Measurement of Diboson Production in Semileptonic Decay Modes and Anomalous Couplings **MULTI-BOSON INTERACTIONS 2019 Robin Aggleton** for the CMS & ATLAS Collaborations

Semileptonic:

\rightarrow Can reconstruct WV state

Robin Aggleton | <u>robin.aggleton@cern.ch</u>

Diboson final state with one V decay to quarks (\rightarrow jets),

and other V decay to final state with lepton (e, μ)

New Physics here?

Can directly probe the triboson coupling

- Anomalous Triple Gauge Coupling (aTGC)

New Physics visible in diboson mass spectrum & boson p_T as enhancement at larger values:

aTGC parametrization

How to describe new physics?

Use EFT parametrization

 \rightarrow CP-conserving dimension-6 operators, each with a coefficient

$$\delta \mathcal{L} = \frac{c_{\rm WWW}}{\Lambda^2} \operatorname{Tr} \left[W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho} \right] + \frac{c_{\rm W}}{\Lambda^2} \left(D_{\mu} \Phi \right)$$

Λ = new physics scale

Results in terms of scale coefficients, $c_i/\Lambda^2 \rightarrow c_i = 0$ in SM, $\neq 0$ in New Physics!

Phys. Rev. D 48 (1993) 2182 Ann. Phys. 335 (2013) 21

aTGC parametrization

Also interpret in terms of "LEP" / "Lagrangian" parametrization:

$$\mathcal{L} = ig_{WWV} \left(g_{1}^{V} W_{\mu\nu}^{+} W^{-\mu} - W^{+\mu} W_{\mu\nu}^{-}) V^{\nu} + \kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu} + \frac{\overline{\lambda_{V}}}{M_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} V_{\rho}^{\mu} \right) + ig_{4}^{V} W_{\mu}^{+} W_{\nu}^{-} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) - ig_{5}^{V} \epsilon^{\mu\nu\rho\sigma} (W_{\mu}^{+} \partial_{\rho} W_{\nu}^{-} - \partial_{\rho} W_{\mu}^{+} W_{\nu}^{-\rho}) V_{\sigma} + \tilde{\kappa}_{V} W_{\mu}^{+} W_{\nu}^{-} \tilde{V}^{\mu\nu} + \frac{\overline{\lambda_{V}}}{m_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} \tilde{V}_{\rho}^{\mu} \right)$$

LEP constraint: impose SU(2) × U(1) gauge invariance + low energy approx: $5 \rightarrow 3$ aTGCs <u>hep-ph/9601233</u> Can express deviation from SM in terms of:

$$\Delta g_1^Z = g_1^Z - 1 \qquad \qquad \Delta \kappa_Z = \kappa_Z - 1 \qquad \qquad \lambda_Z$$

Others related by: $\lambda_Z =$

$$\lambda_{\gamma}, \quad \Delta \kappa_Z = \Delta g_1^Z - \Delta \kappa_{\gamma} \tan^2 \theta_W$$

Variety of existing semileptonic diboson measurements: (omitting VVjj & all-leptonic final states - covered in other talks)

 $(\ell \nu j j + \ell \nu \ell \ell)$ *Phys. Lett. B* 718 (2012) 451

LEP [ALEPH, DELPHI, L3, OPAL] (various final states) Phys. Rept. 532 (2013) 119

Robin Aggleton | <u>robin.aggleton@cern.ch</u>

@ 7 TeV ($\ell v j j$) Eur. Phys. J. C 73 (2013) 2283

@ 8 TeV (*l*vJ) Phys. Lett. B 772 (2017) 21

@13 TeV (2015 data, ℓv]) <u>CMS-PAS-SMP-16-012</u>

@13 TeV (2016 data, *ℓv*J) **NEW** !!!

<u>1907.08354 (submitted to [HEP)</u>

@ 7 TeV (ℓvjj) <u>JHEP 01 (2015) 049</u>

@ 8 TeV (*ℓv*jj + *ℓv*J) <u>Eur. Phys. J. C 77 (2017) 563</u>

> Talk about these measurements today

 e, μ $V \rightarrow qq$ significant! $BR(W \rightarrow \ell \nu) \sim 20\%$ But...

