Multi-Boson interactions 2019 Summary Talk

Athanasios Dedes

University of Ioannina, Greece

MBI 2019, Thessaloniki, Greece

Outline

- 1 Theory
 - Standard Model
 - Understanding Cross Sections
 - Diboson Production
 - VBF and VBS
 - Polarization
 - Beyond the SM
 - EFTs
 - Other BSM strategies?

- 2 Experimental Searches
 - Diboson Production
 - VBF and VBS
 - Polarization
- 3 Constraints on aTGCs
- 4 Constraints on aQGCs
- **5** Future sensitivity
- 6 Epilogue

Outline

Theory

- 1 Theory
 - Standard Model
 - Understanding Cross Sections
 - Beyond the SM

- 4 Constraints on aQGCs

Experimental Searches Constraints on aTGCs Constraints on aQGCs Future sensitivity

Standard Model

Theory

Personal view of the current SM state...

EW gauge boson interactions

Multi-boson interactions probe the non-abelian local symmetry of the gauge sector.

In the SM there two triple.

$$W^+W^-\gamma$$
, W^+W^-Z

and four quartic,

$$W^{+}W^{-}\gamma\gamma$$
, $W^{+}W^{-}Z\gamma$, $W^{+}W^{-}ZZ$, $W^{+}W^{-}W^{+}W^{-}$

gauge boson vertices. No pure "neutral particle" vertices exist at tree level.

 $D \leq 4$ and Gauge Invariance \rightarrow 2 SM Parameters: $\{g',g\}$ OR $\{e,\sin\theta_W\}$

Anomalous Triple Gauge Couplings (aTGCs)

Historically¹, aTGCs parametrized by a general Lorentz invariant Lagrangian

$$\frac{\mathcal{L}_{WWV}}{g_{WWV}} = ig_1^V \left(W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu} \right) + i\kappa_V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu}
+ \frac{i\lambda_V}{m_W^2} W_{\rho\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\rho} - g_4^V W_{\mu}^{\dagger} W_{\nu} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu})
+ g_5^V \epsilon^{\mu\nu\rho\sigma} (W_{\mu}^{\dagger} \overleftrightarrow{\partial}_{\rho} W_{\nu}) V_{\sigma} + i\tilde{\kappa}_V W_{\mu}^{\dagger} W_{\nu} \tilde{V}^{\mu\nu}
+ \frac{i\tilde{\lambda}_V}{m_W^2} W_{\rho\mu}^{\dagger} W_{\nu}^{\mu} \tilde{V}^{\nu\rho}$$

¹K. Hagiwara, R. D. Peccei, D. Zeppenfeld and K. Hikasa, Nucl. Phys. B **282** (1987) 253.

Anomalous Triple Gauge Couplings (aTGCs)

Historically, aTGCs parametrized by a general Lorentz invariant Lagrangian

$$\begin{split} \frac{\mathcal{L}_{WWV}}{g_{WWV}} &= ig_1^V \Big(W_{\mu\nu}^\dagger W^\mu V^\nu - W_\mu^\dagger V_\nu W^{\mu\nu} \Big) + i\kappa_V W_\mu^\dagger W_\nu V^{\mu\nu} \\ &+ \frac{i\lambda_V}{m_W^2} W_{\rho\mu}^\dagger W_\nu^\mu V^{\nu\rho} - g_4^V W_\mu^\dagger W_\nu (\partial^\mu V^\nu + \partial^\nu V^\mu) \\ &+ g_5^V \epsilon^{\mu\nu\rho\sigma} (W_\mu^\dagger \overleftrightarrow{\partial}_\rho W_\nu) V_\sigma + i\tilde{\kappa}_V W_\mu^\dagger W_\nu \tilde{V}^{\mu\nu} \\ &+ \frac{i\tilde{\lambda}_V}{m_W^2} W_{\rho\mu}^\dagger W_\nu^\mu \tilde{V}^{\nu\rho} \end{split}$$

where

$$V=V^\dagger=Z, \gamma, \ V_{\mu\nu}=\partial_\mu V_\nu-\partial_\nu V_\mu, \ \tilde V_{\mu\nu}=\frac{1}{2}\epsilon_{\mu\nu\rho\sigma}V^{\rho\sigma}. \ W^\mu\equiv W^{\mu-}$$
 and $W_{\mu\nu}=\partial_\mu W_\nu-\partial_\nu W_\mu$ $\lambda_V, \tilde \lambda_V$ are dimension-6 operator couplings

