Recent Elastic and Total Cross-Section Measurements by

Mario Deile
on behalf of the TOTEM Collaboration

EDS Blois 2019: The 18th Conference on Elastic and Diffractive Scattering
June 23-29, 2019
ICISE, Quy Nhon, Vietnam
Elastic scattering – from ISR to Tevatron: Old Trends

- Dip vs. shoulder
- Dip position: shrinkage of forward peak
- Any further peaks at large $|t|$? Wide range of predictions.

- Evolutions $\sigma_{\text{tot}}(s)$, $\rho(s)$?
- No pp data after ISR
- $\sigma_{\text{el}} / \sigma_{\text{tot}}(s)$?

[Graphs and data points showing trends and comparisons across different energies and experiments.]
The TOTEM Experiment at the LHC

IP1: ATLAS, LHCf
IP2: ALICE
IP3: Momentum Cleaning
IP4: RF (Acceleration)
IP5: CMS, TOTEM
IP6: Beam Dump
IP7: Betatron Cleaning
IP8: LHCb, MoEDAL
Roman Pots: elastic & diffractive protons close to outgoing beams → Proton Trigger

Inelastic Telescopes: charged particles in inelastic events

T1: $3.1 < |\eta| < 4.7$, $p_T > 100$ MeV
T2: $5.3 < |\eta| < 6.5$, $p_T > 40$ MeV

→ Inelastic Trigger

Experimental Setup at IP5 in Run 1

[Ref.: JINST 3 (2008) S08007]

Measurement and analysis techniques covered in past presentations and in the appendix (just ask!).
History of Elastic and Total Cross-Section Measurements

- **2011**
 - Elastic scattering @7 TeV
 EPL 95-41001
 - First σ_{tot} @ 7 TeV
 EPL 96-21002

- **2012**
 - σ_{tot} lumi-independent @7 TeV
 - Elastic, inelastic cross section
 - Elastic: full t-range
 EPL 101-21004/21003/21002

- **2013**
 - σ_{tot} lumi independent @ 8 TeV
 PRL 111-12001

- **2015**
 - σ_{tot} lumi independent @ 8 TeV
 NPB 899-527
 - $d\sigma/dt$ elastic: non-exponential behaviour @ 8 TeV
 - EPJ C76-661

- **2016**
 - $d\sigma/dt$ measurement @ 8 TeV
 - EPJ C76-661

- **2017**
 - σ_{tot} lumi independent @ 2.76 TeV
 PoS (DIS2017) 059
 - σ_{tot} lumi independent @ 13 TeV

- **2018**
 - $d\sigma/dt$ elastic: dip @ 13 TeV
 - $d\sigma/dt$ elastic: dip @ 2.76 TeV
 - data taking at 900 GeV, CNI region
Elastic Cross-Section Measurements
Elastic Scattering Cross-Section Measurements

Data sets at different energies covering a wide $|t|$ range

Optics, XRP Approach distance

$(\beta_x^*, \beta_y^*) = (70 \text{ m}, 100 \text{ m}), \ 3 \, \sigma$

$\beta^* = 11 \text{ m}, \ 3 \, \sigma$

$\beta^* = 11 \text{ m}, \ 5 \, \sigma$

$\beta^* = 11 \text{ m}, \ 13 \, \sigma$

$\beta^* = 90 \text{ m}, \ 10 \, \sigma$

$\beta^* = 90 \text{ m}, \ 5 \, \sigma$

$\beta^* = 3.5 \text{ m}, \ 7 \, \sigma$

$\beta^* = 3.5 \text{ m}, \ 18 \, \sigma$

$\beta^* = 1 \text{ km}, \ 3 \, \sigma$

$\beta^* = 90 \text{ m}, \ 6 \, \sigma$

$\beta^* = 2.5 \text{ km}, \ 3 \, \sigma$

$\beta^* = 90 \text{ m}, \ 5 \, \sigma, 10 \, \sigma$

\[|t| \text{ [GeV}^2] \]

perturbative QCD region: $> 1 \text{ GeV}^2$

Dip-bump region: $\sim 0.4 – 1 \text{ GeV}^2$

“Exponential” region (“Pomeron” exchange): $O(10^{-2} \text{ GeV}^2) – O(10^{-1} \text{ GeV}^2)$

Coulomb and CNI region: $< \sim 10^{-3} \text{ GeV}^2$
Elastic Scattering: Exponential Region

