

Bryan Webber
Cavendish Laboratory
University of Cambridge

Underlying Event (MPI)

- Multiple parton interactions in same collision
 - Depends on density profile of proton
- Assume QCD 2-to-2 secondary collisions
 - Need cutoff at low p_T
- Need to model colour flow
 - Colour reconnections are necessary

Underlying Event

ATLAS, JHEP 03(2017)157

Colour Reconnection

- "Colour length" $\lambda \equiv \sum_{i=1}^{N_{\rm cl}} m_i^2$ reduced by reconnection
- Massive leading clusters reduced
- Similar need in string model

Gieseke, Röhr, Siódmok, EPJC72(2012)2225

Event Generators

HERWIG

http://projects.hepforge.org/herwig/

- Angular-ordered parton shower, cluster hadronization
- → v6 Fortran; Herwig++ → v7
- PYTHIA

http://www.thep.lu.se/~torbjorn/Pythia.html

- → p_T-ordered parton shower, string hadronization
- → v6 Fortran; v8 C++
- SHERPA

http://projects.hepforge.org/sherpa/

- → Dipole-type parton shower, cluster hadronization
- **→** C++

"General-purpose event generators for LHC physics", A Buckley et al., arXiv:1101.2599, Phys. Rept. 504(2011)145

Generator Citations

- Most-cited article only for each version
- Decline due to secondary citation?

Other relevant software

(with apologies for omissions)

- Other event/shower generators: PhoJet, Ariadne, Dipsy, Cascade, Vincia
- Matrix-element generators: MadGraph/MadEvent, CompHep, CalcHep, Helac, Whizard, Sherpa, GoSam, aMC@NLO
- Matrix element libraries: AlpGen, POWHEG BOX, MCFM, NLOjet++, VBFNLO, BlackHat, Rocket
- Special BSM scenarios: Prospino, Charybdis, TrueNoir
- Mass spectra and decays: SOFTSUSY, SPHENO, HDecay, SDecay
- Feynman rule generators: FeynRules
- PDF libraries: LHAPDF
- Resummed (p_{\perp}) spectra: ResBos
- Approximate loops: LoopSim
- Jet finders: anti- k_{\perp} and FastJet
- Analysis packages: Rivet, Professor, MCPLOTS
- Detector simulation: GEANT, Delphes
- Constraints (from cosmology etc): DarkSUSY, MicrOmegas
- Standards: PDF identity codes, LHA, LHEF, SLHA, Binoth LHA, HepMC

Sjöstrand, Nobel Symposium, May 2013

Parton Shower Monte Carlo

• Hard subprocess: $q \bar{q} o Z^0/W^\pm$

http://mcplots.cern.ch/

- Leading-order (LO) normalization need next-to-LO (NLO)
- Worse for high p_T and/or extra jets \longrightarrow need multijet merging

Summary on Event Generators

- Fairly good overall description of data, but...
- Hard subprocess: LO no longer adequate
- Parton showers: need matching to NLO
 - Also multijet merging
 - NLO showering?
- Hadronization: string and cluster models
 - Need new ideas/methods
- Underlying event due to multiple interactions
 - Colour reconnection necessary

Matching & Merging

- Two rather different objectives:
- Matching parton showers to NLO matrix elements, without double counting

* MC@NLO

POWHEG
 Nason, 2004

 Merging parton showers with LO n-jet matrix elements, minimizing jet resolution dependence

* CKKW

Catani, Krauss, Kühn, BW, 2001

Dipole

Lönnblad, 2001

Frixione, BW, 2002

MLM merging

Mangano, 2002

MC@NLO matching

S Frixione & BW, JHEP 06(2002)029

- Compute parton shower contributions (real and virtual) at NLO
 - Generator-dependent
- Subtract these from exact NLO
 - Cancels divergences of exact NLO!
- Generate modified no-emission (LO+virtual) and real-emission hard process configurations
 - Some may have negative weight
- Pass these through parton shower etc.
 - Only shower-generated terms beyond NLO

MC@NLO matching

S Frixione & BW, JHEP 06(2002)029 divergent

finite virtual

$$d\sigma_{\text{NLO}} = \left[B(\Phi_B) + V(\Phi_B) - \int \sum_i C_i (\Phi_B, \Phi_R) d\Phi_R \right] d\Phi_B + R(\Phi_B, \Phi_R) d\Phi_B d\Phi_R$$

$$\equiv \left[B + V - \int C d\Phi_R \right] d\Phi_B + R d\Phi_B d\Phi_R$$

$$d\sigma_{MC} = B(\Phi_B) d\Phi_B \left[\Delta_{MC}(0) + \frac{R_{MC}(\Phi_B, \Phi_R)}{B(\Phi_B)} \Delta_{MC}(k_T(\Phi_B, \Phi_R)) d\Phi_R \right]$$