 $2 \times 7 = 14$ parameters

Anomalous Triple Gauge Couplings (aTGCs)

Historically, aTGCs parametrized by a general Lorentz invariant Lagrangian

$$\begin{split} \frac{\mathcal{L}_{WWV}}{g_{WWV}} &= ig_1^V \Big(W_{\mu\nu}^\dagger W^\mu V^\nu - W_\mu^\dagger V_\nu W^{\mu\nu} \Big) + i\kappa_V W_\mu^\dagger W_\nu V^{\mu\nu} \\ &+ \frac{i\lambda_V}{m_W^2} W_{\rho\mu}^\dagger W^\mu_{\ \nu} V^{\nu\rho} - g_4^V W_\mu^\dagger W_\nu (\partial^\mu V^\nu + \partial^\nu V^\mu) \\ &+ g_5^V \epsilon^{\mu\nu\rho\sigma} (W_\mu^\dagger \overleftrightarrow{\partial}_\rho W_\nu) V_\sigma + i\tilde{\kappa}_V W_\mu^\dagger W_\nu \tilde{V}^{\mu\nu} \\ &+ \frac{i\tilde{\lambda}_V}{m_W^2} W_{\rho\mu}^\dagger W^\mu_{\ \nu} \tilde{V}^{\nu\rho} \end{split}$$

Some terms in this parametrization explicitly break gauge invariance that we know it is valid from LEP.

Anomalous Triple Gauge Couplings (aTGCs)

Historically, aTGCs parametrized by a general Lorentz invariant Lagrangian

$$\begin{split} \frac{\mathcal{L}_{WWV}}{g_{WWV}} &= ig_1^V \Big(W_{\mu\nu}^\dagger W^\mu V^\nu - W_\mu^\dagger V_\nu W^{\mu\nu} \Big) + i\kappa_V W_\mu^\dagger W_\nu V^{\mu\nu} \\ &+ \frac{i\lambda_V}{m_W^2} W_{\rho\mu}^\dagger W^\mu_{\ \nu} V^{\nu\rho} - g_4^V W_\mu^\dagger W_\nu (\partial^\mu V^\nu + \partial^\nu V^\mu) \\ &+ g_5^V \epsilon^{\mu\nu\rho\sigma} (W_\mu^\dagger \overleftrightarrow{\partial}_\rho W_\nu) V_\sigma + i\tilde{\kappa}_V W_\mu^\dagger W_\nu \tilde{V}^{\mu\nu} \\ &+ \frac{i\tilde{\lambda}_V}{m_W^2} W_{\rho\mu}^\dagger W^\mu_{\ \nu} \tilde{V}^{\nu\rho} \end{split}$$

Better formulated as deviations from SM TGCs

SM tree level:
$$g_1^V=\kappa_V=1$$
 , $\lambda_V=\tilde{\lambda}_V=g_4^V=g_5^V=\tilde{\kappa}_V=0$ $g_{WW\gamma}=e$, $g_{WWZ}=e\cot\theta_W$

Standard Model GBET and Unitarity

Theory

Goldstone Boson Equivalence Theorem (GBET)¹

At High Energies (HE) relative to the W-mass, massive gauge bosons W^{\pm}, Z can be replaced by the corresponding Goldstone Bosons G^{\pm}, G^0 in scattering processes.

$$S[W_L^{\pm}, \text{ physical}] = i^n \times S[G^{\pm}, \text{ physical}]$$

Dynamics of V_L s is directly linked to GBET and $SU(2)_L \times U(1)_Y$ invariance restoration at HE.

