Multi-Boson interactions 2019
Summary Talk

Athanasios Dedes

University of Ioannina, Greece

MBI 2019, Thessaloniki, Greece
Outline

1 Theory
 - Standard Model
 - Understanding Cross Sections
 - Diboson Production
 - VBF and VBS
 - Polarization
 - Beyond the SM
 - EFTs
 - Other BSM strategies?

2 Experimental Searches
 - Diboson Production
 - VBF and VBS
 - Polarization

3 Constraints on aTGCs

4 Constraints on aQGCs

5 Future sensitivity

6 Epilogue
Outline

1. Theory
 - Standard Model
 - Understanding Cross Sections
 - Beyond the SM

2. Experimental Searches

3. Constraints on aTGCs

4. Constraints on aQGCs

5. Future sensitivity

6. Epilogue

A. Dedes (University of Ioannina)

MBI 2019 Summary Talk

August 28, 2019
Personal view of the current SM state...
Multi-boson interactions probe the non-abelian local symmetry of the gauge sector.

In the SM there are two triple, $W^+W^-\gamma$, W^+W^-Z

and four quartic, $W^+W^-\gamma\gamma$, $W^+W^-Z\gamma$, W^+W^-ZZ, $W^+W^-W^+W^-$

gauge boson vertices. No pure “neutral particle” vertices exist at tree level.

$D \leq 4$ and Gauge Invariance \rightarrow 2 SM Parameters: $\{g', g\}$ OR $\{e, \sin \theta_W\}$
Anomalous Triple Gauge Couplings (aTGCs)

Historically\(^1\), aTGCs parametrized by a general Lorentz invariant Lagrangian

\[
\frac{\mathcal{L}_{WWV}}{g_{WWV}} = i g_1 V \left(W^\dagger_{\mu\nu} W^{\mu\nu} - W^{\dagger\mu} V_\nu W^{\mu\nu} \right) + i \kappa V W^\dagger_\mu W_\nu V^{\mu\nu} \\
+ \frac{i \lambda V}{m_W^2} W^\dagger_{\rho\mu} W^{\mu\nu} V^{\nu\rho} - g_4 V W^\dagger_\mu W_\nu (\partial^\mu V^\nu + \partial^\nu V^\mu) \\
+ g_5 V \epsilon^{\mu\nu\rho\sigma} \left(W^\dagger_{\mu} \overleftrightarrow{\partial}_{\rho} W_\nu \right) V_\sigma + i \tilde{\kappa} V W^\dagger_\mu W_\nu \tilde{V}^{\mu\nu} \\
+ \frac{i \tilde{\lambda} V}{m_W^2} W^\dagger_{\rho\mu} W^{\mu\nu} \tilde{V}^{\nu\rho}
\]

Historically, aTGCs parametrized by a general Lorentz invariant Lagrangian

\[
\frac{\mathcal{L}_{WWV}}{g_{WWV}} = i g_1^V \left(W_{\mu\nu} W^\mu V^\nu - W^\mu V_\nu W^{\mu\nu} \right) + i \kappa V W^{\mu\nu} W_\mu W_\nu V_{\mu\nu}
\]

\[+ \frac{i \lambda V}{m_W^2} W_{\rho\mu} W_{\nu} V^{\nu\rho} - g_4^V W^\mu W_\nu (\partial^\mu V^\nu + \partial^\nu V^\mu)
\]

\[+ g_5^V \epsilon^{\mu\nu\rho\sigma} (W^\mu \overleftarrow{\partial}_\rho W_\nu) V_\sigma + i \tilde{\kappa} V W^{\mu\nu} W_\mu W_\nu \tilde{V}^{\mu\nu}
\]

\[+ \frac{i \tilde{\lambda} V}{m_W^2} W_{\rho\mu} W_{\nu} \tilde{V}^{\nu\rho}
\]

where

\[V = V^\dagger = Z, \gamma, V_{\mu\nu} = \partial_\mu V_\nu - \partial_\nu V_\mu, \tilde{V}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} V^{\rho\sigma}. W^\mu \equiv W_\mu - \text{ and}
\]

\[W_{\mu\nu} = \partial_\mu W_\nu - \partial_\nu W_\mu \]

\[\lambda_V, \tilde{\lambda}_V \text{ are dimension-6 operator couplings}
\]

\[2 \times 7 = 14 \text{ parameters} \]
Anomalous Triple Gauge Couplings (aTGCs)