Coulomb and CNI region: $< \sim 10^{-3}$ GeV2

Dip-bump region: $\sim 0.4 \text{ – } 1$ GeV2

"Exponential" region ("Pomeron" exchange): $O(10^{-2}$ GeV$^2) – O(10^{-1}$ GeV2)

perturbative QCD region: > 1 GeV2
Elastic Scattering: The “Exponential” Region at low |t|

New measurement at 13 TeV confirms:

Steepling increase of nuclear elastic slope B with \sqrt{s}:

$$\left|\frac{d\sigma}{dt}\right| = e^{-B|t|}$$

Up to ~ 3 TeV: compatible with simple Regge model:

$$\frac{d\sigma}{dt} \propto s^{2[\alpha(t)-1]}, \quad \alpha(t) = \alpha_0 + \alpha' t \quad \Rightarrow B = B_0 + 2\alpha' \ln s$$

Around 3 TeV: B(s) trend changes: threshold to new effects?

E.g. multi-Pomeron exchanges: \(B \propto \ln s \rightarrow (\ln s)^2 \)

Elastic Scattering: The “Exponential” Region at low $|t|$

Is it really exponential?

Data set with 7 M events ($\sqrt{s} = 8$ TeV, $\beta^* = 90$ m):

$0.027 \text{ GeV}^2 < |t| < 0.2 \text{ GeV}^2$, i.e. Coulomb effects negligible

Quite exponential at the first glance, but a closer look reveals …

Relative deviation from exponential:

$$\frac{d\sigma/dt - \text{ref}}{\text{ref}}$$

Pure exponential form ($N_b = 1$) excluded at 7.2 σ significance.

[NPB 899 (2015) 527]

... a percent-level deviation only visible with very high statistics.
Elastic Scattering: The “Exponential” Region at low $|t|$

Non-exponentiality at $|t| < 0.2$ GeV2: similar pattern observed also at $\sqrt{s} = 7$ and 13 TeV

$$\frac{d\sigma}{dt} - \text{ref}$$

where ref = fixed exponential function

$$A e^{-B|t|}$$

$\sqrt{s} = 7$ TeV

$\sqrt{s} = 8$ TeV

Can this be due to CNI effects?

(although fit region strongly dominated by nuclear amplitude)

\Rightarrow Include region at even lower $|t|$!

NEW
Elastic Scattering: Coulomb and CNI Region

Coulomb and CNI region: $< \sim 10^{-3}$ GeV

“Exponential” region (“Pomeron” exchange): $O(10^{-2}$ GeV$^2) - O(10^{-1}$ GeV$^2)$

Dip-bump region: $\sim 0.4 - 1$ GeV2

perturbative QCD region: > 1 GeV2
Measure elastic scattering at $|t|$ as low as 6×10^{-4} GeV2 (8 TeV) and 8×10^{-4} GeV2 (13 TeV)

- optics specially developed for measurements at very low $|t|$ ($\beta^* = 1 - 2.5$ km)
- RP approach to 3σ from the beam centre

$\sqrt{s} = 8$ TeV, $\beta^* = 1000$ m

$\sqrt{s} = 13$ TeV, $\beta^* = 2500$ m
Elastic Scattering: Coulomb-Nuclear Interference Region

Simplified West-Yennie (SWY) formula (standard in the past):
- constant slope $B(t) = b_0$ \rightarrow already excluded by 90m data at higher $|t|$ \rightarrow SWY incompatible with data!
- constant hadronic phase $\arg(F^H) = p_0$
- $\Psi(t)$ acts as real interference phase

Cahn or Kundrát-Lokajiček (KL) formula:
- any slope $B(t)$
- any hadronic phase $\arg(F^H)$: to be chosen as input
- complex $\Psi(t)$!

- Modulus constrained by measurement in nucl. region: $\frac{d\sigma}{dt} \simeq A \ e^{-B(t) |t|}$

- Phase $\arg(F^H)$: very little guidance by data

Interference region: sensitivity to $\arg(F^H)(t=0)$:

$$F^{C+H} = F^C + F^H e^{i\alpha\Psi}$$

$$\rho = \frac{\Re F^H(0)}{\Im F^H(0)} = \cot \ arg F^H(0)$$

Choice of hadronic phase $\arg F^H(t)$ controls the behaviour in impact-parameter space (b):
- elastic scattering preferentially central or peripheral.
Elastic Scattering: Coulomb-Nuclear Interference Region

