

High-pT tails in VH/VV for TGCs Dibosons at the 'High Energy-Luminosity' frontier

Rick Sandeepan Gupta (IPPP Durham), MBI 2019

in collaboration with Banerjee, Englert, and Spannowsky (arXiv: 1807.01796)

Higgs Precision Physics

- Measuring Higgs properties is the most concrete particle physics goal of our times.
- Indirect deviations can constrain scale much higher than direct searches.
- Eg.: The S,T parameters at LEP constrain certain kinds of new Physics to scales higher than a few TeV. Much higher than LEP energies.

SM as an EFT

The absence at the LHC of new states beyond the SM (BSM) suggests that the new-physics scale must be heavier than the electroweak (EW) scale and we can write:

$$\mathcal{L}_{\text{eff}} = \frac{\Lambda^4}{g_*^2} \mathcal{L}\left(\frac{D_{\mu}}{\Lambda} , \frac{g_*H}{\Lambda} , \frac{g_*f_{L,R}}{\Lambda^{3/2}} , \frac{gF_{\mu\nu}}{\Lambda^2}\right) \simeq \mathcal{L}_4 + \mathcal{L}_6 + \cdots$$

- Can LHC compete with LEP ? Can LHC searches give us new information that LEP does not provide ?
- EFT techniques show that many anomalous Higgs interactions were already probed by LEP.
- One way to compete with LEP precision is by going to higher energies.
- We will show how this is possible with the concrete example of high energy diboson production at LHC (WW, WZ, Wh, Zh).

LEP vs LHC

But Higgs was not directly produced at LEP.

So Higgs interactions to be measured for the first time at LHC ?

Not Really True within EFT framework!!

Vertices with or without Higgs

÷

CAN BE MEASURED MUCH MORE PRECISELY AT LEP

+ Anomalous Higgs interactions at dimension-6 level

$$\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right)$$

$$+ \kappa_{GG} \frac{h}{v} G^{A \, \mu\nu} G_{\mu\nu}^{A} + \kappa_{\gamma\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} t_{\theta_{W}} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} ,$$

$$\begin{aligned} \Delta \mathcal{L}_{h} &= \delta g_{ZZ}^{h} \frac{v}{2c_{\theta_{W}}^{2}} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{Wff'}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right) \\ &+ \kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} \,, \end{aligned}$$

A. Pomarol (arxiv: 1412.4410)

+ Anomalous Higgs interactions at dimension-6 level

$$\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right)$$

$$\frac{h}{Higgs \text{ interactions to be directly measured for the first time at LHC.}$$

$$\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} \frac{v}{2c_{\theta_{W}}^{2}} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{Wff'}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right)$$

+ $\kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} ,$

A. Pomarol (arxiv: 1412.4410)

Organizing principle: Effective Field Theory (EFT)

Only 18 independent operators generate above vertices:

H^2 -operators
${\cal O}_r = H ^2 D_\mu H ^2$
$\mathcal{O}_6=\lambda H ^6$
$\mathcal{O}_y = H ^2 ar{F} H f$
$\mathcal{O}_f = i H^\dagger \overleftrightarrow{D}_\mu H ar{f} \gamma^\mu f$
${\cal O}_L = i H^\dagger \overleftrightarrow{D}_\mu H ar{F} \gamma^\mu F$
${\cal O}_L^{(3)}=iH^\dagger\sigma^a \overset{\leftrightarrow}{D}_\mu Har{F}\sigma^a\gamma^\mu F$
${\cal O}_{W-B}=ig\left(H^{\dagger} au^{a} \overset{\leftrightarrow}{D^{\mu}} H ight)D^{ u}W^{a}_{\mu u}$
$-ig'Y_H\left(H^\dagger \stackrel{\leftrightarrow}{D^\mu} H ight)\partial^ u B_{\mu u}$
$\mathcal{O}_{BB}=g^{\prime 2} H ^2 B_{\mu u}B^{\mu u}$
$\left[egin{array}{lll} {\cal O}_{WB'} = gg' H^{\dagger} \sigma^a H W^a_{\mu u} B^{\mu u} - 4 i g' Y_H \left(H^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} H ight) \partial^ u B_{\mu u} ight.$
${\cal O}_{WW}=g^2 H ^2W^a_{\mu u}W^{aar{\mu} u}$
$\mathcal{O}_{GG}=g_s^2 H ^2G^{\dot A}_{\mu u}G^{A\mu u}$
H^0 -operators
$\mathcal{O}_{3W} = rac{\epsilon_{abc}}{3!} W^{a\mu u} W^{b\mu ho} W^{c u ho}$

EFT techniques imply many of these Higgs deformations not independent from electroweak precision/TGC deformations already constrained by LEP.