Historically, aTGCs parametrized by a general Lorentz invariant Lagrangian

\[
\frac{L_{WWV}}{g_{WWV}} = i g_1^V \left(W_{\mu\nu}^\dagger W_{\mu}^\nu V_{\nu}^\mu - W_{\mu}^\dagger V_{\nu}^\mu W_{\mu\nu}^\dagger \right) + i \kappa V W_{\mu}^\dagger W_{\nu} V^{\mu\nu} \\
+ \frac{i \lambda V}{m_W^2} W_{\mu\nu}^\dagger W_{\mu} W^{\nu\rho} - g_4^V W_{\mu}^\dagger W_{\nu} V^{\mu} (\partial_{\mu} V_{\nu}^\dagger + \partial_{\nu} V_{\mu}^\dagger) \\
+ g_5^V \epsilon_{\mu\nu\rho\sigma} (W_{\mu}^\dagger \bar{\partial}_{\rho} W_{\nu}) V_{\sigma} + i \tilde{\kappa} V W_{\mu}^\dagger W_{\nu} V^{\mu\nu} \\
+ \frac{i \tilde{\lambda} V}{m_W^2} W_{\mu\nu}^\dagger W_{\nu} V^{\mu\rho}
\]

Some terms in this parametrization explicitly break gauge invariance that we know it is valid from LEP.
Anomalous Triple Gauge Couplings (aTGCs)

Historically, aTGCs parametrized by a general Lorentz invariant Lagrangian

\[
\frac{\mathcal{L}_{WWV}}{g_{WWV}} = \frac{i g_1^V}{g_{WWV}} \left(W_{\mu\nu}^\dagger W^\mu W^\nu - W_{\mu}^\dagger V_{\nu} W_{\mu\nu} \right) + \frac{i \kappa_V}{g_{WWV}} W_{\mu}^\dagger W_{\nu} V_{\mu\nu} \\
+ \frac{i \lambda_V}{m_W^2} W_{\mu\nu}^\dagger W_{\nu\rho} \nu V_{\mu\rho} - g_4^V W_{\mu}^\dagger W_{\nu} \left(\partial^\mu V^\nu + \partial^\nu V^\mu \right) \\
+ g_5^V \epsilon_{\mu\nu\rho\sigma} \left(W_{\mu\nu}^\dagger \partial^\rho W_{\nu} \right) V_{\sigma} + i \tilde{\kappa}_V W_{\mu}^\dagger W_{\nu} \tilde{V}_{\mu\nu} \\
+ \frac{i \tilde{\lambda}_V}{m_W^2} W_{\mu\nu}^\dagger W_{\nu\rho} \tilde{V}_{\mu\rho}
\]

Better formulated as deviations from SM TGCs

SM tree level: \(g_1^V = \kappa_V = 1 \), \(\lambda_V = \tilde{\lambda}_V = g_4^V = g_5^V = \tilde{\kappa}_V = 0 \)

\(g_{WW\gamma} = e \), \(g_{WWZ} = e \cot \theta_W \)
Goldstone Boson Equivalence Theorem (GBET)1

At High Energies (HE) relative to the W-mass, massive gauge bosons W^\pm, Z can be replaced by the corresponding Goldstone Bosons G^\pm, G^0 in scattering processes.

\[S[W_L^\pm, \text{physical}] = i^n \times S[G^\pm, \text{physical}] \]

Dynamics of V_Ls is directly linked to GBET and $SU(2)_L \times U(1)_Y$ invariance restoration at HE.

GBET and Unitarity

Tree Level Unitarity\(^1\)

"the N-particle S-matrix elements in the tree approximation must grow no more rapidly than \(E^{4-N}\) in the limit of HE, at fixed non-zero angles"

In the SM all multi Goldstone Boson interactions do not contain momenta and therefore leading \(s\)-behaviour cancels against \(s\), \(t\) and \(u\) exchanges of vector and Higgs-boson mediated amplitudes.

