

EWK Diboson Production and aQGCs of Massive Vector Bosons

Andrew Levin (Peking University)

27 August 2019

Multi-Boson Interactions 2019

Introduction

- Electroweak-induced (EWK) WWjj, WZjj, and ZZjj, production is predicted by the SM with 0.1-50 fb cross sections at 13 TeV
- Mechanisms include quartic couplings and double triple gauge couplings, including t-channel and s-channel Higgs boson exchange
- Anomalous quartic couplings predicted in new physics models and effective field theories would enhance cross sections
- All 3 channels with t-channel Higgs diagrams (W[±]W[±]jj, WZjj, and ZZjj)
 have been observed now by at least one experiment, and variety of
 other results have been recently released

Outline

- Theoretical background information
- Summary of significances in different channels and summary of aQGC measurements in different channels
- Details about 5 recent results from ATLAS and CMS
 - ATLAS, <u>submitted to PRL</u>: Observation of EWK W[±]W[±]jj production
 - ATLAS, <u>published in PLB</u>: Observation of EWK WZjj production
 - ATLAS, <u>preliminary result</u>: Observation of EWK ZZjj production
 - CMS, <u>submitted to PLB</u>: Measurement of EWK VVjj production, semileptonic
 - ATLAS, <u>submitted to PRD</u>: Measurement of EWK VVjj production, semileptonic

Relevant Feynmann Diagrams

Source: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-06/

Anomalous Couplings Frameworks

- Quantify deviations from the Standard Model in a general or modelindependent way
- Allows us to compare measurements in different channels and different experiments
- Dimension 8 Effective Field Theory
 - $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{F_i}{\Lambda^4} \mathcal{O}_i$
 - Operators involving $D_{\mu} \phi$: L_{S0-1}
 - Operators involving $B_{\mu\nu}$ or $W^{i}_{\mu\nu}$: L_{T0-9}
 - Operators involving $D_{\mu} \varphi$ and either $B_{\mu\nu}$ or $W^{i}_{\mu\nu}$: L_{M0-7}
 - For example: $L_{T8} = B_{\alpha\mu}B^{\mu\beta}B_{\beta\nu}B^{\nu\alpha}$

Electroweak-induced VVjj production significances, fully leptonic results

Experiment	CoM Energy	$W^\pm W^\mp jj$	W [±] W [±] jj	W [±] Zjj	ZZjj
CMS	8 TeV		2.0 σ		
ATLAS	8 TeV		4.5 σ		
CMS	13 TeV		5.5 σ	2.2 σ	2.7 σ
ATLAS	13 TeV		6.5 σ	5.3 σ	5.5 σ

Limits on dimension 8 EFT operators

ATLAS: Observation of EWK W[±]W[±] production (I)

- Based on 36.1 fb⁻¹ collected at 13 TeV
- Fully leptonic final state (lepton = electron or muon)
- Observed signal significance: 6.5 σ
- Expected signal significance based on Sherpa (LO-QCD, 0 and 1 jets): 4.4σ
- Expected signal significance based on POWHEG (NLO-QCD): 6.5 σ
- Significance is extracted by performing a simultaneous fit in the signal region and two control regions

ATLAS: Observation of EWK W[±]W[±] production (II)

Signal region selection

- Single lepton triggers
- $m_{II} > 20 \text{ GeV}$
- MET > 30 GeV
- Leading jet $p_T > 65 \text{ GeV}$, $|\eta| < 4.5$
- Sub-leading jet $p_T > 35$ GeV, $|\eta| < 4.5$
- Lepton $p_T > 27 \text{ GeV}, |\eta| < 2.5$
- m_{ii} > 500 GeV
- $|\Delta y_{ij}| > 2$
- B-tagged jet veto
- Split into 6 categories for $e^\pm e^\pm$, $e^\pm \mu^\pm$, and $\mu^\pm \mu^\pm$ and 4 m_{jj} bins

Control region selections

- Low m_{ii} control region
 - Replace $m_{ii} > 500 \text{ GeV}$ with $200 < m_{ii} < 500 \text{ GeV}$
- WZ control region
 - Apply signal region selection to first two leptons, looser selection to third lepton
 - Contains a single bin
 - Normalization of WZ is a floating parameter