• Same operators give both Higgs and EW deformations

Correlations between observables

RSG, A. Pomarol and F. Riva (arxiv: 1405.0181) Grojean and RSG, in preparation

+ Correlations between observables

18 Operators

50 Vertices /pseudo-observables

At any given order Number of contributing operators << Number of vertices/pseudoobservables

 $\mathcal{O}_{WB'} = gg$

Correlations between different vertices/observables

serv.

lings+...

1405.0181

Grojean and RSG, in preparation

Can only be seen at LHC

Constrained already by LEP !

RSG, A. Pomarol and F. Riva (arxiv: 1405.0181)

12

$$\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right)$$
$$+ \kappa_{GG} \frac{h}{v} G^{A \mu\nu} G_{\mu\nu}^{A} + \kappa_{\gamma\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} t_{\theta_{W}} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} ,$$

$$\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} \frac{v}{2c_{\theta_{W}}^{2}} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{Wff'}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right)$$

+ $\kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} ,$

If these predictions are not confirmed, one of our assumptions must have been wrong:

(1)h not part of a doublet.

(2) Scale of new physics not very high and dimension 8 operators cannot be ignored

Slide Courtesy: F. Riva

17

• Only way to compete with LEP is to go to high energies.

• Rest of the talk: Zh production at high energies

Zh production at LHC

The following vertices in the unitary gauge contribute:

Banerjee, Englert, RSG and Spannowsky (arXiv: 1807.01796)

q 、

W/Z

+ Zh production at LHC

The following vertices in the unitary gauge contribute:

$$\begin{split} \Delta \mathcal{L}_{6} &\supset \sum_{f} \delta g_{f}^{Z} Z_{\mu} \bar{f} \gamma^{\mu} f + \delta g_{ud}^{W} (W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} d_{L} + h.c.) \\ &+ g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + \delta g_{ZZ}^{h} h \frac{Z^{\mu} Z_{\mu}}{2c_{\theta_{W}}^{2}} \\ &+ \sum_{g_{Zff}} \frac{g_{Lff}^{h}}{v} Z_{\mu} \bar{f} \gamma^{\mu} f + \frac{g_{Wud}^{h}}{v} (W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} d_{L} + h.c.) \quad \bar{q} \\ &+ \kappa_{Z\gamma} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} + \kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{2v} Z^{\mu\nu} Z_{\mu\nu} . \\ &+ M (ff \rightarrow Z_{L}h) = g_{f}^{Z} \frac{q \cdot J_{f}}{v} \frac{2m_{Z}}{\hat{s}} \left[1 + \frac{g_{Lff}^{h}}{g_{f}^{Z}} \frac{\hat{s}}{2m_{Z}^{2}} \right] \end{split}$$

+ Zh production at LHC

The following vertices in the unitary gauge contribute:

$$\begin{split} \Delta \mathcal{L}_{6} &\supset \sum_{f} \delta g_{f}^{Z} Z_{\mu} \bar{f} \gamma^{\mu} f + \delta g_{ud}^{W} (W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} d_{L} + h.c.) \\ &+ g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + \delta g_{ZZ}^{h} h \frac{Z^{\mu} Z_{\mu}}{2c_{\theta_{W}}^{2}} \\ &+ \sum_{g_{Zff}} \frac{h}{v} Z_{\mu} \bar{f} \gamma^{\mu} f + \frac{h}{g_{Wud}^{h}} \frac{h}{v} (W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} d_{L} + h.c.) \quad \bar{q} \\ &+ \sum_{h} \frac{h}{Leading effect from contact interaction at high energies.} \\ &= \text{Energy growth as there is no propagator.} \\ \mathcal{M}(ff \rightarrow Z_{L}h) = g_{f}^{Z} \frac{q \cdot J_{f}}{v} \frac{2m_{Z}}{\hat{s}} \left[1 + \frac{g_{Zff}^{h}}{g_{f}^{Z}} \frac{\hat{s}}{2m_{Z}^{2}} \right] \end{split}$$