Study of non-exponentiality with Coulomb terms included

Purely exponential hadronic amplitude
- excluded assuming a central (e.g. constant) phase
- not explicitly excluded by data if peripheral phase

Non-exponential hadronic amplitude
Both central & peripheral phase compatible with data

| Same result $\rho = 0.12 \pm 0.03$ for central and peripheral phase |

| $|t|_{\text{max}} = 0.07 \text{ GeV}^2$ | $|t|_{\text{max}} = 0.15 \text{ GeV}^2$ |
|---|---|
| N_b | χ^2/ndf | ρ | χ^2/ndf | ρ |
| 1 | 0.7 | 0.09 ± 0.01 | 2.6 | – |
| 2 | 0.6 | 0.10 ± 0.01 | 1.0 | 0.09 ± 0.01 |
| 3 | 0.6 | 0.09 ± 0.01 | 0.9 | 0.10 ± 0.01 |

|$|t|_{\text{max}} = 0.07 \text{ GeV}^2$ |

Discussion of $\rho(s)$ after σ_{tot}

NEW

[radiation]

8 TeV

13 TeV

So far only central phases studied:
non-exponentiality confirmed.

χ^2/ndf comparison with UA4/2 (same range)
Elastic Scattering: The Dip and Beyond

- **Coulomb and CNI region:** $< \sim 10^{-3}$ GeV
- **“Exponential” region ("Pomeron" exchange):** $O(10^{-2}$ GeV$^2) - O(10^{-1}$ GeV$^2)$
- **Dip-bump region:** $\sim 0.4 - 1$ GeV2
- **Perturbative QCD region:** > 1 GeV2
Elastic Scattering: The Dip and Beyond

\[\sqrt{s} = 7 \text{ TeV} \]

\[|t|_{\text{dip}} = 0.53 \text{ GeV}^2 \]

\[|t|_{\text{dip}} = 0.47 \text{ GeV}^2 \]

\[|t|_{\text{dip}} = 0.61 \text{ GeV}^2 \]

\[\sqrt{s} = 13 \text{ TeV} \]

\[O(10^9) \text{ elastic events!} \]

\[\sqrt{s} = 2.76 \text{ TeV} \]

No structure at high \(|t|\) beyond the dip/bump!
Elastic Scattering: The Dip and Beyond

Focus on the Dip; Comparison pp – p pbar

\[\sqrt{s} = 13 \text{ TeV} \]

\[R = \frac{\frac{d\sigma}{dt} (\text{bump})}{\frac{d\sigma}{dt} (\text{dip})} \]

\[R = 1.77 \pm 0.01 \]

Joint D0 – TOTEM analysis in progress to quantify dip / shoulder difference:

- Persistence of dip+bump in pp at TeV scale: \(R \sim 1.7 \sim \text{constant} \)
- Absence of dip in ppbar \(R \sim 1 \)

\[\rightarrow \text{Evidence for exchange of colourless C-odd three-gluon compound state ("Odderon")} \]
Total pp Cross-Section
Total Cross-Section: Methods and Results

7 TeV

\[\sigma_{\text{tot}} = \frac{16\pi}{1 + \rho^2} \frac{1}{\mathcal{L}} \left. \frac{dN_{\text{el}}}{dt} \right|_0 \]

\((\rho=0.14 \text{ [COMPETE extrapolation]}) \)

June 2011: \(\sigma_{\text{tot}} = (98.3 \pm 2.8) \text{ mb} \) [EPL 96 (2011) 21002]
Oct. 2011: \(\sigma_{\text{tot}} = (98.6 \pm 2.2) \text{ mb} \) [EPL 101 (2013) 21002]

Different beam intensities!

Different beam intensities!

8 TeV

Luminosity-independent (\(\beta^* = 90 \text{ m} \)): \(\sigma_{\text{tot}} = (101.7 \pm 2.9) \text{ mb} \) [PRL 111(2013) 012001]

... improved with non-exponentiality (\(N_b = 3 \)): \(\sigma_{\text{tot}} = (101.9 \pm 2.1) \text{ mb} \) [NPB 899 (2015) 527]

Combining \(\beta^* = 90 \text{ m} \) & 1 km data: Improved extrapolation of hadronic amplitude to \(t = 0 \) using CNI fit:

\(\sigma_{\text{tot}} = (102.9 \pm 2.3) \text{ mb} \) (assuming central hadronic phase)
\(\sigma_{\text{tot}} = (103.0 \pm 2.3) \text{ mb} \) (assuming peripheral hadronic phase)

