

Polarization fraction studies in ssWW and VBS ZZ scattering using Deep Learning techniques

MBI-Thessaloniki, 26-28 August 2019
Junho Lee, Nicolas Chanon, Qiang Li, Andrew Levin,
Jing Li, Meng Lu, Yajun Mao

Based on: arXiv <u>1812.07591v2</u>

arXiv <u>1908.05196v1</u>

Vector boson scattering

More and more interests on VBS:

- No BSM signature is found up to now, the measurement of deviation from SM could be alternative way to search BSM besides the direct search.
- VBS process is pure EW, though small xs, precisely predicted by SM.
- Unique topology, large Mjj, large $\Delta \eta$ jj, suppress background significantly.

arxiv:1412.8367

VBS discoveries

What's next...

Polarization part of VBS

 $W_L W_L$ diverges if there is no Higgs boson or the Higgs boson is too heavy.

The Higgs boson was discovered and the mass is ~125 GeV.

There are theoretical models with composite
Higgs bosons, the measurement of the longitudinal
polarization will tell us the 125 GeV boson unitarizes
ssWW scattering fully or only partially.

It's difficult:

- Small component, 5~10% in ssWW scattering
- Difficult to distinguish LL part from TT and TL

The Higgs boson-mediated diagram cancels the divergence of the cross section from the other processes

arxiv:1412.8367

HL-LHC

- Small component, 5~10% in ssWW scattering
- Difficult to distinguish LL part from TT and TL

What if we have 3000fb⁻¹ data?

Prospects studies

arxiv: 1510.01691, apply regression with DNN to recover the lepton angular distribution

Polarization fraction measurement in VBS ssWW

MC production pipeline(4M events):

MadGraph5_aMC@NLO->

DEACY (decompose the process to LL, TT and TL)->

Pythia (for PS and hadronization)->

Pileup is neglected

Delphes (detector simulation with CMS configuration)

Based on arxiv: 1812.07591, different from regression method used in 1510.01691, we use DNN classification.

Event selection

- Charged lepton
 - Charged lepton number = 2
 - Same electrical charge
 - \circ pT > 20, $|\eta| < 2.4$
 - o Z veto

- Jet
 - Jet number >=2
 - \circ pT > 30, $|\eta| < 4.7$
 - Mjj > 850
 - \circ $\Delta \eta_{ii} > 2.5$

- Others
 - MET > 40
 - o B jet veto applied

Usual DNN

Training dataset: Obtain Trained DNN model -> LL and TTTL classifier Test dataset: Test performance of the model

10 Hidden layers with 150 nodes in each layer

Inputs: Low level: 4-momenta of 2 leptons, 2 jets; MET; High level: $\Delta \phi_{jj}$; $\Delta \eta_{jj}$; dR_ll_jj; zeppen_lepton

Particle-based DNN

Simplified DNN particle-based model

Input variables are grouped into object sub-system, i.e. jet, lepton and MET. Then merged after separate DNN layers

ROC curve

DNN(both usual and particle based models) and BDT have similar behaviors, all of them have much better discrimination than pt_l1 and dphi_jj.

LL extraction

Use the shapes of LL and TT+TL, the LL component fraction could be extracted:

$m_{ m jj}$ cut	True Fraction	1 1	$\Delta\phi_{ m jj}$	DNN
> 850 GeV	6.66%	$6.67\%^{+1.95\%}_{-1.90\%}$	$6.67\%^{+2.80\%}_{-2.76\%}$	$6.66\%^{+1.11\%}_{-1.04\%}$
$> 1200~{ m GeV}$	6.68%		$6.70\%_{-3.25\%}^{+3.29\%}$	$6.68\%^{+1.26\%}_{-1.20\%}$
$> 1500~{ m GeV}$	6.67%	$6.71\%^{+2.62\%}_{-2.57\%}$	$6.68\%_{-3.80\%}^{+3.85\%}$	$6.67\%^{+1.44\%}_{-1.37\%}$
$> 1800~{ m GeV}$	6.69%	$6.70\%^{+3.02\%}_{-2.96\%}$	$6.68\%^{+4.48\%}_{-4.42\%}$	$6.69\%^{+1.63\%}_{-1.56\%}$
$> 2000~{ m GeV}$	6.66%		$6.66\%^{+4.98\%}_{-4.93\%}$	$6.66\%^{+1.79\%}_{-1.71\%}$

The results using DNN are always better than other two methods.

Other bkgs are neglected 2% lumi uncertainty 5% syst uncertainty Stat uncertainty

With a cut Mjj>2TeV where bkgs can be neglected, the significance is around 4σ . After combining CMS and Atlas, the significance should reach 5σ

Polarization fraction measurement in VBS ZZ

Based on arxiv: 1908.05196v1.