ATLAS: Observation of EWK W[±]W[±] production (III)

Signal region

Control region

ATLAS: Observation of EWK W[±]W[±] production (IV)

- WZ background normalization determined from WZ control region
- Method to estimate fake (non-prompt) lepton background
 - 1. Define a scale factor between fake leptons passing a control lepton selection and the signal lepton selection
 - 2. Measure scale factor in data events with one b jet and one control lepton as a function of scalar sum of lepton pt and tracks within $\Delta R = 0.3$ of the control lepton
 - 3. Subtract contamination from real leptons in numerator and denominator of scale factor
 - 4. Apply scale factors to data events that pass signal selection with signal lepton replaced with control lepton
- Method to estimate electron charge flip background
 - 1. Measure charge flip rates in data using $Z \rightarrow$ ee events
 - 2. Apply charge flip rates to opposite sign events in simulation

ATLAS: Observation of EWK W[±]W[±] production (V)

- Fiducial region definition:
 - Leading (sub-leading) jet $p_T > 65$ GeV (> 35 GeV) and $|\eta_i| < 4.5$
 - Lepton $p_T > 27$ GeV and $|\eta| < 2.5$
 - ΔR_{II} , $\Delta R_{II} > 0.5$
 - $m_{ij} > 500 \text{ GeV and } |y_{ij}| > 2$
 - m_{II} > 20 GeV
 - MET > 30 GeV
 - Leptons are dressed with photons within $\Delta R = 0.1$
- Fiducial cross section measurement: $\sigma = 2.89^{+0.51}_{-0.48}(\text{stat.})^{+0.24}_{-0.22}(\text{exp. syst.})^{+0.14}_{-0.16}(\text{mod. syst.})^{+0.08}_{-0.06} \text{ (lumi.) fb}$
- Sherpa prediction: $2.01^{+0.33}_{-0.23}$ fb
- POWHEG prediction: $3.08^{+0.45}_{-0.46}$ fb
- Measurement is based on signal strength fit with Sherpa as signal, with the fit only considering shape theoretical uncertainties

ATLAS: Observation of EWK WZ production (I)

- Fully leptonic final state (lepton = electron or muon)
- Using 2015 and 2016 data
- Observed EWK signal significance: 5.3 σ
- Expected EWK signal significance: 3.2 σ
- BDT trained to distinguish EWK WZjj from QCD WZjj
- Significance extracted from simultaneous fit of 4 regions
 - 1. BDT score in the EW WZjj SR
 - 2. m_{ii} distribution in QCD WZjj CR
 - 3. multiplicity of b-tagged jets in b-tagged CR
 - 4. m_{ii} distribution in ZZ CR

13

ATLAS: Observation of EWK WZ production (II)

BDT input variables

- $\mathsf{m}_{\mathsf{i}\mathsf{j}}$, $\Delta \mathsf{\eta}_{\mathsf{i}\mathsf{j}}$, $\Delta \mathsf{\varphi}_{\mathsf{i}\mathsf{j}}$, $p_T^{j_1}$, $p_T^{j_2}$
- Leading jet y
- Jet multiplicity
- p_T^W , p_T^Z , p_T^{WZjj} , η^W (defined with kinematic fit)
- m_T^{WZ} , $|y_Z y_{I,W}|$
- ΔR(leading jet,Z)
- $min(\Delta\eta_{-}, \Delta\eta_{+})$ where
 - $\Delta \eta_{-} = \min(\eta_{l}^{W}, \eta_{l_{1}}^{Z}, \eta_{l_{2}}^{Z}) \min(\eta_{j_{1}}, \eta_{j_{2}})$
 - $\Delta \eta_{+} = \max(\eta_{j_1}, \eta_{j_2}) \max(\eta_{l}^{W}, \eta_{l_1}^{Z}, \eta_{l_2}^{Z})$

Signal region

- Single lepton triggers
- Leading lepton $p_T > 25$ GeV (27 GeV) for 2015 (2016) data
- Leading jet $p_T > 40 \text{ GeV}$
- 4th lepton veto with veto lepton p_T
 5 GeV
- $m_{ii} > 500 \text{ GeV}$
- $m_T^W > 30 \text{ GeV}$
- Veto of b-tagged jets

ATLAS: Observation of EWK WZ production (III)