$$\equiv B d\Phi_B \left[\Delta_{MC}(0) + (R_{MC}/B) \Delta_{MC}(k_T) d\Phi_R \right]$$

$$\Delta_{\mathrm{MC}}(p_T) = \exp\left[-\int \mathrm{d}\Phi_R \frac{R_{\mathrm{MC}}(\Phi_B, \Phi_R)}{B(\Phi_B)} \Theta\left(k_T(\Phi_B, \Phi_R) - p_T\right)\right]$$

$$d\sigma_{\text{MC@NLO}} = \begin{bmatrix} B + V + \int (R_{\text{MC}} - C) d\Phi_R \end{bmatrix} d\Phi_B \left[\Delta_{\text{MC}} (0) + (R_{\text{MC}}/B) \Delta_{\text{MC}} (k_T) d\Phi_R \right] + (R - R_{\text{MC}}) \Delta_{\text{MC}} (k_T) d\Phi_B d\Phi_R$$

finite ≥ 0

MC starting from no emission MC starting from one emission

Expanding gives NLO result

POWHEG matching

P Nason, JHEP 11(2004)040

- POsitive Weight Hardest Emission Generator
- Use exact real-emission matrix element to generate hardest (highest relative p_T) emission configurations
 - No-emission probability implicitly modified
 - (Almost) eliminates negative weights
 - Some uncontrolled terms generated beyond NLO
- Pass configurations through parton shower etc

POWHEG matching

P Nason, JHEP 11 (2004) 040

$$d\sigma_{MC} = B(\Phi_B) d\Phi_B \left[\Delta_{MC}(0) + \frac{R_{MC}(\Phi_B, \Phi_R)}{B(\Phi_B)} \Delta_{MC}(k_T(\Phi_B, \Phi_R)) d\Phi_R \right]$$

$$d\sigma_{PH} = \overline{B}(\Phi_B) d\Phi_B \left[\Delta_R(0) + \frac{R(\Phi_B, \Phi_R)}{B(\Phi_B)} \Delta_R(k_T(\Phi_B, \Phi_R)) d\Phi_R \right]$$

$$\overline{B}(\Phi_B) = B(\Phi_B) + V(\Phi_B) + \int \left[R(\Phi_B, \Phi_R) - \sum_i C_i(\Phi_B, \Phi_R) \right] d\Phi_R$$

$$\Delta_{R}(p_{T}) = \exp\left[-\int d\Phi_{R} \frac{R(\Phi_{B}, \Phi_{R})}{B(\Phi_{B})} \theta(k_{T}(\Phi_{B}, \Phi_{R}) - p_{T})\right]$$

- NLO with (almost) no negative weights arbitrary NNLO
- High pt always enhanced by $K = \overline{B}/B = 1 + \mathcal{O}(\alpha_{\mathrm{S}})$

Multijet Merging

- Objective: merge LO n-jet matrix elements*
 with parton showers such that:
 - * Multijet rates for jet resolution > Q_{cut} are correct to LO (up to N_{max})
 - Shower generates jet structure below Q_{cut} (and jets above N_{max})
 - Leading (and next) Q_{cut} dependence cancels

* ALPGEN or MadGraph, n≤N_{max}

CKKW: Catani et al., JHEP 11(2001)063

-L: Lonnblad, JHEP 05(2002)063

MLM: Mangano et al., NP B632(2002)343

Vector boson production

Z⁰ at Tevatron

http://mcplots.cern.ch/

- Absolute normalization:LO too low
- POWHEG agrees with rate and distribution

Z+jets at LHC

ATLAS, arXiv: 1702.05725

MadGraph5_aMC@NLO CKKWL best for high N_{jets}

W+jets at LHC

CMS, arXiv:1707.05979

 Transverse momentum distributions of jets 1-4

W[±]/Z⁰+jets at LHCb

LHCb, arXiv: 1605.00951

Forward region

$$\eta = -\ln \tan \theta / 2$$

W asymmetry at LHC

Asymmetry probes parton distributions

$$u\bar{d} \to W^+ \to \mu^+ \nu_\mu$$
 vs $d\bar{u} \to W^- \to \mu^- \bar{\nu}_\mu$

Top quark pair production

Top quark distributions

ATLAS, arXiv: 1708.00727

Normalized to data

Top quark distributions

ATLAS, arXiv: 1708.00727

Absolute normalization

Top quark pair distributions

ATLAS, arXiv: 1708.00727

Normalized to data

Top quark pair distributions

ATLAS, arXiv: 1708.00727

Absolute normalization

Top mass & hadronization

Mangano, Top LHC WG, July 2012

2. Shower evolution

3. Gluon splitting

6. Decay of "odd" clusters, if large cluster mass, and decays to hadrons

b jet must gain (or lose) some 4-momentum from rest of event

Top mass & kinematics

CMS PAS TOP-12-029

- Reconstructed top mass depends on kinematics
- But different generators track data well with a common input mass

LHC Cross Section Summary

No significant deviations from SM (yet)

LHC Cross Section Summary

No significant deviations from SM (yet)

But all is not perfect ...