 $u_e, \,
u_\mu$ Leptons = nice, clean objects Q: Jets = tricky, messy objects?

 $BR(V \rightarrow qq) \sim 70\%$ Pileup 😉 Single q/g initiated background jets 😡 q'

Or are they...

How to reconstruct hadronic V?

2 resolved small-radius jets (R = 0.4)

p_T ≈ 200 GeV

All decay products fall within 1 large-radius jet (R = 0.8 for CMS, 1 for ATLAS)

How to distinguish QCD vs W/Z jets?

$p_T \gtrsim 200 \text{ GeV}$

Robin Aggleton | <u>robin.aggleton@cern.ch</u>

\rightarrow use information from jet constituents

All decay products fall within 1 large-radius jet (R = 0.8 for CMS, 1 for ATLAS)

Grooming

emove soft/wide-angle radiation from jet (soft emissions, underlying event, pileup, ...)

Technologie Would ruin jet mass resolution, etc

Compare groomed quantities (mass, # constituents, ...) Variety of methods: trimming, soft drop, ...

Trimming: recluster with smaller radius (R=0.2), drop subjets with too small p_T fraction (< 5%)

Eur. Phys. J. C 76 (2016) 154

11

ATLAS @ 8 TeV

\rightarrow separate optimisations

Leptonic W reconstruction:

 $W_{lep} p_T > 100 \text{ GeV} (jj \text{ only})$ $m_T > 40 \text{ GeV} (jj \text{ only})$

Data selected by electron or muon triggers $\int L = 20.2 \text{ fb}^{-1}$

Hadronic V reconstruction:

2 small radius jets (jj) | 1 larger radius jet (J) $\Delta \eta(j,j) < 1.5 \ (jj)$ $p_{\rm T}(jj) > 100 \text{ GeV} | p_{\rm T}(J) > 200 \text{ GeV}$ m_{jj} / trimmed mass $m_J \in [65, 95]$ GeV

14

e^{\pm} **Total WV reconstruction:** ν_e, ν_μ $\Delta \phi$ (jet 1, p_T^{miss}) > 0.8 (jj)

 $\Delta R(jet, lepton) > 0.4 (jj)$ $\Delta R(jet, lepton) > 1 (J)$

MBI 2019, Thessaloniki

 \bar{q}

ATLAS @ 8 TeV

Major backgrounds

W + jets (dominant background points) $t\bar{t}$ (has real W > qq)

Minor backgrounds

Z + jets

QCD multijet (mainly for electrony for elect

Single top quark

ΖZ

→ Estimate from MC+data, use in binned Maximum-Likelihood fit of $p_T(jj) | p_T(J)$

ATLAS @ 8 TeV: Backgrounds V+jets:

- MC, + data-driven corrections: use control region = signal region, but failing m_{ii} | m_J cut <u>*l* vjj</u>: improve jet kinematics shapes: ~ 10% effect <u> $\ell v J$ </u>: determine overall normalisation factor factor 0.841000 **Top-quark:** 500 MC, compared to data using b-tagged jets.
- Overall normalisation factor in $\ell v J$ channel $\{0.87\}$ Data/ **Multijet:**
- Kinematic shapes from data: use control region = signal region, but poorer lepton quality (→ more non-prompt & fake leptons)
- Yield extrapolated from fit to p_T^{miss} in QCD enhanced-region

MBI 2019, Thessaloniki

17

ATLAS @ 8 TeV

Reconstructed hadronic boson mass

ATLAS @ 8 TeV

 $\ell v j j$: Simultaneous fit to signal region + "sideband" region ($m_{ii} \in [40, 65]$ or [95, 200] GeV)

ℓv J: Fit to signal region only

Largest systematic uncertainties from jet-related sources

ATLAS @ 8 TeV: 1D Limits

Derived 1D limits on aTGCs: separate limits for ℓv_{jj} and ℓv_{J} , assume all other aTGCs = 0