MC production pipeline:

MadGraph5_aMC@NLO->

DEACY (decompose the process to LL, TT and TL)->

Pythia (for PS and hadronization)->

Pileup is neglected

Delphes (detector simulation with CMS configuration)

Event selection

- Charged lepton
 - Charged lepton number >= 4
 - \circ 60 < mll < $\overline{120}$
 - \circ pT > 5, $|\eta| < 2.4$
 - o pT >20(10) for leading(subleading)
 - o If more than 1 ZZ combination, select those with smallest $(m_{ll1} - m_Z)^2 + (m_{ll2} - m_Z)^2$

- Jet
 - Jet number >=2
 - \circ pT > 25, $|\eta| < 4.7$
 - o Mjj > 400
 - \circ $\Delta \eta_{ii} > 2.4$
- Others
 - o B jet veto applied

Polarization fraction measurement in VBS ZZ

MC production p

DEACY (decompo TL: 150000

Pythia (for PS and TT: 240000

Delphes (detector ggZZ: 40000

MadGraph5_aMC After event selection(unweighted events left):

LL: 100000

qqZZ: 48000

Based on arxiv: 1908.05196v1.

Event selection

- Charged lepton
 - Charged lepton number >= 4
 - 60 < mll < 120
 - pT > 5, $|\eta| < 2.4$
 - o pT >20(10) for leading(subleading)
 - If more than 1 ZZ combination, select those with smallest (m_{11} - $(m_7)^2 + (m_{112} - m_7)^2$

- Jet
 - Jet number >=2
 - $pT > 25, |\eta| < 4.7$
 - Mjj > 400
 - $\Delta \eta_{ii} > 2.4$
- Others
 - B jet veto applied

2-step BDT model:

BDT1: similar with the one tested in ssWW case;

BDT2: training events after applying cut on BDT1 score which maximizes S/\sqrt{B}

LL score of particle-based DNN

ROC curve shows that the particle-based DNN has better discrimination than BDT and normal DNN configuration.

Sample pre-processing

Different pre-processing method applied on the sample, only standardscaler(STD), or STD&Yeo-Johnson(YJ) transform

The ROC curve shows that the STD&YJ could improve the discriminant.

DNN-PCA

Since the output of first particle-based DNN is 5-dimension, the inputs are then transferred to 5 principal components.

Principle component	PC1	PC2	PC3	PC4	PC5
Explained variance ratio	64.8%	18.1%	13.0%	4.2%	< 0.1%

Significance is calculated using multi-bin fit.

Uncertainty	BDT	DNN	STD DNN	YJ&STD DNN	DNN-PC1
Statistical	1.41σ	1.42σ	1.43σ	1.47σ	1.55σ
Stat. & syst.	1.23σ	1.31σ	1.33σ	1.38σ	1.46σ

Results with more PC

Summary:

- DNN turns out to be a very powerful tool in the polarization study of VBS process.
- With DNN classification method, the sensitivity of longitudinal fraction of ssWW could promisingly reach 5σ , after combining the data from CMS and Atlas, ~6000fb⁻¹.
- There is improvement on the sensitivity on longitudinal part of VBS ZZ by using the DNN classification method, but the sensitivity is still quite limited.

Thanks!

Backup

DNN dense model for ssWW:

- 10 layers DNN with 150 nodes in each layer
- Activation function: relu
- Final nodes function: sigmoid
- Optimizer: adam, learning rate 0.001
- Regularization: L2 with 0.01 regularization term
- Batch size: 50 events
- 50% dropout in hidden layers
- He's uniform for weight initialization

Overfitting controlled by the epoch selection(ssWW)

Model for ssWW

Shape comparison between LL, TT and TL from CMS study

Source of uncertainty	Input	$300 \text{ fb}^{-1} (1 \text{ year})$	$3000 \text{ fb}^{-1} (10 \text{ years})$
Statistical uncertainty		5.7%	1.8%
Trigger efficiency (electron)	1.0%	0.5%	0.2%
Trigger efficiency (muon)	1.0%	1.1%	0.6%
Electron id + iso. efficiency	1.0%	0.6%	0.3%
Muon id + iso. efficiency	0.5%	0.9%	0.6%
Jet energy scale	0.5-3.7%	1.0%	0.4%
b tag (stat. component)	1.0%	0.2%	0.3%
b tag misidentification	1–2%	1.4%	1.2%
Misidentified lepton from t t	5-20%	3.5%	1.0%
Misidentified lepton from W γ	20%	0.3%	0.1%
Stat. accuracy of W γ sample	30%	0.4%	0.1%
Total (stat + experimental syst)		7.6%	3.2%
Luminosity	1.0%	1.0%	1.0%
Theoretical/QCD scale	3.0%	3.0%	3.0%
Total (stat + syst + lumi + theory)	8.2%	4.5%	

Uncertainties applied on the CMS LL study

Yeo-Johnson transform

$$\psi(\lambda, y) = \begin{cases} ((y+1)^{\lambda} - 1)/\lambda & \text{if } \lambda \neq 0, y \geq 0 \\ \log(y+1) & \text{if } \lambda = 0, y \geq 0 \\ -[(-y+1)^{2-\lambda} - 1)]/(2-\lambda) & \text{if } \lambda \neq 2, y < 0 \\ -\log(-y+1) & \text{if } \lambda = 2, y < 0 \end{cases}$$

Principal component

He's initialization

if RELU activation:

$$Y = w_1x_1 + w_2x_2 + \ldots + w_nx_n$$

$$Var(w_i) = rac{2}{fan_in}$$

It draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(2 / fan_in) where fan_in is the number of input units in the weight tensor.