Dijet flavours versus jet pt

ATLAS, arXiv: 1210.0441

Interesting excess of (single) b quark jets

- NLO calculations generally refer to inclusive cross sections e.g. σ(W+≥n jets)
- Multijet merging does not preserve them, because of mismatch between exact real-emission and approximate (Sudakov) virtual corrections
- When correcting this mismatch, one can simultaneously upgrade them to NLO
- There remains the issue of merging scale dependence beyond NLO (large logs)

Merging related Matching related

Stefan Höche, 2017 MCnet School

- Many competing schemes (pp only)
 - * MEPS@NLO (SHERPA) Höche et al., arXiv:1207.5030
 - * FxFx (aMC@NLO) Frederix, Frixione, arXiv:1209.6215
 - UNLOPS (Pythia 8) Lönnblad, Prestel, arXiv:1211.7278
 - MatchBox (Herwig7) Bellm, Gieseke, Plätzer, arXiv:1705.06700
 - * MiNLO (POWHEG) Hamilton et al., arXiv:1212.4504
 - ♣ UN²LOPS Höche, Li, Prestel, arXiv:1405.3607
- Some key ideas in LoopSim Rubin, Salam, Sapeta, JHEP1009, 084

UNLOPS: Lönnblad & Prestel, arXiv:1211.7278

Scale dependences almost eliminated

Beyond Standard Model Simulation

BSM Simulation

- Main generators have some BSM models built in
 - Pythia 6 has the most models
 - Herwig 7 has careful treatment of SUSY spin correlations and off-shell effects
- Trend is now towards external matrix element generators: FeynRules + MadGraph, ...
- QCD corrections and matching/merging still needed (MG5_aMC@NLO [FxFx] ...)

Searching for new signals

ATLAS, arXiv: 1708.08232

SR	9J
N_ℓ	= 1
p_{T}^{ℓ} [GeV]	> 35
$N_{ m jet}$	≥ 9
$E_{\rm T}^{\rm miss}$ [GeV]	> 200
$m_{\rm T}$ [GeV]	> 175
Aplanarity	> 0.07
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}~[{\rm GeV}^{1/2}]$	≥ 8
$m_{\rm eff}$ [GeV] (excl)	[1000, 1500], [>1500]
$m_{\rm eff}$ [GeV] (disc)	> 1500

Table 1: Simulated signal and background event samples: the corresponding event generator, parton shower, cross-section normalization, PDF set and underlying-event tune are shown.

Physics process	Generator	Parton shower Cross-section		PDF set	Tune
Signal	MG5_AMC@NLO 2.2.2	Рутніа 8.186	NLO+NLL	NNPDF2.3 LO	ATLAS A14
tī Single-top	Powheg-Box v2	Рутніа 6.428	NNLO+NNLL	CT10 NLO	Perugia2012
<i>t</i> -channel	Powheg-Box v1	Рутніа 6.428	NLO	CT10f4 NLO	Perugia2012
s-channel	Powheg-Box v2	Рутніа 6.428	NLO	CT10 NLO	Perugia2012
Wt-channel	Powheg-Box v2	Рутніа 6.428	NLO+NNLL	CT10 NLO	Perugia2012
$W(\rightarrow \ell \nu) + \text{jets}$	Sherpa 2.2.1	SHERPA	NNLO	NNPDF3.0 NNLO	Sherpa default
$Z/\gamma^*(\to \ell\ell)$ + jets	Sherpa 2.2.1	SHERPA	NNLO	NNPDF3.0 NNLO	Sherpa default
WW, WZ and ZZ	SHERPA 2.1.1 / SHERPA 2.2.1	Sherpa	NLO	CT10 NLO / NNPDF3.0 NNLO	Sherpa default
$t\bar{t} + W/Z/WW$	MG5_AMC@NLO 2.2.2	Рутніа 8.186	NLO	NNPDF2.3 LO	ATLAS A14

NLO Squark Production

NLO with POWHEG matching to different generators

Gavin et al., arXiv:1305.4061

Conclusions and Prospects

- Standard Model has (so far) been spectacularly confirmed at the LHC
- Monte Carlo event generation of (SM and BSM) signals and backgrounds plays a big part
- Matched NLO and merged multi-jet generators have proved essential
 - Automation and NLO merging now available for many processes
 - * NNLO much more challenging
- Still plenty of scope for new discoveries!

