(D+E)^{-1}+\log \frac{-s}{\mu^{2}}\right) \\
F_{L}(s) & =\pi G(-s) D s^{2} \\
F_{R}(s) & =\pi G(s) E s^{2} \\
N_{0}(s) & =F^{(0)}(s)+F_{L}(s)
\end{aligned}
\]

\section*{Matricial versions of the methods}
\[
\begin{aligned}
F^{I A M}(s) & =\left[F^{(0)}(s)\right]^{-1} \cdot\left[F^{(0)}(s)-F^{(1)}(s)\right] \cdot\left[F^{(0)}(s)\right]^{-1} \\
F^{N / D}(s) & =\left[1-F_{R}(s) \cdot\left(F^{(0)}(s)\right)^{-1}+\frac{1}{2} G(s) F_{L}(-s)\right]^{-1} \cdot N_{0}(s) \\
F^{I K}(s) & =\left[1+G(s) \cdot N_{0}(s)\right]^{-1} \cdot N_{0}(s)
\end{aligned}
\]
where \(G(s), F_{L}(s), F_{R}(s)\) and \(N_{0}(s)\) are defined as
\[
\begin{aligned}
G(s) & =\frac{1}{\pi}\left(B(\mu)(D+E)^{-1}+\log \frac{-s}{\mu^{2}}\right) \\
F_{L}(s) & =\pi G(-s) D s^{2} \\
F_{R}(s) & =\pi G(s) E s^{2} \\
N_{0}(s) & =F^{(0)}(s)+F_{L}(s)
\end{aligned}
\]

\section*{Usability channel of unitarization procedures}
\begin{tabular}{lccccc}
\hline \hline\(I J\) & 00 & 02 & 11 & 20 & 22 \\
\hline Method of choice & Any & N/D IK & IAM & Any & N/D IK \\
\hline \hline
\end{tabular}
- The IAM method cannot be used when \(A^{(0)}=0\), because it would give a vanishing value.

\section*{Usability channel of unitarization procedures}
\begin{tabular}{lccccc}
\hline \hline\(I J\) & 00 & 02 & 11 & 20 & 22 \\
\hline Method of choice & Any & N/D IK & IAM & Any & N/D IK \\
\hline \hline
\end{tabular}
- The IAM method cannot be used when \(A^{(0)}=0\), because it would give a vanishing value.
- The N/D and the IK methods cannot be used if \(D+E=0\), because in this case computing \(A_{L}(s)\) and \(A_{R}(s)\) is not possible.
\(\qquad\)
\(\qquad\)

\section*{Usability channel of unitarization procedures}
\begin{tabular}{lccccc}
\hline \hline\(I J\) & 00 & 02 & 11 & 20 & 22 \\
\hline Method of choice & Any & N/D IK & IAM & Any & N/D IK \\
\hline \hline
\end{tabular}
- The IAM method cannot be used when \(A^{(0)}=0\), because it would give a vanishing value.
- The N/D and the IK methods cannot be used if \(D+E=0\), because in this case computing \(A_{L}(s)\) and \(A_{R}(s)\) is not possible.
- The naive K-matrix method,
\[
A_{0}^{K}(s)=\frac{A_{0}(s)}{1-i A_{0}(s)}
\]
fails because it is not analytical in the first Riemann sheet and, consequently, it is not a proper partial wave compatible with microcausality.

\section*{Unitarity problem}
- VBS amplitude rises with energy, eventually leading to violation of unitarity at some new physics state.
an unphysical prediction of EFT. That is, amplitudes cannot grow uncontrolled
- Exception, MSM: Higgs exchange exactly cancels this energy rise in VBS, restoring unitarity event at LO.

\section*{Unitarity problem}
- VBS amplitude rises with energy, eventually leading to violation of unitarity at some new physics state.
- This leads to an OVERESTIMATED number of events in VBS due to an unphysical prediction of EFT. That is, amplitudes cannot grow uncontrolled.