- Reducible background estimation
 - Measure efficiency and misidentification probabilities for loose and tight lepton selections
 - Construct matrix which converts between lepton selection triplets (e.g. pass fail pass) and lepton source triplets (e.g. prompt prompt nonprompt)
 - Invert matrix

ATLAS: Observation of EWK WZ production (IV)

- Measured electroweak fiducial cross section: $\sigma = 0.57^{+0.14}_{-0.13}(\text{stat.})^{+0.05}_{-0.04}(\text{exp. syst.})^{+0.05}_{-0.04}(\text{mod. syst.})^{+0.01}_{-0.01}(\text{lumi.}) \text{ fb}$
- Sherpa LO prediction: $\sigma = 0.321 \pm 0.002 \text{ (stat)} \pm 0.005 \text{(PDF)}_{-0.023}^{+0.027} \text{(scale) fb}$
- Measured inclusive fiducial cross section: $\sigma=1.68\pm0.16$ (stat) \pm 0.12 (exp. syst.) \pm 0.13 (mod. syst.) \pm 0.044 (lumi.) fb
- Sherpa LO prediction: $\sigma = 2.15 \pm 0.01 \text{ (stat)} \pm 0.05 \text{ (PDF)}_{-0.44}^{+0.65} \text{ (scale) fb}$
- Electroweak cross section measured using signal strength fit and inclusive cross section measured using the formula

$$\sigma = \frac{N_{data} - N_{bkg}}{L \cdot C_{WZjj}} \times \left(1 - \frac{N_{\tau}}{N_{all}}\right)$$

ATLAS: Observation of EWK WZ production (V)

- Differential cross sections for 8 variables: number of jets, number of jets between the two tagged jets, $\Delta \phi_{\rm jj}$, $\Delta y_{\rm jj}$, m_T^{WZ} , $\Delta \phi(W,Z)$, $m_{\rm jj}$, $\sum p_T^l$
- Iterative Bayesian unfolding with three iterations
- $\mathbf{m}_{\mathbf{jj}}$, $\sum p_T^l$, and m_T^{WZ} are sensitive to anomalous couplings

ATLAS: Observation of EWK ZZ production (I)

- Based on the full run 2 dataset 2015 -2018
- Observed signal significance: 5.5 σ
- Expected signal significance: 4.3 σ
- Includes 4I channel and 2I2v channel
- BDT trained to distinguish the EWK signal from simulated backgrounds
- Significance is extracted based on fit to BDT in 4l and 2l2v signal regions and a low $m_{ii}/\Delta \eta_{ii}$ 4l control region

BDT Output

ATLAS: Observation of EWK ZZ production (II)

m_{jj} distribution in the 4l signal region

m_{jj} distribution in the 2l2v signal region

ATLAS: Observation of EWK ZZ production (III)

	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$	
Electrons	$p_{\rm T} > 7~{\rm GeV}, \eta < 2.47$ $ d_0/\sigma_{d_0} < 5~{\rm and}~ z_0 \times \sin\theta < 0.5~{\rm mm}$		
Muons	$p_{ m T}>7$ GeV, $ \eta <2.7$ $ d_0/\sigma_{d_0} <3$ and $ z_0 imes\sin heta$	$p_{\mathrm{T}} > 7 \; \mathrm{GeV}, \eta < 2.5$ $\theta < 0.5 \; \mathrm{mm}$	
Jets	$p_{\rm T} > 30~(40)~{\rm GeV}~{\rm for}~ \eta < 2.4~(2.4 < \eta < 4.5)$	$p_{\rm T} > 60~(40)~{\rm GeV}$ for the leading (sub-leading) jet	
	$p_{\rm T}>20,20,10$ GeV for the leading, sub-leading and third leptons Two OSSF lepton pairs with smallest $ m_{\ell^+\ell^-}-m_Z + m_{{_{\ell^{'+}\ell^{'-}}}}-m_Z $	$p_{\rm T} > 30~(20)~{\rm GeV}$ for the leading (sub-leading) lepton One OSSF lepton pair and no third leptons	
ZZ selection	$m_{\ell^+\ell^-} > 10 \text{ GeV for lepton pairs}$	$80 < m_{\ell^+\ell^-} < 100 \text{ GeV}$	
	$\Delta R(\ell,\ell') > 0.2$	No b-tagged jets	
	$66 < m_{\ell^+\ell^-} < 116 \; {\rm GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}}$ significance > 12	
Dijet selection	Two most energetic jets with	$1 y_{j_1} \times y_{j_2} < 0$	
Dijet selection	$m_{jj} > 300 \; \mathrm{GeV} \; \mathrm{and} \; \Delta y(jj) > 2$	$m_{jj} > 400 \; \mathrm{GeV} \; \mathrm{and} \; \Delta y(jj) > 2$	