[EPJC 76 (2016) 661]

2.76 TeV

Luminosity-independent: \(\sigma_{\text{tot}} = (84.7 \pm 3.3) \text{ mb} \) using \(\rho = 0.145 \) [COMPETE]
Total Cross-Section: Methods and Results

13 TeV

2 Data Sets

β* = 90 m
|t| ∈ [0.01; 3.75] GeV²
CNI not covered, with inelastic data

β* = 2500 m
|t| ∈ [0.0008; 0.2] GeV²
CNI covered, no inelastic data

Lumi-independent method

\[\sigma_{tot} = \frac{16\pi}{1 + \rho^2} \frac{(dN_{el}/dt)_{t=0}}{(N_{el} + N_{inel})} \]

\[\sigma_{tot} = (110.6 \pm 3.4) \text{ mb} \]

First normalisation via Coulomb!

CNI Fit (for \(N_b = 1 \))

\[\sigma_{tot} = (111.8 \pm 3.2) \text{ mb}, \ \rho = 0.09 \pm 0.01 \]

\[\sigma_{tot} = (111.3 \pm 3.2) \text{ mb}, \ \rho = 0.09 \pm 0.01 \]

2 variants:

\[\sigma_{tot} = (110.3 \pm 3.5) \text{ mb}, \ \rho = 0.08(5) \pm 0.01 \]

\[\sigma_{tot} = (109.3 \pm 3.5) \text{ mb}, \ \rho = 0.10 \pm 0.01 \]

fully independent \(\rightarrow \) weighted average

\[\sigma_{tot} = (110.5 \pm 2.4) \text{ mb} \]
pp Cross-Section Measurements

900 GeV: data taken in 2018
analysis in progress

14 TeV: planned for LHC Run 3

Increase of $\sigma_{el} / \sigma_{tot}$ continues.

σ_{tot} fits by COMPETE
(pre-LHC model R_{PbL2u})

σ_{el} fit by TOTEM
(11.84 - 1.617 ln s + 0.1359 ln^2 s)

σ_{el} (green), σ_{inel} (red) (mb)

σ_{tot} (black)
\sqrt{s} Trends of ρ and Total Cross-Section

$$\rho = \frac{\Re F^H(0)}{\Im F^H(0)} = \cot \arg F^H(0)$$

from CNI analysis (see earlier).

At 13 TeV: sample with very high statistics allows an unprecedented precision:

| N_b | $|t|_{\text{max}} = 0.07 \text{ GeV}^2$ | $|t|_{\text{max}} = 0.15 \text{ GeV}^2$ |
|-------|--------------------------------------|--------------------------------------|
| | χ^2/ndf | ρ | χ^2/ndf | ρ |
| 1 | 0.7 | 0.09 \pm 0.01 | 2.6 | -- |
| 2 | 0.6 | 0.10 \pm 0.01 | 1.0 | 0.09 \pm 0.01 |
| 3 | 0.6 | 0.09 \pm 0.01 | 0.9 | 0.10 \pm 0.01 |

$|t|_{\text{max}} = 0.07 \text{ GeV}^2$ $
ightarrow$ comparison with UA4/2 (same range)

The 13 TeV measurement (for both fit range choices) lies significantly ($4 - 4.7 \sigma$) below the prediction.
None of COMPETE models (all without Odderon!) is able to describe simultaneously σ_{tot} and ρ.
Exchange of a colourless 3-gluon CP-odd compound state ("Odderon") in the t-channel could decrease \(\rho \) in pp collisions at large energy:

... or is it a hint at a slower growth of \(\sigma_{\text{tot}}(\sqrt{s}) \) at higher \(\sqrt{s} \)? (dispersion relations!)
Summary & Outlook

New measurements:
- 13 TeV: σ_{tot}, $d\sigma_{\text{el}}/dt$ from 8×10^{-4} to 3.8 GeV2, ρ
- 2.76 TeV: $d\sigma_{\text{el}}/dt$ up to dip/bump region

Lessons:
- Two pieces of evidence for “Odderon”:
 - dip/bump in pp vs. shoulder in ppbar
 - decrease of $\rho(\sqrt{s})$ at $\sqrt{s} > 8$ TeV
 - still missing: glueball in s-channel
- Steepening of $B(\sqrt{s})$ confirmed at 13 TeV
- Low $|t|$: non-exponential structure of $d\sigma_{\text{el}}/dt$ confirmed at 13 TeV
- High $|t|$: no further structure beyond first dip/bump