G. J. Gounaris, R. Kogerler and H. Neufeld, Phys. Rev. D 34 (1986) 3257.

¹M. S. Chanowitz and M. K. Gaillard, Nucl. Phys. B **261** (1985) 379;

Theory Experimental Searches Constraints on aTGCs Constraints on aQGCs Future sensitivity Epilog 000●0000000000 0000

GBET and Unitarity

Tree Level Unitarity¹

"the N-particle S-matrix elements in the tree approximation must grow no more rapidly than E^{4-N} in the limit of HE, at fixed non-zero angles"

In the SM all multi Goldstone Boson interactions do not contain momenta and therefore leading s-behaviour cancels against s, t and u exchanges of vector and Higgs-boson mediated amplitudes.

¹J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. D **10**, 1145 (1974);

B. W. Lee, C. Quigg and H. B. Thacker, Phys. Rev. D 16, 1519 (1977);

C. E. Vayonakis, Lett. Nuovo Cim. 17, 383 (1976).

Processes

Diboson Production

- Experimental uncertainties have been surpassed the 10% uncertainty so we have to go to few present theoretically.
- All NNLO QCD corrections have been completed! They are included in a code (MATRIX+OneLoops)²
- Excellent agreement between NNLO and data
- NNLO QCD + NLO EW corrections 3 giant K-factors in observables for ZZ, WW, WZ
- \blacksquare At HE, NLO EW/LO = -40% 50%.
- One must set jet-veto at high-s since the process is driven away from aTGC searches

²Review talk by Marius Wiesemann

³Review talk by Jonas Lindert

VBF and VBS

- $pp \rightarrow e^+ \nu_e \mu^+ \mu^- jj$ at NLO EW/QCD corrections for $W^+ Z$ scattering at the LHC: corrections of order $O(\alpha_s \alpha^6)$ and $O(\alpha^7)$ the latter being large $\sim -17.5\%$ especially at high p_{Ti} (Sudakov enhancement)⁴
- Progress in QCD effects in borderline between perturbative and non-perturbative regime dictated by the factorization theorem discussed⁵

⁴Talk by Christopher Schwan

⁵Talk by Simon Plaetzer A. Dedes (University of Ioannina)

Theory Experimental Searches Constraints on aTGCs Constraints on aQGCs Future sensitivity Epilogu

Polarization

- Important to provide accurate theory predictions for polarized VBS for LHC analyses
- A nice formula but assumes no lepton cuts so interference effects vanish⁶

⁶Talk by Giovanni Pelliccioli

EFTs

Theory

Systematic deviations from the SM can be studied effectively within EFT as long as the scale of New Physics, Λ , is $\Lambda^2 >> M_W^2$ and $s = (p_1 + p_2)^2$.

A particularly interesting EFT scenario is SMEFT.

SMEFT: Assuming there is nothing but the SM below, say $\Lambda \sim 1$ TeV, and the Higgs field belongs to the SU(2)-doublet, SM is augmented with high dimensional gauge invariant operators

"Warsaw basis" is a non-redundant basis. The complete set of Feynman Rules have been completed for $d \leq 6$ operators in Unitary and R_{ε} -gauges.⁸

SmeftFR code generates FRs and interfaces them to UFO and FeynArts for various event generator and symbolic calculations.

⁷B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, arXiv:1008.4884

⁸AD, W. Materkowska, M. Paraskevas, J. Rosiek and K. Suxho, arXiv:1704.03888

⁹AD, M. Paraskevas, J. Rosiek, K. Suxho and L. Trifyllis, arXiv:1904.03204. MBI 2019 Summary Talk