\section*{Unitarity problem}
- VBS amplitude rises with energy, eventually leading to violation of unitarity at some new physics state.
- This leads to an OVERESTIMATED number of events in VBS due to an unphysical prediction of EFT. That is, amplitudes cannot grow uncontrolled.
- Exception, MSM: Higgs exchange exactly cancels this energy rise in VBS, restoring unitarity event at LO.

\section*{Unitarity problem}
- VBS amplitude rises with energy, eventually leading to violation of unitarity at some new physics state.
- This leads to an OVERESTIMATED number of events in VBS due to an unphysical prediction of EFT. That is, amplitudes cannot grow uncontrolled.
- Exception, MSM: Higgs exchange exactly cancels this energy rise in VBS, restoring unitarity event at LO.
- Two options:


\section*{Unitarity problem}
- VBS amplitude rises with energy, eventually leading to violation of unitarity at some new physics state.
- This leads to an OVERESTIMATED number of events in VBS due to an unphysical prediction of EFT. That is, amplitudes cannot grow uncontrolled.
- Exception, MSM: Higgs exchange exactly cancels this energy rise in VBS, restoring unitarity event at LO.
- Two options:
- Set up a low-energy cut-off on the theory, due to the validity limits of the EFT itself. This limit, indeed, comes from the UV completion, whose specification would require to pick up a full (renormali. and unitar.) model from the theory zoo.
\(\qquad\)
\(\qquad\)

\section*{Unitarity problem}
- VBS amplitude rises with energy, eventually leading to violation of unitarity at some new physics state.
- This leads to an OVERESTIMATED number of events in VBS due to an unphysical prediction of EFT. That is, amplitudes cannot grow uncontrolled.
- Exception, MSM: Higgs exchange exactly cancels this energy rise in VBS, restoring unitarity event at LO.
- Two options:
- Set up a low-energy cut-off on the theory, due to the validity limits of the EFT itself. This limit, indeed, comes from the UV completion, whose specification would require to pick up a full (renormali. and unitar.) model from the theory zoo.
- Consider the EFT a valid low-energy limit and take advantage of the analytical properties of the scattering amplitudes, encoded in the so-called unitarization procedures, to extend the validity regime of the EFT. These techniques are well known from hadron physics.

\section*{Unitarity problem: how bad is the problem?}

- T-matrix unit., [Sekulla et.al., Particle Phenomen. Seminar, 24/01/2017]

\section*{Unitarity problem: how bad is the problem?}

- T-matrix unit., [Sekulla et.al., Particle Phenomen. Seminar, 24/01/2017]
- \(f_{S_{1}} / \Lambda^{4}\),
[-21.6, 21.8] (CMS, 13 TeV ),
[-50.0, 60.3] (T-matrix)

\section*{Unitarity problem: how bad is the problem?}

- T-matrix unit., [Sekulla et.al., Particle Phenomen. Seminar, 24/01/2017]
- \(f_{S_{1}} / \Lambda^{4}\),
[-21.6, 21.8] (CMS, 13 TeV ),
[-50.0, 60.3] (T-matrix)
- \(f_{M_{0}} / \Lambda^{4}\),
[-8.7, 9.1] (CMS, 13 TeV ),
[-1.35, 1.60] (T-matrix)

\section*{Unitarity problem: how bad is the problem?}

- T-matrix unit., [Sekulla et.al., Particle Phenomen. Seminar, 24/01/2017]
- \(f_{S_{1}} / \Lambda^{4}\),
[-21.6, 21.8] (CMS, 13 TeV ),
[-50.0, 60.3] (T-matrix)
- \(f_{M_{0}} / \Lambda^{4}\),
[-8.7, 9.1] (CMS, 13 TeV ),
[-1.35, 1.60] (T-matrix)
- \(f_{T_{0}} / \Lambda^{4}\),
[-0.62, 0.65] (CMS, 13 TeV ),
[-1.35, 1.60] (T-matrix)

\section*{Unitarity problem: unit. procedures}
- Zoo of unitarization procedures: IAM, K-matrix, T-matrix, N/D, large-N,...