Processes

Diboson Production

Vector Boson Fusion (VBF)

Vector Boson Scattering (VBS)
Understanding Cross Sections

Diboson Production

- Experimental uncertainties have been surpassed the 10% uncertainty so we have to go to few present theoretically.
- All NNLO QCD corrections have been completed! They are included in a code (MATRIX+OneLoops)\(^2\)
- Excellent agreement between NNLO and data
- NNLO QCD + NLO EW corrections\(^3\) giant K-factors in observables for \(ZZ, WW, WZ\)
- At HE, NLO EW/LO = -40% - 50%.
- One must set jet-veto at high-\(s\) since the process is driven away from aTGC searches

\(^2\)Review talk by Marius Wiesemann
\(^3\)Review talk by Jonas Lindert
VBF and VBS

- $pp \to e^+ \nu_e \mu^+ \mu^- jj$ at NLO EW/QCD corrections for W^+Z scattering at the LHC: corrections of order $O(\alpha_s\alpha^6)$ and $O(\alpha^7)$ the latter being large $\sim -17.5\%$ especially at high $p_T j$ (Sudakov enhancement)4

- Progress in QCD effects in borderline between perturbative and non-perturbative regime dictated by the factorization theorem discussed5

4Talk by Christopher Schwan

5Talk by Simon Plaetzer
Polarization

- Important to provide accurate theory predictions for polarized VBS for LHC analyses
- A nice formula but assumes no lepton cuts so interference effects vanish

6 Talk by Giovanni Pelliccioli

A. Dedes (University of Ioannina)
Systematic deviations from the SM can be studied effectively within EFT as long as the scale of New Physics, Λ, is $\Lambda^2 \gg M_W^2$ and $s = (p_1 + p_2)^2$. A particularly interesting EFT scenario is SMEFT.

SMEFT: Assuming there is nothing but the SM below, say $\Lambda \sim 1$ TeV, and the Higgs field belongs to the SU(2)-doublet, SM is augmented with high dimensional gauge invariant operators.

“Warsaw basis”\(^7\) is a non-redundant basis. The complete set of Feynman Rules have been completed for $d \leq 6$ operators in Unitary and R_ξ-gauges.\(^8\) **SmeftFR code**\(^9\) generates FRs and interfaces them to UFO and FeynArts for various event generator and symbolic calculations.

\(^7\)B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, arXiv:1008.4884

\(^8\)AD, W. Materkowska, M. Paraskevas, J. Rosiek and K. Suxho, arXiv:1704.03888

Beyond the SM

$\gamma W^+ W^- \text{ in SMEFT with } d \leq 6 \text{ operators}$
“Triboson” parameters in EFT with \(d \leq 6 \) operators:
CP-invariant parameters : 5 new - 2 constraints = 3
CP-violating parameters = 2

One should be very careful with EFTs!

- \(s, M_W^2 << \Lambda^2 \) – otherwise using EFT is nonsense!
- Bounds on Wilson coefficients are given in particular operator basis (e.g. Warsaw, SILH, etc)
- Bounds on Wilson coefficients should be given in a particular input scheme e.g. one has to trade \(\bar{g}, \bar{g}', \nu \) with measurable quantities like for example\(^{10}\)
 - \(\{\alpha_{em}, m_Z, G_F, m_h, m_t, \ldots\}\)-scheme
 - \(\{m_W, m_Z, G_F, m_h, m_t, \ldots\}\)-scheme
 -

\(^{10}\)I. Brivio and M. Trott, arXiv:1701.06424
Beyond the SM

SMEFT@NLO

- The S-matrix must be renormalization scale independent (up to a fixed order in loop and EFT expansion).
- In SMEFT one has to include running from all operators so that the result is gauge invariant.
- Overview of NLO calculations in SMEFT11. Several observable studies fully at 1-loop in SMEFT.
- A first step towards SMEFT@NLO QCD has been done. NLO EW fully automated?

11Review talk by Cen Zhang

A. Dedes (University of Ioannina)
MBI 2019 Summary Talk
August 28, 2019
Non-linear EFT

- Non Linear EFT12: the Higgs field does not reside in the $SU(2)_L$ doublet
- EFT is now more involved. $d = 8$ operators are promoted to $d = 6$ operators that reach easily unitarity bound, $|a_J(s)| = 1.$, because for example VBS amplitudes grow with $A \sim s^2$
- There must be a cut-off at scales much before the typical Λ^2: there are unitarization suggestions

My opinion: a prototype model (if it exists) could be used as a benchmark to be used in experimental studies

12Talk by Rafael Lopez Delgado
Positivity constraints: In every QFT based on analyticity, unitarity, Lorentz invariance there are certain bounds on certain linear combinations of $d = 8$ operators in SMEFT\(^{13}\)

\[
\sum_i C_i^{(8)} x_i \geq 0
\]
BSM Models and EFTs

- SMEFT at HE: there are 4 parameters that grow with $\sigma \sim s$ in diboson processes. Observables are WW, WZ, HW, HZ. Possible to probe "weak coupling regime" where g^2/M^2 with $g^* \sim g \lesssim 0.1\%$.