Zh production at LHC

The following vertices in the unitary gauge contribute:

Zh production: High energy primaries

At high energies four directions in EFT space are isolated by high energy ZH production.

$$g_{Zu_Lu_L}^h = -\frac{g}{c_{\theta_W}} \frac{v^2}{\Lambda^2} (c_L^1 - c_L^3)$$

$$g_{Zd_Ld_L}^h = -\frac{g}{c_{\theta_W}} \frac{v^2}{\Lambda^2} (c_L^1 + c_L^3)$$

$$g_{Zu_Ru_R}^h = -\frac{g}{c_{\theta_W}} \frac{v^2}{\Lambda^2} c_R^u$$

$$g_{Zd_Rd_R}^h = -\frac{g}{c_{\theta_W}} \frac{v^2}{\Lambda^2} c_R^d$$

$$H$$

WARSAW BASIS

Η

The hVff term

High energy deviations in ff ->Zh production dominated by hVff contact term:

Picture Courtesy: F Riva

LEP vs LHC

High precision vs High energies

Picture Courtesy: F Riva

Zh production: LHC vs LEP

These vertices can be thus measured in this process. For eg. At high energies:

$$\mathcal{M}(ff \to Z_L h) = g_f^Z \frac{q \cdot J_f}{v} \frac{2m_Z}{\hat{s}} \left[1 + \frac{g_{Zff}^h}{g_f^Z} \frac{\hat{s}}{2m_Z^2} \right]$$
$$g_{Zu_L u_L}^h = -\frac{g}{c_{\theta_W}} \left((c_{\theta_W}^2 + \frac{s_{\theta_W}^2}{3}) \delta g_1^Z + W - \frac{t_{\theta_W}^2}{3} (\hat{S} - \delta \kappa_\gamma - Y) \right)$$
$$= \text{LEP constraint:} 5-10 \% \text{ level}, \qquad 0.2\% \text{ level}.$$

To be as sensitive as LEP, LHC needs to measure this process at 30 % level because of energy enhancement

Zh production: LHC vs LEP

These vertices can be thus measured in this process. For eg. At high energies:

$$\mathcal{M}(ff \to Z_L h) = g_f^Z \frac{q \cdot J_f}{v} \frac{2m_Z}{\hat{s}} \left[1 + \frac{g_{Zff}^h}{g_f^Z} \frac{\hat{s}}{2m_Z^2} \right]$$

$$g^h_{Zu_Lu_L} = -rac{g}{c_{ heta_W}} igg((c^2_{ heta_W}+rac{s^2_{ heta_W}}{3})\delta g^Z_1 + W - rac{t^2_{ heta_W}}{3}(\hat{S}-\delta\kappa_\gamma-Y)igg)$$

Per mille - % level constraint possible ?

Factor of 30

LEP constraint: 5-10% level

To compete with LEP, LHC needs to measure this process at 30 % level because of energy enhancement

HIGH ENERGIES ESSENTIAL !

Greater sensitivity expected at higher energies such the HE-LHC at 27 TeV.

Can sensitivity to 30 % deviation be achieved in high energy bins for this process ?

Banerjee, Englert, RSG and Spannowsky (arXiv: 1807.01796)

BSM (EFT) events can only be a fraction of this

For both cut based and BDT analyses:

1. About 35 SM Zh(bb) events left at 300 ifb.

Zh(bb)/Zbb increases from 1/40 to an O(1) number.

HIGH LUMINOSITIES ESSENTIAL !