27 August 2019 Andrew Levin 20

ATLAS: Observation of EWK ZZ production (IV)

- BDT input variables, 4l BDT
 - m_{jj}, Δy(j,j)
 - $p_T^{j_1}$, $p_T^{j_2}$
 - y_{Z1}, y_{Z2}
 - $y_{j1} \times y_{Z2}$
 - m_{4l} , p_T^{4l}
 - p_⊤ of the third lepton
 - p_T of the Z boson with mass closer to the nominal Z boson mass
 - $p_T^{ZZjj}/(p_T^{j_1}+p_T^{j_2}+p_T^{Z1}+p_T^{Z2})$

- BDT input variables, 2l2v BDT
 - m_{jj},Δy(j,j)
 - $p_T^{j_2}$
 - $y_{j1} \times y_{Z2}$
 - $p_T^{ZZjj}/(p_T^{j_1}+p_T^{j_2}+p_T^{Z1}+p_T^{Z2})$
 - MET, MET significance
 - Δη(I,I), Δφ(I,I), ΔR(I,I), m_{II}
 - $p_T^{l_1}$, $p_T^{l_2}$

ATLAS: Observation of EWK ZZ production (V)

- Fiducial region definition:
 - Defined at particle level with the same cuts as the detector-level selections, with the following exceptions
 - Leptons are dressed with photons within $\Delta R = 0.1$
 - Relaxed dilepton mass requirement of 60
 < m_{II} < 120 GeV
 - In 2l2v channel, MET significance > 12 replaced by MET > 130 GeV
 - Electron and muon $|\eta|$ cuts replaced by $|\eta| < 2.5$

- Fiducial cross section, measured, 4l: $\sigma = 1.27 \pm 0.12$ (stat) ± 0.02 (theo) ± 0.07 (exp) ± 0.01 (bkg) ± 0.03 (lumi)
- Fiducial cross section, predicted, 41: $\sigma = 1.14 \pm 0.04$ (stat) ± 0.20 (theo)
- Fiducial cross section measured, 2l2v: $\sigma = 1.22 \pm 0.30$ (stat) ± 0.04 (theo) ± 0.06 (exp) ± 0.16 (bkg) ± 0.03 (lumi)
- Fiducial cross section, predicted, 2l2v: $\sigma = 1.07 \pm 0.01$ (stat) ± 0.12 (theo)

CMS: Measurement of EWK VV production, semileptonic (I)

- Based on 35.9 fb⁻¹ collected at 13 TeV
- Reconstruct jets using anti- k_T algorithm with $\Delta R = 0.8$
- N-subjettiness, τ_N, quantifies (with small values meaning well and large values meaning not well) how well a jet can be described as N subjets
- Use τ_2/τ_1 < 0.55 to select jets likely to be merged
- Use a WV and ZV channel, with V indicating the merged jet

CMS: Measurement of EWK VV production, semileptonic (II)

Selection

- One lepton with $p_T > 50 \text{ GeV}$
- MET > 50 (80) GeV in electron (muon) channel
- At least one V jet with p_T > 200 GeV, $|\eta|$ < 2.4, and 65 < soft-drop tagger mass < 105 GeV
- Veto of events with b-tagged jets
- Veto of second leptons for WV and third leptons for ZV
- $\left| \eta^W \frac{\eta^{j_1 + \eta^{j_2}}}{2} \right| / \left| \Delta \eta_{jj} \right| < 0.3 \text{ and } \left| \eta^V \frac{\eta^{j_1 + \eta^{j_2}}}{2} \right| / \left| \Delta \eta_{jj} \right| < 0.3$
- $\min(\min(\eta_{W}, \eta_{V}) \min(\eta_{j1}, \eta_{j2}), \max(\eta_{j1}, \eta_{j2}) \max(\eta_{W}, \eta_{V})) > 1$