Parameter	Observed [TeV ⁻²]	Expected $[\text{TeV}^{-2}]$	Observed $[\text{TeV}^{-2}]$	Expected $[\text{TeV}^{-2}]$
	WV -	$\rightarrow \ell \nu j j$	WV -	$\rightarrow \ell \nu J$
c_{WWW}/Λ^2	[-5.3, 5.3]	[-6.4, 6.3]	[-3.1, 3.1]	[-3.6, 3.6]
c_B/Λ^2	[-36, 43]	$\left[{ m -45,51} ight]$	$[\ -19, 20]$	[-22,23]
c_W/Λ^2	[-6.4, 11]	[-8.7, 13]	[-5.1, 5.8]	[-6.0, 6.7]

Parameter	Observed	Expected	Observed	Expected
	WV -	$ ightarrow \ell u$ jj	WV -	$ ightarrow \ell u \mathrm{J}$
Δg_1^Z	[-0.027, 0.045]	[-0.036, 0.051]	[-0.021, 0.024]	[-0.024, 0.027]
$\Delta\kappa_\gamma$	[-0.11, 0.13]	[-0.15, 0.16]	[-0.061, 0.064]	$[\ -0.071, 0.075]$
$\lambda_Z = \lambda_\gamma$	[-0.022, 0.022]	[-0.027, 0.026]	[-0.013, 0.013]	[-0.015, 0.015]

Limits from $\ell v J$ significantly stronger than those from $\ell v j j$ Also calculated limits varying cutoff scale - affects $\ell v J$ more as probes larger m_{WV}

ATLAS @ 8 TeV: 2D Limits

Confidence regions for pairs of aTGCs: other aTGC = 0

CMS @ 13 TeV (2016 data)

Run II

Larger $\sqrt{s} \rightarrow$ opens up larger m_{WV} / p_T^V phase space

But larger instantaneous luminosity \rightarrow larger pileup

New data, new tools:

- better pileup rejection (PUPPI)
- better V jet vs QCD jet discrimination tools (Soft-drop, N-subjettiness)

Pileup

= other pp collisions happening simultaneously = extra particles you don't want!

How to remove?

- Charged particles easy use tracker to identify collision vertex
- Neutrals not as easy

Pileup Per Particle ID (PUPPI): weight each particle based on probability from leading vertex

<u>IHEP 1410 (2014) 059</u>

Robin Aggleton | <u>robin.aggleton@cern.ch</u>

CMS Luminosity Results

CMS Average Pileup

Grooming

Soft drop

Recluster jet constituents with Cambridge-Aachen, then:

Break jet *j* into 2 subjets If 2 subjets satisfy condition then *j* is final soft drop jet Otherwise j = subjet with larger p_T , repeat

CMS typically uses $\beta = 0$, $z_{cut} = 0.1$ Especially useful for jet mass m_{SD} : $m_{OCD} \rightarrow 0$,

whilst other objects peak at their mass m_X

$$\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$$

N-subjettiness <u>JHEP 1103 (2011) 015</u>

 τ_N : how "likely" is jet composed of N subjets?

 $\tau_N \rightarrow 0$ as radiation becomes aligned with N subj

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}.$$

$$d_0 = \sum_k p_{T,k} R_0,$$

PUPPI + Soft-drop + N-subjettiness

Powerful discrimination between W/Z jets & QCD jets in a pileup environment

EMS @ **13 TeV** ut für Technologie **Only** consider **merged** V→qq topology

Leptonic W reconstruction:

Exactly 1 electron or muon Missing transverse momentum

 $W_{lep} p_T > 200 \text{ GeV}$

Data selected by electron or muon triggers $(\int L = 35.9 \text{ fb}^{-1})$

p_T > 200 GeV

 $\tau_{21} + PUPPI < 0.55$

Jet mass (Soft Drop + PUPPI) \in [40, 150] GeV

 \bar{q}

e^{\pm} **Total WV reconstruction:** ν_e, ν_μ Diboson invariant mass $m_{WV} > 900 \text{ GeV}$ $\Delta R(\text{jet, lepton}) > \pi/2$

 $\Delta \phi$ (jet, missing p_T) > 2

 $\Delta \boldsymbol{\Phi}(\text{jet}, W_{\text{lep}}) > 2$

MBI 2019, Thessaloniki

 \bar{q}

CMS @ 13 TeV: Backgrounds

Major backgrounds - estimate using data + MC **W** + **jets** (*dominant background*) tt

Minor backgrounds - estimate using only MC Single top quark

SM diboson

(QCD mulitjet negligible, incorporated into W+jets shape)