Cross section deviations and EFT Validity

÷

$$\mathcal{M}(ff \to Z_L h) = g_f^Z \frac{q \cdot J_f}{v} \frac{2m_Z}{\hat{s}} \left[1 + \underbrace{g_f^{h}}_{q_f^Z} \frac{\hat{s}}{2m_Z^2} \right]$$

EFT validity: $\hat{s} \ll \Lambda^2$

Fractional Deviations >>1 signal a breakdown of EFT expansion unless UV completion is strongly coupled

Sensitivity

We can find the sensitivity to % cross-section deviation given the SM background assuming 5% syst. uncertainity (300 ifb):

Sensitive to 20-40 % cross-section deviations

Sensitivity

We can find the sensitivity to % cross-section deviation given the SM background assuming 5% syst. uncertainity (300 ifb):

Sensitive to 20-40 % cross-section deviations

41

• We will present final projections together with WZ projections.

Four channels:

- $\blacksquare ZH \longrightarrow G^0 H$
- WH—G⁺H
- $\blacksquare WZ \longrightarrow G^+G^0$

$$\Phi = \left(egin{array}{c} G^+ \ (v+H)+iG^0 \ \sqrt{2} \end{array}
ight)$$

- These different final states are connected by more than nomenclature.
- At high energies longitudinal W/Z production dominates.
- Using goldstone boson equivalence theorem one can compute amplitudes for various components of Higgs doublet in the unbroken phase.
- Full SU(2) symmetry manifest

Four channels:

- $\blacksquare ZH \longrightarrow G^0 H$
- WH—G⁺H
- $\blacksquare WZ \longrightarrow G^+G^0$

$$\Phi = \left(egin{array}{c} G^+ \ H+iG^0 \ \sqrt{2} \end{array}
ight)$$

- These different final states are connected by more than nomenclature.
- At high energies longitudinal W/Z production dominates.
- Using goldstone boson equivalence theorem one can compute amplitudes for various components of Higgs doublet in the unbroken phase.
- Full SU(2) symmetry manifest

our channels:	Amplitude High-energy prim	
	$\bar{u}_L d_L \rightarrow W_L Z_L W_L h$	$\sqrt{2}a_a^{(3)}$
∎ ZH→G ⁰ H		• ¥
ı WH→G⁺H	$\bar{u}_L u_L o W_L W_L$	$a_q^{(1)} + a_q^{(3)}$
	$a_L a_L \to Z_L h$	
∎ vv vv • G ⁺ G ⁺	$a_L a_L \to W_L W_L$ $\bar{u}_L a_L \to Z_L b$	$a_q^{(1)} - a_q^{(3)}$
$WZ \longrightarrow G^+G^0$		
	$\bar{f}_R f_R o W_L W_L, Z_L h$	a_f

HV and VV processes amplitude connected by symmetry. They constrain the same set of observables at high energies

our channels:	Amplitude	High-energy primaries	
. our onumens.	$\bar{u}_I d_I \rightarrow W_I Z_I, W_I h$	$g^h_{Zd_Ld_L} - g^h_{Zu_Lu_L}$	
■ $ZH \longrightarrow G^0 H$		$\sqrt{2}$	
∎ WH—G ⁺ H	$\bar{u}_L u_L \to W_L W_L$	q^h_{Zdxdx}	
	$\frac{d_L d_L \rightarrow Z_L h}{$	JZuLuL	
∎ WW──G ⁺ G ⁻	$ar{d}_L d_L o W_L W_L$	$q_{Z_{MI}}^{h}$	
∎ WZ → G ⁺ G ⁰	$\bar{u}_L u_L o Z_L h$		
	$\bar{f}_R f_R \to W_L W_L, Z_L h$	$g^h_{Zf_Rf_R}$	
nd WV processos	,		

HV and VV processes amplitude connected by symmetry. They constrain the same set of observables at high energies

+ LHC Projectiion vs existing LEP bound

	Our Projection	LEP Bound
$\delta g^Z_{u_L}$	$\pm 0.002 \ (\pm 0.0007)$	-0.0026 ± 0.0016
$\delta g^{Z^{\prime}}_{d_L}$	$\pm 0.003 \ (\pm 0.001)$	0.0023 ± 0.001
$\delta g_{u_R}^{Z^*}$	$\pm 0.005 \ (\pm 0.001)$	-0.0036 ± 0.0035
$\delta g^{Z^*}_{d_R}$	$\pm 0.016 \ (\pm 0.005)$	0.016 ± 0.0052
δg_1^Z	$\pm 0.005 \ (\pm 0.001)$	$0.009^{+0.043}_{-0.042}$
$\delta\kappa_{\gamma}$	$\pm 0.032 \ (\pm 0.009)$	$0.016\substack{+0.085\\-0.096}$
\hat{S}	$\pm 0.032 \ (\pm 0.009)$	0.0004 ± 0.0007
W	$\pm 0.003 (\pm 0.001)$	0.0000 ± 0.0006
Y	± 0.032 (± 0.009)	0.0003 ± 0.0006
		-