CMS: Measurement of EWK VV production, semileptonic (III)

- Limits set based on the m_{VZ} and m_{VW} distributions
- Limits are set on operator coefficient/(unknown mass scale)⁴ and are quoted in units of TeV⁻⁴
- No form-factor is used
- These are the world's best limits for all 9 operators

	Obs Low	Obs High	Exp Low	Exp High
F _{s,0}	-2.7	2.7	-4.2	4.2
F _{S,1}	-3.4	3.4	-5.2	5.2
F _{M,0}	-0.69	0.70	-1.0	1.0
F _{M,1}	-2.0	-2.1	-3.0	3.0
F _{M,6}	-1.3	1.3	-1.4	1.4
F _{M,7}	-3.4	3.4	-5.1	5.1
F _{T,0}	-0.12	0.11	-0.17	0.16
F _{T,1}	-0.12	0.13	-0.18	0.18
F _{T,2}	-0.28	0.28	-0.41	0.41

CMS: Measurement of EWK VV production, semileptonic (IV)

- Estimate the background due to W+jets and Z+jets using the m_V sidebands 40 < mass < 65 GeV and 105 < mass < 150 GeV
- Exponential-like function exp [-m/(c₀ + c₁m)] used to model W+jets and Z+jets
- Extrapolate to 65 < mass < 105
 GeV using W+jets and Z+jets
 simulation

CMS: Measurement of EWK VV production, semileptonic (V)

- The Georgi-Machacek model is an extension of the SM that includes singlycharged and doubly-charged Higgs bosons
- The VBF production mechanism and decay to VV pairs results in the same final state as this analysis
- Cross section times branching ratio limits were set as a function of mass for both H[±] and H^{±±}

ATLAS: Measurement of EWK VV production, semileptonic (I)

- Based on 35.5 fb⁻¹ collected at 13 TeV
- Observed signal significance: 2.7 σ
- Expected signal significance: 2.5 σ
- Select one hadronically decaying V boson and a second V boson that decays to vv, lv, or II
- One signal region for resolved V bosons and two signal regions for merged V bosons
- For the merged case, high purity and low purity signal regions defined by different cuts of the jet substructure discriminant $D_2^{(\beta=1)}$
- 9 signal regions plus 12 control regions are fit simultaneously to extract the signal strength

ATLAS: Measurement of EWK VV production, semileptonic (II)

- Signal region selection on the right
- Control regions are defined by:
 - Inverting the m_j cut in merged case and the m_{jj} cut in the resolved case (ZCRs, WCRs, and VjjCRs)
 - Inverting the b-tagging requirement for the 1-lepton signal region (TopCR)
- The m_{jj}^{tag} distribution of the W+jets and Z+jets simulated samples is reweighted based on the data in the WCRs and the ZCRs