\section*{They are applicable depending on the analytical properties of the EFT amplitude that is going to be unitarized. \\ - Depend on analytical continuation (Cauchy's theorem)}

\section*{Unitarity problem: unit. procedures}
- Zoo of unitarization procedures: IAM, K-matrix, T-matrix, N/D, large-N,...
- They are applicable depending on the analytical properties of the EFT amplitude that is going to be unitarized.

\section*{Unitarity problem: unit. procedures}
- Zoo of unitarization procedures: IAM, K-matrix, T-matrix, N/D, large-N,...
- They are applicable depending on the analytical properties of the EFT amplitude that is going to be unitarized.
- Depend on analytical continuation (Cauchy's theorem).


\section*{Unitarity problem: other view of unit. procedures}
- However, in collider phenomenology we are used to a very similar situation:

\section*{Unitarity problem: other view of unit. procedures}
- However, in collider phenomenology we are used to a very similar situation:
- RESUMMATION
```

resummation Higgs

```

```

On
Mostrar resukados:
Ordenar por: Mostrar resulados:

```

1. BSMPT - Beyond the Standard Model Phase Transitions -A Tool for the Electroweak Phase Transition in Extended Higgs Sectors

 Registo completa
2. Double resummation for Higgs production
 e-Print: arxiv:1802 07758 [hep-ph] I PDF

aegisto comaldato
3. Soft Gluon Resummation in Higgs Boson Plus Two Jet Production at the LHC

Peng Sun (Naning Normal U. \& Mich igan Stete U). C.P. Yuan (Michigen Seate U). Ferg Yuan (LBNL, NSD). Feb 8, 2018.8 pp -Print arxiv:130202980 [hep-ph] I PDF

Reterences I BbTeX I LaTeX(US) I LaTeXIEU) | Hanmac | EndNose
ADS Abstract Service
Registro completo
4. iHixs 2 - Inclusive Higgs Cross Sections

Falko Dulat (SLAC), Achileas Lazopoulos (Zurich, ETH), Benhard Mistlorger (CERN). Feb 2, 2018, 46 pp.
e-Print arxiv:1902.00827 (hep-ph1 IPDF


Registro connleto
5. Higher order corrections to mixed QCD-EW contributions to Higgs production in gluon fusion

e-Pint: araliv:1801. 10403 [hep-ph] | PDF

CERN Dacumenit Servec ADS Absiricct Sencice
Registro completa-Citade por 1 regiztre
6. NNLL resummation for the associated production of a top pair with a heavy boson at the LHC

\section*{Unitarity problem: other view of unit. procedures}
- However, in collider phenomenology we are used to a very similar situation:
- RESUMMATION



Typical Feynman diagram mixing the \(\omega \omega\) and the \(h h\) channels.
[PRL114, 221803]

WW hadronic final state, PRELIMINAR: BP1, \(W^{+} W^{-}\)in final state

\section*{M(WZ), MODELS/ww_IAM-a1 BP1}


\section*{WW hadronic final state, PRELIMINAR: all BPs vs. background}


Reconstructed signal of BP1, BP2, BP3 (blue). EW backgr. (black)

\section*{WW hadronic final state, PRELIMINAR: \(t \bar{t}\) background}

M(llvv)


Blue: \(p p \rightarrow t \bar{t} \rightarrow b \bar{b} W^{+} W^{-}\)background. Black: irred. EW background.
Upper curves: before Pythia8+Delphes cuts. I.e., only VBF cuts. NO b-tagging.```


[^0]:    Coveat wsage of the k-matix method. Now. upgaded to T-matrix Basically, a form-factor to avoid breaking unitarity bound. Not based on analytical continuation. Goal: estimation of unitarity constraints over perturbative regime. Goal: inclusion of BSM resonances on SM_km as effective vertices. SHEPDA Form Factor annroach

[^1]:    Goal: inclusion of BSM resonance
    SHERPA, Form Factor approach.