Theory

γW^+W^- in SMEFT with $d\leq 6$ operators

$$A^0_{\mu_1} \sim \sim \sim \sim W^-_{\mu_3}$$

$$A_{\mu_{1}}^{0} \sim \sim \sim W_{\mu_{3}}^{-1} \\ + \frac{i\bar{g}\bar{g}'}{\sqrt{\bar{g}^{2} + \bar{g}'^{2}}} (\eta_{\mu_{1}\mu_{2}}(p_{1} - p_{2})^{\mu_{3}} + \eta_{\mu_{2}\mu_{3}}(p_{2} - p_{3})^{\mu_{1}} + \eta_{\mu_{3}\mu_{1}}(p_{3} - p_{1})^{\mu_{2}}) \\ - \frac{6i\bar{g}'}{\sqrt{\bar{g}^{2} + \bar{g}'^{2}}} C^{W} (p_{3}^{\mu_{1}} p_{1}^{\mu_{2}} p_{2}^{\mu_{3}} - p_{2}^{\mu_{1}} p_{3}^{\mu_{2}} p_{1}^{\mu_{3}} + \eta_{\mu_{1}\mu_{2}} (p_{1}^{\mu_{3}} p_{2} \cdot p_{3} - p_{2}^{\mu_{3}} p_{1} \cdot p_{3}) \\ + \eta_{\mu_{2}\mu_{3}} (p_{2}^{\mu_{1}} p_{1} \cdot p_{3} - p_{3}^{\mu_{1}} p_{1} \cdot p_{2}) + \eta_{\mu_{3}\mu_{1}} (p_{3}^{\mu_{2}} p_{1} \cdot p_{2} - p_{1}^{\mu_{2}} p_{2} \cdot p_{3})) \\ + \frac{i\bar{g}^{2}v^{2}}{(\bar{g}^{2} + \bar{g}'^{2})^{3/2}} C^{\varphi WB} \left(\eta_{\mu_{1}\mu_{2}} (\bar{g}^{2} p_{1}^{\mu_{3}} + \bar{g}'^{2} p_{2}^{\mu_{3}}) + \eta_{\mu_{2}\mu_{3}} (\bar{g}'^{2} p_{3}^{\mu_{1}} - \bar{g}'^{2} p_{2}^{\mu_{1}}) \\ + \eta_{\mu_{3}\mu_{1}} (-\bar{g}'^{2} p_{3}^{\mu_{2}} - \bar{g}^{2} p_{1}^{\mu_{2}}) \right) \\ - \frac{2i\bar{g}'}{\sqrt{\bar{g}^{2} + \bar{g}'^{2}}} C^{\widetilde{W}} \left(\epsilon_{\mu_{1}\mu_{2}\mu_{3}\alpha_{1}} (p_{1}^{\alpha_{1}} p_{2} \cdot p_{3} + p_{2}^{\alpha_{1}} p_{1} \cdot p_{3} + p_{3}^{\alpha_{1}} p_{1} \cdot p_{2}) \\ + \epsilon_{\mu_{1}\mu_{2}\alpha_{1}\beta_{1}} (p_{1} - p_{2})^{\mu_{3}} p_{1}^{\alpha_{1}} p_{2}^{\beta_{1}} + \epsilon_{\mu_{2}\mu_{3}\alpha_{1}\beta_{1}} (p_{2} - p_{3})^{\mu_{1}} p_{2}^{\alpha_{1}} p_{3}^{\beta_{1}} \\ + \epsilon_{\mu_{3}\mu_{1}\alpha_{1}\beta_{1}} (p_{3} - p_{1})^{\mu_{2}} p_{3}^{\alpha_{1}} p_{1}^{\beta_{1}} \right) \\ + \frac{i\bar{g}^{2}v^{2}}{\sqrt{\bar{g}^{2} + \bar{g}'^{2}}} C^{\varphi \widetilde{W}B} \epsilon_{\mu_{1}\mu_{2}\mu_{3}\alpha_{1}} p_{1}^{\alpha_{1}}$$

Theory

"Triboson" parameters in EFT with $d \le 6$ operators:

CP-invariant parameters : 5 new - 2 constraints = 3CP-violating parameters = 2

One should be very careful with EFTs!

- $s, M_W^2 << \Lambda^2$ otherwise using EFT is nonsense!
- Bounds on Wilson coefficients are given in particular operator basis (e.g. Warsaw, SILH, etc)
- Bounds on Wilson coefficients should be given in a particular input scheme e.g. one has to trade \bar{g}, \bar{g}', v with measurable quantities like for example 10
 - \blacksquare { $\alpha_{em}, m_Z, G_F, m_h, m_t, ...$ }-scheme
 - \blacksquare { $m_W, m_Z, G_F, m_h, m_t, ...$ }-scheme
 -

¹⁰I. Brivio and M. Trott. arXiv:1701.06424

Theory

SMEFT@NLO

- The S-matrix must be renormalization scale independent (up to a fixed order in loop and EFT expansion.
- in SMEFT one has to include running from all operators so that the result is gauge invariant
- Overview of NLO calculations in SMEFT¹¹. Several observable studies fully at 1-loop in SMEFT.
- A first step towards SMEFT@NLO QCD has been done. NLO EW fully automated?