- Currently we are probing the strong coupling regime $g^* \sim (4\pi)$ in diboson searches.

- A composite model related to TGCs presented.

- One way to compete with LEP precision is by going to HE and study ZH production. Due to GBET we have a contact term that dominates the amplitude far from resonances.\(^{15}\)

\(^{14}\) Review talk by Marc Montull
\(^{15}\) Talk by Sandeepan Gupta
Outline

1 Theory

2 Experimental Searches
 - Diboson Production
 - VBF and VBS
 - Polarization

3 Constraints on aTGCs

4 Constraints on aQGCs

5 Future sensitivity

6 Epilogue

A. Dedes (University of Ioannina) MBI 2019 Summary Talk August 28, 2019
CMS $\mathcal{L} = 137 \text{fb}^{-1}$ (partly Run-II data included) total and differential cross sections. Report on WW, WZ, ZZ leptonic final states as well as on

Precision of 5% reached.

Talk by Alicia Calderon
ATLAS fiducial and diff Xsections Reports on WW and ZZ16

16Talk by Valerie Lang
Measurement of Diboson production in semileptonic decay modes and anomalous Couplings17

\textbf{Semileptonic:}

Diboson final state with one V decay to quarks (→ jets), and other V decay to final state with lepton (e, μ)

17Review talk of ATLAS and CMS results by Robin Cameron Aggleton
Measurement of Diboson production in **semileptonic** decay modes and anomalous Couplings\(^{17}\)

Direct Searches for NP in diboson searches: limits on KK gravitons, \(V'\) and \(W'\) masses \(\geq 1.5\) TeV.\(^{18}\)

\(^{17}\)Review talk of ATLAS and CMS results by Robin Cameron Aggleton

\(^{18}\)Talk by Antonis Agapitos
- $ssWWjj$, $WZjj$ and $ZZjj$ at $\sqrt{s} = 13$ TeV seem to have been observed at ATLAS
- Also photons in the final state\(^1\): $Z\gamma jj$ (strong evidence for both ATLAS and CMS) or $\gamma\gamma jj$ (observation in heavy ions by ATLAS)
- Higgs VBF and Z/W VBF presented\(^2\). The former agrees with the SM while the latter are dominated by systematics.
- Jet-veto technics based on event-by-event selection may help in VBF/VBS signal/background in SM and BSM searches\(^3\)

\(^1\)Talk by Narei Lorenzo Martinez
\(^2\)Talk by Dag Gillberg
\(^3\)Talk by Richard Ruiz
Polarization

Probing GBET directly. ATLAS search for WZ channel22

- F_0 is measured different from 0 at more than 3 sigma and in agreement with predictions
- $F_L - F_R$ at 2 sigma from predictions in W^+

22Talk by Corinne Goy
Outline

1. Theory
2. Experimental Searches
3. Constraints on aTGCs
4. Constraints on aQGCs
5. Future sensitivity
6. Epilogue
Dibosons

CMS at 13 TeV (1D and 2D limits). Semileptonic final state. Big improvements w.r.t 8 TeV results

<table>
<thead>
<tr>
<th>Parametrization</th>
<th>aTGC</th>
<th>Expected limit</th>
<th>Observed limit</th>
<th>Observed best-fit</th>
<th>CMS 8TeV observed limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFT</td>
<td>c_{WWW}/Λ^2 (TeV$^{-2}$)</td>
<td>[-1.44, 1.47]</td>
<td>[-1.58, 1.59]</td>
<td>-0.26</td>
<td>[-2.7, 2.7]</td>
</tr>
<tr>
<td></td>
<td>c_W/Λ^2 (TeV$^{-2}$)</td>
<td>[-2.45, 2.08]</td>
<td>[-2.00, 2.65]</td>
<td>1.21</td>
<td>[-2.0, 5.7]</td>
</tr>
<tr>
<td></td>
<td>c_B/Λ^2 (TeV$^{-2}$)</td>
<td>[-8.38, 8.06]</td>
<td>[-8.78, 8.54]</td>
<td>1.07</td>
<td>[-14, 17]</td>
</tr>
<tr>
<td>LEP</td>
<td>λ^Z</td>
<td>[-0.0060, 0.0061]</td>
<td>[-0.0065, 0.0066]</td>
<td>-0.0010</td>
<td>[-0.011, 0.011]</td>
</tr>
<tr>
<td></td>
<td>Δg_1^Z</td>
<td>[-0.0070, 0.0061]</td>
<td>[-0.0061, 0.0074]</td>
<td>0.0027</td>
<td>[-0.009, 0.024]</td>
</tr>
<tr>
<td></td>
<td>$\Delta \kappa_Z$</td>
<td>[-0.0074, 0.0078]</td>
<td>[-0.0079, 0.0082]</td>
<td>-0.0010</td>
<td>[-0.018, 0.013]</td>
</tr>
</tbody>
</table>