Jet mass (with soft drop) = m_{SD}

CMS @ 13 TeV: Analysis Strategy

Extract possible signal by 2D fit in (m_{WV}, m_{SD})

- Create template shapes for signal + backgrounds, then fit to data
- Not smooth kernel divide m_{SD} into signal + "sideband" regions:
- Final simultaneous fit across all regions

m_{SD}: modelled by fitting to simulation

m_{WV}:

Signal: From MC, incorporating SM, aTGCs, and interference effects Background: W+jets: use data in W+jets-enriched region + MC \rightarrow models correlation between m_{SD} and m_{WV} **Others:** use shapes derived from MC

CMS @ 13 TeV: Signal Template The m_{WV} shape can be modelled by exponential decay + aTGC effects \rightarrow only has effect at larger m_{WV} (via Erf function)

 $F_{\rm signal}(m_{\rm WV})$

- Separate parts for:
 - **SM**
 - aTGC
 - SM-aTGC interference effects
 - aTGC-aTGC interference effects
- "EWDim6" model used in MG5_aMC@NLO at NLO \rightarrow each event weighted with different permutations of 0 & !=0 aTGCs SM-only scenario normalised to NNLO cross-section

MBI 2019, Thessaloniki

<u>Phys. Rev. Lett. 113 (2014) 212001</u> Phys. Lett. B 761 (2016) 179

CMS @ 13 TeV: W+jets template

4500

4000

35.9 fb⁻¹ (13 TeV)

m_{wv} (GeV)

W+jets background Shape from data in sideband × Transfer function from MC

3000

Data

3500

1500

CMS

1000

2000

Electron channel

2500

lSD

CMS @ 13 TeV: Systematic Uncertainties

Normalisation uncertainties (pre-fit):

		Electron o	channel			Muon cł	nannel		Scale & PDF only has larg
Uncertainty source	tŦ	Single t	WW	WZ	tŦ	Single t	WW	WZ	offoct on $t\overline{t}$
PDF	2.79	0.22	1.93	2.44	2.71	0.25	1.78	2.54	
$\mu_{\rm R}, \mu_{\rm F}$	17.99	0.94	5.77	4.82	17.74	1.00	5.99	4.26	
Luminosity	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
Pileup	0.59	0.29	0.90	1.40	0.40	0.41	0.82	0.67	From V-tagging data:MC s
V tag	14	14	14	14	14	14	14	14	
b tag	1.05	0.85	0.04	0.08	1.04	0.84	0.03	0.08	factor uncertainties
b mistag	0.04	0.05	0.02	0.04	0.05	0.05	0.03	0.04	
Jet energy scale	4.41	4.94	4.26	2.44	3.54	2.97	3.75	2.50	
Jet energy resolution	1.79	3.44	1.85	2.69	0.85	0.91	0.62	2.92	
Lepton energy scale	0.80	1.45	1.53	0.94	0.68	1.14	1.72	1.19	
Lepton energy resolution	0.26	1.22	0.11	0.21	0.02	0.27	0.14	0.33	
Lepton ID	2.12	2.22	2.30	2.26	1.81	2.04	2.55	2.42	
$p_{\mathrm{T}}^{\mathrm{miss}}$	0.91	1.50	1.01	0.64	0.59	0.99	0.24	0.17	
Total	23.74	15.84	16.44	15.91	23.30	14.85	16.31	15.80	_

Also shape uncertainties from fit uncertainties + alternate fit models

Signal shape uncertainty dominated by PDF & scale (μ_F , μ_R) effects

CMS @ 13 TeV: Final fits

Only electron channel shown here:

CMS @ 13 TeV: 1D Limits

Limits set on individual parameters: fix other aTGCs = 0

Do separately for each parametrisation

Big improvements on 8 TeV results!