¹¹Review talk by Cen Zhang

Non-linear EFT

- \blacksquare Non Linear EFT 12 : the Higgs field does not reside in the $SU(2)_L$ doublet
- EFT is now more involved. d=8 operators are promoted to d=6 operators that reach easily unitarity bound, $|a_J(s)|=1$., because for example VBS amplitudes grow with $A\sim s^2$
- There must be a cut-off at scales much before the typical Λ^2 : there are unitarization suggestions

My opinion: a prototype model (if it exists) could be used as a benchmark to be used in experimental studies

¹²Talk by Rafael Lopez Delgado

Theory

Positivity constraints: In every QFT based on analyticity, unitarity, Lorentz invariance there are certain bounds on certain linear combinations of d=8operators in SMEFT¹³

$$\sum C_i^{(8)} x_i \ge 0$$

¹³Talk by Cen Zhang

BSM Models and EFTs14

- SMEFT at HE: there are 4 parameters that grow with $\sigma \sim s$ in diboson processes. Observables are WW, WZ, HW, HZ. Possible to probe "weak coupling regime" where g_*^2/M^2 with $g^* \sim g \lesssim 0.1\%$.
- Currently we are probing the strong coupling regime $g_* \sim (4\pi)$ in diboson searches.
- A composite model related to TGCs presented.
- One way to compete with LEP precision is by going to HE and study ZH production. Due to GBET we have a contact term that dominates the amplitude far from resonances. 15

¹⁴Review talk by Marc Montull

¹⁵Talk by Sandeepan Gupta

- Experimental Searches
 - Diboson Production
 - VBF and VBS
 - Polarization
- 4 Constraints on aQGCs

Theory

CMS $\mathcal{L}=137fb^{-1}$ (partly Run-II data included) total and differential Xsections. Report 16 on WW,WZ,ZZ leptonic final states as well as on

Precision of 5% reached.

Epilogue

¹⁶Talk by Alicia Calderon

ATLAS fiducial and diff Xsections Reports on WW and ZZ¹⁶

¹⁶Talk by Valerie Lang

Semileptonic:

Diboson final state with one V decay to quarks (→ jets), and other V decay to final state with lepton (e, μ) e, μ W^{\pm}

¹⁷Review talk of ATLAS and CMS results by Robin Cameron Aggleton

Measurement of Diboson production in semileptonic decay modes and anomalous Couplings¹⁷

Direct Searches for NP in diboson searches: limits on KK gravitons, V'and W' masses > 1.5 TeV. ¹⁸

¹⁷Review talk of ATLAS and CMS results by Robin Cameron Aggleton

¹⁸Talk by Antonis Agapitos

- ssWWjj, WZjj and ZZjj at $\sqrt{s} = 13$ TeV seem to have been observed at ATLAS
- Also photons in the final state ¹⁹: $Z\gamma jj$ (strong evidence for both ATLAS and CMS) or $\gamma \gamma jj$ (observation in heavy ions by ATLAS)
- Higgs VBF and Z/W VBF presented²⁰. The former agrees with the SM while the latter are dominated by systematics.
- Jet-veto technics based on event-by-event selection may help in VBF/VBS signal/background in SM and BSM searches²¹

¹⁹Talk by Narei Lorenzo Martinez

²⁰Talk by Dag Gillberg

²¹Talk by Richard Ruiz

Polarization

Probing GBET directly. ATLAS search for WZ channel²²

- F0 is measured different from 0 at more than 3 sigma and in agreement with predictions
 - FL-FR at 2 σ from predictions in W⁺

²²Talk by Corinne Goy

- Constraints on aTGCs
- 4 Constraints on aQGCs

Dibosons

CMS at 13 TeV (1D and 2D limits). Semileptonic final state.²³. Big improvements w.r.t 8 TeV results