Selection	0-lepton	1-lepton	2-lepton			
Trigger	$E_{ m T}^{ m miss}$ triggers	Single-electron triggers Single-muon or $E_{\mathrm{T}}^{\mathrm{miss}}$ triggers	Single-lepton triggers			
Leptons	0 'loose' leptons with $p_{\rm T} > 7~{\rm GeV}$	$ \left \begin{array}{l} 1 \text{ 'tight' lepton with } p_{\mathrm{T}} > 27 \text{ GeV} \\ 0 \text{ 'loose' leptons with } p_{\mathrm{T}} > 7 \text{ GeV} \end{array} \right $	2 'loose' leptons with $p_{\rm T} > 20~{\rm GeV}$ ≥ 1 lepton with $p_{\rm T} > 28~{\rm GeV}$			
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 200 GeV	> 80 GeV	_			
$m_{\ell\ell}$	_	_	$ \begin{vmatrix} 83 < m_{ee} < 99 \text{ GeV} \\ -0.0117 \times p_{\mathrm{T}}^{\mu\mu} + 85.63 < m_{\mu\mu} < 0.0185 \times p_{\mathrm{T}}^{\mu\mu} + 94 \text{ GeV} \end{vmatrix} $			
Small- R jets	$p_{\rm T} > 20~{\rm GeV}$ if $ \eta < 2.5,$ and $p_{\rm T} > 30~{\rm GeV}$ if $2.5 < \eta < 4.5$					
Large- R jets	$p_{\rm T} > 200 \; {\rm GeV}, \eta < 2$					
$V_{ m had} ightarrow J \ V_{ m had} ightarrow jj$	$V \text{ boson tagging, } \min(m_J - m_W , m_J - m_Z) \\ 64 < m_{jj} < 106 \text{ GeV}, \ jj \text{ pair with } \min(m_{jj} - m_W , m_{jj} - m_Z), \text{ leading jet with } p_T > 40 \text{ GeV}$					
Tagging-jets	$\begin{array}{c} j \notin V_{\mathrm{had}}, \ \mathrm{not} \ b\text{-tagged}, \ \Delta R(J,j) > 1.4 \\ \eta_{\mathrm{tag},j_1} \cdot \eta_{\mathrm{tag},j_2} < 0, \ m_{jj}^{\mathrm{tag}} > 400 \ \mathrm{GeV}, \ p_{\mathrm{T}} > 30 \ \mathrm{GeV} \end{array}$					
Num. of b -jets	_	0	-			
Multijet removal	$ \begin{vmatrix} p_{\mathrm{T}}^{\mathrm{miss}} > 50 \text{ GeV} \\ \Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) < \pi/2 \\ \min[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{small-}R \text{ jet})] > \pi/6 \\ \Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, V_{\mathrm{had}}) > \pi/9 \end{vmatrix} $	-	-			

ATLAS: Measurement of EWK VV production, semileptonic (III)

- BDT is trained with simulated samples to distinguish signal versus sum of all backgrounds
- 6 BDTs are trained due to choice of merged vs. resolved and choice of 0, 1, or 2 leptons
- The BDT distributions are fit in the 9 signal regions and the m_{jj}^{tag} distributions are fit in the control regions, except the TopCR which has just 1 bin

ATLAS: Measurement of EWK VV production, semileptonic (IV)

Input variables used in the resolved BDTs

Variable	0-lepton	1-lepton	2-lepton
m_{jj}^{tag}	√	_	✓
$\Delta\eta_{jj}^{ m tag}$	_	_	\checkmark
$p_{\mathrm{T}}^{\mathrm{tag},j_{1}}$	✓	\checkmark	_
$p_{\mathrm{T}}^{\mathrm{tag},j_{2}}$	\frac{1}{\sqrt{1}}	√ √ √	√
$\Delta\eta_{jj}$	✓	\checkmark	\checkmark
$p_{ m T}^{j_1}$	✓	_	_
$p_{\mathrm{T}}^{j_2} \ w^{j_1} \ w^{j_2}$	✓	-	- \(\) \(\) \(\) \(\) \(\) \(\) \(\)
w^{j_1}	✓	\checkmark	\checkmark
	✓	\checkmark	\checkmark
$n_{\mathrm{tracks}}^{j_1}$	_	\checkmark	\checkmark
$n_{ m tracks}^{j_2}$	_	\checkmark	\checkmark
w^{tag,j_1}	- ✓ ✓	\checkmark	\checkmark
$w^{{\rm tag},j_2}$	✓	\checkmark	\checkmark
$n_{ m tracks}^{{ m tag},j_1}$	_	\checkmark	\checkmark
$n_{ m tracks}^{{ m tag},j_2}$	_	\checkmark	\checkmark
$n_{j,\mathrm{track}}$	✓ ✓ ✓	_	\checkmark
$n_{j,\text{extr}}$	✓	_	_
$E_{\mathrm{T}}^{\mathrm{miss}}$	✓	_	_
η_ℓ	_	- ✓ ✓	-
$\Delta R(\ell, \nu)$	_	✓	_
ζ_V	_	✓	- ✓
m_{VV}	_	_	✓
m_{VVjj}	_	✓	_