Parametrization	aTGC	Expected limit	Observed limit	Observed best-fit	CMS 8 TeV observed limi
	$c_{\rm WWW}/\Lambda^2 ({\rm TeV}^{-2})$	[-1.44, 1.47]	[-1.58, 1.59]	-0.26	[-2.7, 2.7]
EFT	$c_{\rm W}/\Lambda^2~({\rm TeV}^{-2})$	[-2.45, 2.08]	[-2.00, 2.65]	1.21	[-2.0, 5.7]
	$c_{\rm B}/\Lambda^2~({\rm TeV}^{-2})$	[-8.38, 8.06]	[-8.78, 8.54]	1.07	[-14, 17]
	λ_Z	[-0.0060, 0.0061]	[-0.0065, 0.0066]	-0.0010	[-0.011, 0.011]
LEP	Δg_1^Z	[-0.0070, 0.0061]	[-0.0061, 0.0074]	0.0027	[-0.009, 0.024]
	$\Delta \kappa_Z$	[-0.0074, 0.0078]	[-0.0079, 0.0082]	-0.0010	[-0.018, 0.013]

CMS @ 13 TeV: 2D Limits

Also set 2D limits on pairs of aTGCS (fix other aTGC = 0)

Comparison

Including all-leptonic & EWK searches

Strongest limits to date on all 3 aTGCs

LEP

Phys. Rept. 532 (2013) 119

D0

Phys. Lett. B 718 (2012) 451

CMS

Eur. Phys. J. C 73 (2013) 2283 Eur. Phys. J. C 73 (2013) 2610 Eur. Phys. J. C 77 (2017) 236 Phys. Lett. B 772 (2017) 21 Eur. Phys. J. C 78 (2018) 589 <u>JHEP 04 (2019) 122</u> <u>1903.04040</u> (Sub. to EPJC)

ATLAS

Eur. Phys. J. C 72 (2012) 2173 Phys. Rev. D 87 (2013) 112001 JHEP 04 (2014) 031 <u>IHEP 01 (2015) 049</u> JHEP 09 (2016) 029 Phys. Rev. D 93 (2016) 092004 ATLAS-CONF-2016-043 Eur. Phys. J. C 77 (2017) 563 Eur. Phys. J. C 77 (2017) 474 1905.04242 (Sub. to EPJC)

Summary

Latest result from CMS & ATLAS now include 13 TeV data from 2016

Limits on aTGCs driven by merged-jet channel

Large improvements in limits on aTGCs profiting from better V-tagging & larger \sqrt{s}

Still to do: full Run II dataset!

Better V-taggers developed:

Shown today

CNN using constituents

CMS-PAS-IME-18-002

ATLAS backgrounds

	$WV \rightarrow \ell \nu jj$	$WV \rightarrow \ell \nu J$
Signal		
WW	2860 ± 110	542 ± 61
WZ	730 ± 30	128 ± 15
Total Expected Signal	3590 ± 140	670 ± 75
Background		
W + jets	136000 ± 8600	10500 ± 1300
Z + jets	2750 ± 340	245 ± 32
$t\overline{t}$	12980 ± 520	1130 ± 150
Single top-quark	3620 ± 150	249 ± 35
Multijet	3689 ± 60	313 ± 18
ZZ	14 ± 1	_
Total Expected Background	159000 ± 8600	12400 ± 1500
Total SM Expected	162600 ± 8700	13100 ± 1600
Observed	164502	12999
S/B (65 GeV < m_{jj} < 95 GeV)	5.5%	10.1%
$S / \sqrt{B} (65 \text{ GeV} < m_{jj} < 95 \text{ GeV})$) 11.1	7.1

signal predictions only correspond to qq'-initiated WV production.

Table 1: Expected number of signal and background events in the $WV \rightarrow \ell \nu jj$ and $WV \rightarrow \ell \nu J$ signal regions, prior to performing the m_{jj} and m_J fits. The quoted uncertainties only include detector-related uncertainties and statistical uncertainties of the MC samples and control regions. The number of events observed in data is also shown. The

ATLAS samples

<u>Signal</u>: NLO (QCD) MC@NLO v4.07 \rightarrow H v6 + Jimmy. The W and Z bosons are generated on-shell by MC@NLO and decayed sub- sequently by Herwig.

<u>Alternate signal</u>: Powheg \rightarrow Pythia8. Off-shell W and Z/Y + decays are included; the Z/Y + decays have a requirement of mqq' > 20 GeV and mll > 20 GeV.

<u>Alternate signal 2</u>: Sherpa (LO @QCD + 3 partons) Off-shell W and Z/γ decays are included; the Z/ **Y** decays have a requirement of mqq>4GeV and $m_{11}>4$ GeV.