23Talk by Robin Cameron Aggleton
Dibosons

CMS at 13 TeV (1D and 2D limits). Semileptonic final state. Big improvements w.r.t 8 TeV results

Talk by Robin Cameron Aggleton
VH and HH

\(V(\ell\ell)H(\bar{b}b) \) has been observed\(^{24} \). HH is currently being searched for. At High \(p_T \) is an interesting probe for NP (see theory talks on EFTs)

\(^{24}\)Talk by Stephane Cooperstein
V(ℓℓ)H(¯bb) has been observed24. HH is currently being searched for.

At High p_T is an interesting probe for NP (see theory talks on EFTs)

24Talk by Stephane Cooperstein
Triboson Production

There is evidence for triboson production at ATLAS25.

\[\text{ATLAS, } \sqrt{s} = 13 \text{ TeV, } 79.8 \text{ fb}^{-1} \]

Triboson searches are under investigation also at CMS.26

25 Talk by Andrea Sciandra
26 Talk by Miaoyuan Liu
Effects on VBS Xsection from SMEFT parameters (Warsaw basis) in WZ production27

27Talk by Despoina Sampsonidou
Outline

1 Theory

2 Experimental Searches

3 Constraints on aTGCs

4 Constraints on aQGCs

5 Future sensitivity

6 Epilogue
Limits on $d = 8$ Wilson coefficients in VBS (CMS, EWK VV production, semileptonic mode)28

<table>
<thead>
<tr>
<th></th>
<th>Obs Low</th>
<th>Obs High</th>
<th>Exp Low</th>
<th>Exp High</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{S,0}$</td>
<td>-2.7</td>
<td>2.7</td>
<td>-4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>$F_{S,1}$</td>
<td>-3.4</td>
<td>3.4</td>
<td>-5.2</td>
<td>5.2</td>
</tr>
<tr>
<td>$F_{M,0}$</td>
<td>-0.69</td>
<td>0.70</td>
<td>-1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>$F_{M,1}$</td>
<td>-2.0</td>
<td>-2.1</td>
<td>-3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>$F_{M,6}$</td>
<td>-1.3</td>
<td>1.3</td>
<td>-1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>$F_{M,7}$</td>
<td>-3.4</td>
<td>3.4</td>
<td>-5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>$F_{T,0}$</td>
<td>-0.12</td>
<td>0.11</td>
<td>-0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>$F_{T,1}$</td>
<td>-0.12</td>
<td>0.13</td>
<td>-0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>$F_{T,2}$</td>
<td>-0.28</td>
<td>0.28</td>
<td>-0.41</td>
<td>0.41</td>
</tr>
</tbody>
</table>

F/Λ^4 are in TeV$^{-4}$ units. These are the best limits so far.

28Talk by Andrew Levin

A. Dedes (University of Ioannina) MBI 2019 Summary Talk August 28, 2019
The plot created most discussions!29

29Talk by Hannes Mildner
Outline

1. Theory
2. Experimental Searches
3. Constraints on aTGCs
4. Constraints on aQGCs
5. Future sensitivity
6. Epilogue

A. Dedes (University of Ioannina) MBI 2019 Summary Talk August 28, 2019
Polarization in VBS at HL-LHC: projective evidence for LL at few σs per experiment but for the $VV \rightarrow V_L V_L$

But, using machine learning techniques ATLAS+CMS at $3000 fb^{-1}$ each may reach 5σ for ssWW and VBS ZZ scattering30

HH prospects31

30Talk by Meng Lu
31Talk by Stephane Cooperstein
Outline

1. Theory
2. Experimental Searches
3. Constraints on aTGCs
4. Constraints on aQGCs
5. Future sensitivity
6. Epilogue
Epilogue

- We had a constructive and focused meeting, a “real” gathering of both experimenters and theorists
- We learnt about cutting edge techniques and results in multi-boson interactions
We had a constructive and focused meeting, a “real” gathering of both experimenters and theorists.

We learnt about cutting edge techniques and results in multi-boson interactions.

Many thanks to the organizers, Chara, Spyros, Dimos and Kostas!!