300 ifb (3000 ifb)

Banerjee, Englert, RSG and Spannowsky (arxiv: 1807.01796)

+ LHC Projectiion vs existing LEP bound

 Improvement over LEP possible for Z-quark couplings and TGCs

\hat{S}	$\pm 0.032 \ (\pm 0.009)$	0.0004 ± 0.0007
W	$\pm 0.003 (\pm 0.001)$	0.0000 ± 0.0006
Y	± 0.032 (± 0.009)	0.0003 ± 0.0006
	300 ifb (3000 ifb)	•

Banerjee, Englert, RSG and Spannowsky (arxiv: 1807.01796)

Conclusions

- Can LHC compete with LEP ? Can LHC searches give us new information that LEP does not provide ?
- EFT techniques show that many anomalous Higgs interactions were already probed by LEP.
- Only way to compete with LEP precision is by going to higher energies and luminosities.
- Zh production promising example channel. We perform collider analysis for Z(ll)H(bb) final state using subjet techniques. Order of Magnitude improvement over LEP.
- Both High energies and luminosities essential

Cut-flow	$p_T^{l_1} + p_T^{l_2} > 160 { m GeV}$		50
R=12	Zh (bb) =4.6 fb Zbb= 165 fb		
Cuts		Zbb	Zh (SM)
1. At least 1 fat jet with 2 B-	mesons with pT > 15 GeV	0.157	0.411
2. 2 OSSF isolated leptons		0.407	0.501
3. 80 GeV < M_I1I2 < 100 0	GeV, pT_I1I2 > 160 GeV, dR_I1I2 > 0.2	0.846	0.887
4. At least 1 fat jet, at least	1 fat jet with 2 B-meson tracks with pT > 110 GeV	0.952	0.980
5. 2 Mass drop subjets and	>= 2 filtered subjets	0.857	0.923
Exactly 2 b-tagged jets		0.383	0.409
7. 115 GeV < M_fatjet < 13	5 GeV	0.254	0.505
8. Delta R(l_i, b_j) > 0.4, M and pT_l1l2 > 200 GeV	ET < 30 GeV, IY_fatjetl < 2.5, pT_fatjet > 200 GeV	0.490	0.693
Total	↓	0.002	0.024
Butterworth et al,	Zh (bb) =0.11 fb		
arXiv:0802.2470	Zbb = 0.35 fb		

+ Cut-flow $p_T^{l_1} + p_T^{l_2} \ge 160 \text{ GeV}$ \downarrow $P_T^{l_1} + p_T^{l_2} \ge 160 \text{ GeV}$ \downarrow L L L L L L L L		51	
Cuts	Zbb	Zh (SM)	
1. At least 1 fat jet with 2 B-mesons with pT > 15 GeV	0.157	0.411	
2. 2 OSSF isolated leptons	0.407	0.501	
3. Combined (please see last mail)	0.145	0.217	
4.(BDT cut	0.148	0.593	
Total	0.0014	0.026	
Zh (bb) =0.12 fb			
Zbb=0.22 fb			

+ Anomalous Higgs interactions not constrained by LEP

$$\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right)$$

+ $\kappa_{GG} \frac{h}{v} G^{A \mu\nu} G_{\mu\nu}^{A} + \kappa_{\gamma\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} t_{\theta_{W}} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} ,$

$$\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} \frac{v}{2c_{\theta_{W}}^{2}} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{Wff'}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right)$$

+ $\kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} ,$

+ Anomalous Higgs interactions not constrained by LEP

$$\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right)$$

+ $\kappa_{GG} \frac{h}{v} G^{A \mu\nu} G_{\mu\nu}^{A} + \kappa_{\gamma\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} t_{\theta_{W}} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} ,$

$$\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} \frac{v}{2c_{\theta_{W}}^{2}} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{Wff'}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right)$$