Input variables used in the merged BDTs

Variable	0-lepton	1-lepton	2-lepton
m_{jj}^{tag}	✓	_	√
$\Delta \eta_{jj}^{ m tag}$	_	_	\checkmark
$p_{\mathrm{T}}^{\mathrm{tag},j_{2}}$	✓	\checkmark	\checkmark
m_J	✓	_	_
$D_2^{(\beta=1)}$	✓	_	\checkmark
$E_{ m T}^{ m miss}$	✓	_	_
$\Delta\phi(ec{E}_{ m T}^{ m miss},J)$	✓	_	_
η_ℓ	_	\checkmark	_
$n_{j,\mathrm{track}}$	✓	_	_
ζ_V	_	\checkmark	\checkmark
m_{VV}	_	_	\checkmark
p_{T}^{VV}	_	_	\checkmark
m_{VVjj}	_	\checkmark	_
p_{T}^{VVjj}	_	_	\checkmark
w^{tag,j_1}	✓	_	_
$w^{{ m tag},j_2}$	✓	_	_

ATLAS: Measurement of EWK VV production, semileptonic (V)

- Fiducial cross section measurement: $\sigma = 45.1 \pm 8.6 (\text{stat.})^{+15.9}_{-14.6} (\text{syst.})$ fb
- Theoretically predicted fiducial cross section based on MadGraph5_aMC@NLO LO-QCD sample: $\sigma = 43.0 \pm 2.4 \text{ fb}$
- Fiducial cross section reported in each of the 6 channels
- Performed simultaneous fit in all 6 channels with one signal strength per lepton multiplicity

Fiducial phase space		Predicted $\sigma^{\rm fid,SM}_{{\rm EW}VVjj}$ [fb]	Measured $\sigma^{\rm fid,obs}_{{\rm EW}VVjj}$ [fb]		
Merged	0-lepton	$4.1 \pm 0.3 ({\rm theo.})$	$10.1 \pm 3.3 (stat.) ^{+4.2}_{-3.8} (syst.)$		
	1-lepton	$6.1 \pm 0.5 ({\rm theo.})$	$2.0 \pm 1.5 (stat.) ^{+2.9}_{-2.8} (syst.)$		
	2-lepton	1.2 ± 0.1 (theo.)	$2.4 \pm 0.6 (stat.) ^{+0.8}_{-0.7} (syst.)$		
Resolved	0-lepton	$9.2 \pm 0.6 (\text{theo.})$	$22.8 \pm 7.4 (stat.) ^{+9.4}_{-8.5} (syst.)$		
	1-lepton	$16.4 \pm 1.0 ({\rm theo.})$	$5.5 \pm 4.1 (stat.) ^{+7.7}_{-7.5} (syst.)$		
	2-lepton	$6.0 \pm 0.4 ({\rm theo.})$	$11.8 \pm 3.0 (stat.) ^{+3.8}_{-3.5} (syst.)$		
Inclusive	0-lepton	$13.3 \pm 0.8 \text{(theo.)}$	$32.9 \pm 10.7 (\text{stat.}) ^{+13.5}_{-12.3} (\text{syst.})$		
	1-lepton	$22.5 \pm 1.5 (\mathrm{theo.})$	$7.5 \pm 5.6 (\mathrm{stat.}) ^{+10.5}_{-10.2} (\mathrm{syst.})$		
	2-lepton	$7.2 \pm 0.4 ({\rm theo.})$	$14.2 \pm 3.6 (stat.) ^{+4.6}_{-4.2} (syst.)$		

Summary

- A variety of AQGC and EWK VVjj results have been released by ATLAS and CMS
- EWK signal significances, 1D dimension 8 EFT limits, fiducial cross sections, differential cross sections, and Georgi–Machacek model limits are the most common
- Many analyses used simultaneous fits in the signal region and one or more control regions to boost the significance
- Jet substructure techniques applied successfully in semileptonic channels
- ATLAS and CMS analyses methods are very similar, other than use of BDTs and reporting of AQGC limits
- Run 2 data still being analyzed

Backup

Electroweak-induced VVjj production significances, fully leptonic results, including Vγ channels

Experiment	CoM Energy	$W^\pm W^\mp jj$	W [±] W [±] jj	W [±] Zjj	ZZjj	Wγjj	Ζγϳϳ
CMS	8 TeV		2.0 σ			2.7 σ	
ATLAS	8 TeV		4.5 σ				
CMS	13 TeV		5.5 σ	2.2 σ	2.7 σ		2.7 σ
ATLAS	13 TeV		6.5 σ	<u>5.3 σ</u>	5.5 σ		5.5 σ

Limits on dimension 8 EFT operators (FM)

Limits on dimension 8 EFT operators (FS)