The W + jets and Z + jets backgrounds (collectively referred to as V + jets) are modelled at LO in QCD with Sherpa v1.4.1, with up to four additional final-state partons

The MC samples for the tt and single-top-quark (t-channel, s-channel, and Wt) processes (collectively re- ferred to as top-quark processes) are generated with Powheg-Box

aTGC mapping

 $g_1^Z = 1 +$ $\kappa_{\gamma} = 1 +$ $\kappa_Z = 1 +$ $\lambda_{\gamma} = \lambda_Z$ $g_4^V = g_5^V$ $\tilde{\kappa}_{\gamma} = c_{\tilde{W}} \frac{\gamma}{c}$ $\tilde{\kappa}_Z = -c_{\hat{W}}$ $ilde{\lambda}_{\gamma} \;\; = \;\; ilde{\lambda}_{Z}$

$$c_W \frac{m_Z^2}{2\Lambda^2}$$

$$= (c_W + c_B) \frac{m_W^2}{2\Lambda^2}$$

$$= (c_W - c_B \tan^2 \theta_W) \frac{m_W^2}{2\Lambda^2}$$

$$= c_{WWW} \frac{3g^2 m_W^2}{2\Lambda^2}$$

$$= 0$$

$$\frac{m_W^2}{2\Lambda^2}$$

$$= 0$$

$$\frac{m_W^2}{2\Lambda^2}$$

$$= c_{\tilde{W}WW} \frac{m_W^2}{2\Lambda^2}$$

$$= c_{\tilde{W}WW} \frac{3g^2 m_W^2}{2\Lambda^2}$$

<u>Ann. Phys. 335 (2013) 21</u>

ATLAS shapes

ATLAS systematics

Not all used in aTGC fit - normalisation & $p_T(V)$ ones used

Source of uncertainty	Relative uncertainty for $\sigma_{\rm fid}$
Top-quark background modelling	13%
Signal modelling	12%
V + jets modelling	4%
Multijet background modelling	1%
Small- <i>R</i> jet energy/resolution	9%
Other experimental (leptons, pile-up)	4%
Luminosity	2%
MC statistics	9%
Data statistics	14%

Table 3: Breakdown of the uncertainties in the measured fiducial cross-section in the $WV \rightarrow \ell \nu jj$ channel. Uncertainties smaller than 1% are omitted from the table.

Source of uncertainty	Relative uncertainty for $\sigma_{\rm fid}$
V + jets modelling	60%
Top-quark background modelling	32%
Signal modelling	15%
Multijet background modelling	13%
Large- <i>R</i> jet energy/resolution	45%
Small- <i>R</i> jet energy/resolution	16%
Other experimental (leptons, pile-up)	3%
Luminosity	2%
MC statistics	19%
Data statistics	33%

Table 4: Breakdown of the uncertainties in the measured fiducial cross-section in the $WV \rightarrow \ell \nu J$ channel. Uncertainties smaller than 1% are omitted from the table.