+ $\kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} ,$

$$\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right)$$
$$+ \kappa_{GG} \frac{h}{v} G^{A \mu\nu} G_{\mu\nu}^{A} + \kappa_{\gamma\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} t_{\theta_{W}} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} ,$$

$$\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} \frac{v}{2c_{\theta_{W}}^{2}} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{Wff'}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right)$$

+ $\kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} ,$

$$\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right)$$
$$+ \kappa_{GG} \frac{h}{v} G^{A \mu\nu} G_{\mu\nu}^{A} + \kappa_{\gamma\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} t_{\theta_{W}} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} ,$$

$$\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} \frac{v}{2c_{\theta_{W}}^{2}} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{Wff'}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right)$$

+ $\kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} ,$

 Anomalous Higgs interactions not constrained by LEP

56

EW and Higgs Pseudo-observables

(1) Higgs observables (20):

 $hW^{+}_{\mu\nu} W^{-\mu\nu} \qquad hA_{\mu\nu}A^{\mu\nu}, \ hA_{\mu\nu}Z^{\mu\nu} \ hG_{\mu\nu}G^{\mu\nu} \ h^{2}\bar{f}f \ hZ_{\mu\nu} Z^{\mu\nu} \\ hW^{+\mu}W^{-}_{\mu}, \ h\bar{f}f, \ h^{3} \qquad hZ_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R}$

These contain the physical Higgs probed for the first time at LHC in Higgs Production/decay

EW and Higgs Pseudo-observables

(1) Higgs observables (20):

 $hW^{+}_{\mu\nu} W^{-\mu\nu} \qquad hA_{\mu\nu}A^{\mu\nu}, \ hA_{\mu\nu}Z^{\mu\nu} \ hG_{\mu\nu}G^{\mu\nu} \ h^{2}\bar{f}f \ hZ_{\mu\nu} Z^{\mu\nu} \\ hW^{+\mu}W^{-}_{\mu}, \ h\bar{f}f, \ h^{3} \qquad hZ_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R}$

These contain the physical Higgs probed for the first time at LHC in Higgs Production/decay

(2) Electorweak precision observables (9):

 $Z_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R} \qquad \qquad W^{+\mu}\bar{u}_{L}\gamma_{\mu}d_{L}$

These were measured very precisely at the W/Z-pole in W/Z decays.

EW and Higgs Pseudo-observables

(1) Higgs observables (20):

 $hW^{+}_{\mu\nu} W^{-\mu\nu} \qquad hA_{\mu\nu}A^{\mu\nu}, \ hA_{\mu\nu}Z^{\mu\nu} \ hG_{\mu\nu}G^{\mu\nu} \ h^{2}\bar{f}f \ hZ_{\mu\nu} Z^{\mu\nu} \\ hW^{+\mu}W^{-}_{\mu}, \ h\bar{f}f, \ h^{3} \qquad hZ_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R}$

These contain the physical Higgs probed for the first time at LHC in Higgs Production/decay

(2) Electorweak precision observables (9):

 $Z_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R} \qquad \qquad W^{+\mu}\bar{u}_{L}\gamma_{\mu}d_{L}$

These were measured very precisely at the W/Z-pole in W/Z decays.

(2) Triple and Quartic Gauge couplings (3+4):

$$g_{1}^{Z}c_{\theta_{W}}Z^{\mu}\left(W^{+\nu}\hat{W}_{\mu\nu}^{-}-W^{-\nu}\hat{W}_{\mu\nu}^{+}\right) \xrightarrow{Z^{\mu}Z^{\nu}W_{\mu}^{-}W_{\nu}^{+}} W_{\nu}^{-\mu}W_{\nu}^{+}W_{\nu}^{-\mu}W_{\mu}^{+}W_{\mu}^{-\mu}W_{\mu}^{-\mu}W_{\mu}^{+}W_{\mu}^{-\mu}W_{\mu}^{-\mu}W_{\mu}^{-\mu}W_{\mu}^{+}W_{\mu}^{-\mu}W_{\mu$$