Thanks for your attention!

Extras

Higgs boson production

Higgs Signal and Background Simulation

Discovery paper 2012

Process	Generator
ggF, VBF	POWHEG [57, 58]+PYTHIA
$WH, ZH, t\bar{t}H$	PYTHIA
W +jets, Z/γ^* +jets	ALPGEN [59]+HERWIG
$t\overline{t}$, tW , tb	MC@NLO [60]+HERWIG
tqb	AcerMC [61]+PYTHIA
$q\bar{q} o WW$	MC@NLO+HERWIG
$gg \to WW$	gg2WW [62]+HERWIG
$q\bar{q} o ZZ$	POWHEG [63]+PYTHIA
$gg \rightarrow ZZ$	gg2ZZ [64]+HERWIG
WZ	MadGraph+PYTHIA, HERWIG
$W\gamma$ +jets	ALPGEN+HERWIG
$W\gamma^*$ [65]	MadGraph+PYTHIA
$q\bar{q}/gg \rightarrow \gamma\gamma$	SHERPA

ATLAS, Phys.Lett.B716(2012)1

Higgs Signal Simulation 2017

State of the art

Process	Generator	Showering	PDF set	Order of calculation	$\frac{\sigma[\text{pb}]}{\sqrt{s} = 13 \text{ TeV}}$
ggH	POWHEG NNLOPS	Рутніа8	PDF4LHC15	$N^3LO(QCD)+NLO(EW)$	48.52
VBF	POWHEG BOX	Рутніа8	PDF4LHC15	NNLO(QCD)+NLO(EW)	3.78
WH	POWHEG BOX	Рутніа8	PDF4LHC15	NNLO(QCD)+NLO(EW)	1.37
$q\bar{q}' o ZH$	POWHEG BOX	Рутніа8	PDF4LHC15	NNLO(QCD)+NLO(EW)	0.76
$gg \to ZH$	POWHEG BOX	Рутніа8	PDF4LHC15	NNLO(QCD)+NLO(EW)	0.12
$tar{t}H$	MADGRAPH5_AMC@NLO	Рутніа8	NNPDF3.0	NLO(QCD)+NLO(EW)	0.51
$bar{b}H$	MADGRAPH5_AMC@NLO	Рутніа8	CT10	5FS(NNLO)+4FS(NLO)	0.49
$tHqar{b}$	MADGRAPH5_AMC@NLO	Рутніа8	CT10	4FS(LO)	0.07
tHW	MADGRAPH5_AMC@NLO	HERWIG++	CT10	5FS(NLO)	0.02
$\gamma\gamma$	Sherpa	Sherpa	CT10		

Andy Chisholm, LHCHXSWG, July 2017

gg→Higgs(+jet)

Higgs boson production total cross sections in pb at the LHC, 8 TeV							
K_R, K_F	1,1	1,2	2,1	$1, \frac{1}{2}$	$\frac{1}{2}, 1$	$\frac{1}{2},\frac{1}{2}$	2,2
HJ-MiNLO NLO	13.33(3)	13.49(3)	11.70(2)	13.03(3)	16.53(7)	16.45(8)	11.86(2)
H NLO	13.23(1)	13.28(1)	11.17(1)	13.14(1)	15.91(2)	15.83(2)	11.22(1)
HJ-MiNLO LO	8.282(7)	8.400(7)	5.880(5)	7.864(6)	18.28(2)	17.11(2)	5.982(5)
H LO	5.741(5)	5.758(5)	4.734(4)	5.644(5)	7.117(6)	6.996(6)	4.748(4)

Table 1: Total cross section for Higgs boson production at the 8 TeV LHC, obtained with the HJ-MiNLO and the H programs, both at full NLO level and at leading order, for different scales combinations. The maximum and minimum are highlighted.

Match/merge MiNLO+Pythia6

Hamilton, Nason, Oleari & Zanderighi, arXiv:1212.4504

Higgs+jets

FxFx: Match/merge MC@NLO+Herwig6

Frederix & Frixione, arXiv:1209.6215

VBF Higgs+jets

Matched MC@NLO and POWHEG

Frixione, Torrielli, Zaro, arXiv: I 304.7927

Comparisons to data (yy mode)

Andy Chisholm, LHCHXSWG, July 2017

Comparisons to data (ZZ* mode)

Andy Chisholm, LHCHXSWG, July 2017

Comparisons to data (ZZ* mode)

Andy Chisholm, LHCHXSWG, July 2017

ATLAS SUSY Search

ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

phénomena is shown. Many of the limits are based on

Mass scale [TeV]

ATLAS Exotica Search

CMS Exotica Search