ATLAS @ 8 TeV: 1D Limits

Also extract limits with different cutoff parameters & ignoring LEP constraint

aTGC form factors	Form factor	Parameter	Observed	Expected	Observed	Expected
• , • ,			WV –	$ ightarrow \ell u$ jj	WV –	$ ightarrow \ell u \mathrm{J}$
to ensure unitarity:		Δg_1^Z	[-0.039, 0.059]	[-0.050, 0.066]	[-0.033, 0.036]	[-0.039, 0.0]
α		$\Delta \kappa_Z$	[-0.045, 0.063]	[-0.060, 0.076]	[-0.028, 0.030]	[-0.033, 0.0]
$\alpha \rightarrow \frac{\alpha}{2}$	$\Lambda_{ m FF}=\infty$	λ_Z	[-0.024, 0.024]	[-0.029, 0.029]	[-0.015, 0.015]	[-0.017, 0.0]
$\left(1+\frac{\hat{s}}{\hat{s}}\right)^2$		$\Delta\kappa_\gamma$	[-0.099, 0.14]	[-0.13, 0.17]	[-0.058, 0.063]	[-0.067, 0.0]
$\begin{pmatrix} 1 & 1 & \Lambda_{\mathrm{FF}}^2 \end{pmatrix}$		λ_γ	[-0.084, 0.084]	[-0.10, 0.10]	[-0.042, 0.041]	[-0.049, 0.0]
		Δg_1^Z	[-0.042, 0.064]	[-0.055, 0.073]	[-0.044, 0.048]	[-0.051, 0.0]
α = algC param		$\Delta \kappa_Z$	[-0.047, 0.068]	[-0.064, 0.083]	[-0.037, 0.040]	[-0.043, 0.0]
$\hat{\mathbf{s}} = \mathbf{m}_{\mathbf{w}\mathbf{v}\mathbf{v}^2}$	$\Lambda_{\rm FF} = 5 {\rm TeV}$	λ_Z	[-0.026, 0.026]	[-0.032, 0.032]	[-0.020, 0.019]	[-0.023, 0.0]
		$\Delta\kappa_\gamma$	[-0.10, 0.15]	[-0.14, 0.18]	[-0.077, 0.084]	[-0.089, 0.0]
Λ^2_{FF} = energy scale		λ_γ	[-0.089, 0.089]	[-0.11, 0.11]	[-0.056, 0.056]	[-0.065, 0.0]

\rightarrow Form factor scale has larger effect on ℓvJ as probes larger $p_T(V)$

T21

For CHS jets, shift in **T**21 distribution to higher values for both signal & background → For given cut value, decrease in fake rate, but loses signal efficiency

CMS-PAS-<u>JME-18-001</u>

PUPPI

Robin Aggleton | <u>robin.aggleton@cern.ch</u>

N/N

Data/MC

<u>CMS-PAS-</u> JME-18-001

CMS samples

model

Top quark: POWHEG. Normalized with Top++

W+jets: MG5_aMC@NLO at NLO. Normalized with NNLO from MCFM

All showered/hadronized with Pythia8

Signal: MADGRAPH5 aMC@NLO v2.4.2 at NLO in the strong coupling α_s , using the "EWDim6"

CMS yields

Table 1: Results of the signal extraction fits. The uncertainties in the pre-fit yields are their respective pre-fit constraints, whilst the uncertainties in the post-fit yields are the corresponding total post-fit uncertainties. Since the normalization of the W+jets contribution is allowed to vary freely in the fit, it does not have any corresponding pre-fit uncertainties.

	E	lectron chanr	nel	Muon channel			
	Pre-fit	Post-fit	Scale factor	Pre-fit	Post-fit	Scale factor	
W+jets	2421	3036 ± 123	1.25	4319	4667 ± 182	1.08	
tt	1491 ± 324	1127 ± 119	0.76	2632 ± 570	1978 ± 202	0.75	
Single t	271 ± 39	242 ± 26	0.89	509 ± 69	449 ± 43	0.88	
Diboson	314 ± 314	267 ± 102	0.85	552 ± 552	465 ± 162	0.84	
Total expected	4497	4672 ± 201	1.04	8012	7559 ± 319	0.94	
Data		4691			7568		

Comparison

Including all-leptonic & EWK searches

Strongest limits to date on all 3 aTGCs CMS result

ATLAS result

MBI 2019, Thessaloniki

LEP

Phys. Rept. 532 (2013) 119

D0

Phys. Lett. B 718 (2012) 451

CMS

Eur. Phys. J. C 73 (2013) 2283 Eur. Phys. J. C 73 (2013) 2610 Eur. Phys. J. C 77 (2017) 236 Phys. Lett. B 772 (2017) 21 Eur. Phys. J. C 78 (2018) 589 <u>JHEP 04 (2019) 122</u> <u>1903.04040</u> (Sub. to EPJC)

ATLAS

Eur. Phys. J. C 72 (2012) 2173 Phys. Rev. D 87 (2013) 112001 JHEP 04 (2014) 031 <u>IHEP 01 (2015) 049</u> JHEP 09 (2016) 029 Phys. Rev. D 93 (2016) 092004 ATLAS-CONF-2016-043 Eur. Phys. J. C 77 (2017) 563 Eur. Phys. J. C 77 (2017) 474 <u>1905.04242</u> (Sub. to EPIC)