Parametrization	aTGC	Expected limit	Observed limit	Observed best-fit	CMS 8 TeV observed limit
EFT	$c_{\rm WWW}/\Lambda^2~({\rm TeV}^{-2})$	[-1.44, 1.47]	[-1.58, 1.59]	-0.26	[-2.7, 2.7]
	$c_{\rm W}/\Lambda^2~({\rm TeV}^{-2})$	[-2.45, 2.08]	[-2.00, 2.65]	1.21	[-2.0, 5.7]
	$c_{\rm B}/\Lambda^2~({ m TeV}^{-2})$	[-8.38, 8.06]	[-8.78, 8.54]	1.07	[-14, 17]
LEP	λ_{Z}	[-0.0060, 0.0061]	[-0.0065, 0.0066]	-0.0010	[-0.011, 0.011]
	Δg_1^Z	[-0.0070, 0.0061]	[-0.0061, 0.0074]	0.0027	[-0.009, 0.024]
	$\Delta \kappa_{ m Z}$	[-0.0074, 0.0078]	[-0.0079, 0.0082]	-0.0010	[-0.018, 0.013]

²³Talk by Robin Cameron Aggleton

Dibosons

CMS at 13 TeV (1D and 2D limits). Semileptonic final state.²³. Big improvements w.r.t 8 TeV results

²³Talk by Robin Cameron Aggleton

Theory Experimental Searches Constraints on aTGCs Constraints on aQGCs Future sensitivity Epilogue

VH and HH

 $V(\ell\ell)H(\bar{b}b)$ has been observed²⁴. HH is currently being searched for.

At High p_T is an interesting probe for NP (see theory talks on EFTs)

²⁴Talk by Stephane Cooperstein

VH and HH

 $V(\ell\ell)H(\bar{b}b)$ has been observed²⁴. HH is currently being searched for.

At High p_T is an interesting probe for NP (see theory talks on EFTs)

²⁴Talk by Stephane Cooperstein

Triboson Production

There is evidence for triboson production at ATLAS²⁵.

Triboson searches are under investigation also at CMS.²⁶

²⁵Talk by Andrea Sciandra

²⁶Talk by Miaoyuan Liu

Effects on VBS Xsection from SMEFT parameters (Warsaw basis) in WZ production²⁷

²⁷Talk by Despoina Sampsonidou

Outline

- 1 Theory
- 2 Experimental Searches
- 3 Constraints on aTGCs
- 4 Constraints on aQGCs
- 5 Future sensitivity
- 6 Epilogue

Limits on d = 8 Wilson coefficients in VBS (CMS, EWK VV production, semileptonic mode)²⁸

	Obs Low	Obs High	Exp Low	Exp High
F _{s,o}	-2.7	2.7	-4.2	4.2
F _{S,1}	-3.4	3.4	-5.2	5.2
F _{M,0}	-0.69	0.70	-1.0	1.0
F _{M,1}	-2.0	-2.1	-3.0	3.0
F _{M,6}	-1.3	1.3	-1.4	1.4
F _{M,7}	-3.4	3.4	-5.1	5.1
F _{T,O}	-0.12	0.11	-0.17	0.16
F _{T,1}	-0.12	0.13	-0.18	0.18
F _{T,2}	-0.28	0.28	-0.41	0.41

Bounds on F/Λ^4 are in ${\rm TeV}^{-4}$ units. These are the best limits so far.

²⁸Talk by Andrew Levin

The plot created most discussions!²⁹

²⁹Talk by Hannes Mildner

- 4 Constraints on aQGCs
- Future sensitivity

- per experiment but for the $VV \rightarrow V_L V_L$
- But, using machine learning techniques ATLAS+CMS at $3000 fb^{-1}$ each may reach 5σ for ssWW and VBS ZZ scattering³⁰
- HH prospects³¹

³⁰Talk by Meng Lu

³¹Talk by Stephane Cooperstein

- 4 Constraints on aQGCs
- 6 Epilogue

Epilogue

- We had a constructive and focused meeting, a "real" gathering of both experimenters and theorists
- We learnt about cutting edge techniques and results in multi-boson interactions

Epilogue

- We had a constructive and focused meeting, a "real" gathering of both experimenters and theorists
- We learnt about cutting edge techniques and results in multi-boson interactions

Many thanks to the organizers, Chara, Spyros, Dimos and Kostas!!