Outlook:
- Data at $\sqrt{s}=900$ GeV taken in 2018:
 Analysis of σ_{tot}, $d\sigma_{\text{el}}/dt$, ρ started
- Plans for LHC Run 3 @ 14 TeV:
 - $\beta^* \sim 90$ m run for σ_{tot} (lumi-independent with new T2 detector)
 - $\beta^* \sim 5 – 6$ km run for CNI analysis
The End
Proton Transport and Reconstruction via Beam Optics

\((x^*, y^*)\): vertex position
\((\theta_x^*, \theta_y^*)\): emission angle: \(t \approx -p^2 (\theta_x^*^2 + \theta_y^*^2) \)
\(\xi = \Delta p/p\): momentum loss (elastic case: \(\xi = 0 \))

\[
\begin{pmatrix}
 x \\
 \Theta_x \\
 y \\
 \Theta_y \\
 \Delta p/p
\end{pmatrix}_{\text{RP}} =
\begin{pmatrix}
 v_x & L_x & 0 & 0 & D_x \\
 v_x' & L_x' & 0 & 0 & D_x' \\
 0 & 0 & v_y & L_y & 0 \\
 0 & 0 & v_y' & L_y' & 0 \\
 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x^* \\
 \Theta_x^* \\
 y^* \\
 \Theta_y^* \\
 \Delta p/p
\end{pmatrix}_{\text{IP5}}
\]

Product of all lattice element matrices

\[
x_{\text{RP}} = L_x \Theta_x^* + v_x x^* + D_x \xi
\]

\[
y_{\text{RP}} = L_y \Theta_y^* + v_y y^*
\]

Reconstruction of proton kinematics = inversion of transport equation

Excellent beam optics understanding needed.

Elastic Measurement Method

Trigger: double arm in XRP

Cuts: collinearity, common vertex, position-angle correlation, low ξ

Collinearity of left and right proton in x and y (Example for 13 TeV)

Corrections: acceptance, efficiency (trigger, DAQ, reconstruction), smearing in t

Extrapolation to t=0 (for $\sigma_{_{\text{tot}}}$ with opt. theorem):

\[
\frac{\sigma(dN_{_{\text{el}}}/d|t|_{t=0})}{\sigma(N_{_{\text{el}}})} \sim 1.6 \% \quad \sigma(N_{_{\text{el}}}) \sim 2.3 \% \quad \text{@ 13 TeV}
\]
Inelastic Measurement Method

Trigger: activity in T2 (either arm)

T1+T2 Acceptance $\sim 92\%$ of the inelastic rate

Experimental corrections (mostly data-driven):
beam-gas background, efficiency (trigger & reconstruction), T1-only events, pileup

MC corrections for event classes invisible to T1/T2:
central diffraction, rapidity gap over T2, low-mass diffraction ($M < 4.6$ GeV, $|\eta| > 6.5$)

$\sigma(N_{\text{inel}}) = 3.7\%$ @ 13 TeV
Choice of hadronic phase $\arg F^H(t)$ controls the behaviour in impact-parameter space (b)

Phase examples:

- **constant (central):**

 \[\arg F(t) = p_0 \]

- **peripheral:**
 \[\arg F(t) = p_0 + \frac{t}{t_0} \exp(\nu t) \quad (t_0 = 1 \text{ GeV}^2) \]

\[
\rho = \frac{\Re F^H(0)}{\Im F^H(0)} = \cot \arg F^H(0) = \cot p_0
\]

in both cases.

Impact parameter distributions:

- constant (central): most commonly used:

 \[\langle |b| \rangle_{\text{el}} < \langle |b| \rangle_{\text{inel}} \]

- peripheral:
 \[\langle |b| \rangle_{\text{el}} > \langle |b| \rangle_{\text{inel}} \]

TOTEM 8 TeV data compatible with both phases (same result for ρ: 0.12 ± 0.03)

\[\Rightarrow \text{elastic pp scattering not necessarily central} \]
The 7 TeV Measurements

(3 data sets at different optics and RP distances to cover max. t-range)

\[\sqrt{s} = 7 \text{ TeV} \]

\[|t|_{\text{dip}} = 0.53 \text{ GeV}^2 \]

\[\sim |t|^{-7.8} \]

Comparison with 7 TeV Predictions

At the time of the first publication:
No model described the TOTEM data.

pQCD (e.g. Donnachie-Landshoff): \(\sim |t|^{-8} \)
The 13 TeV Measurement

Data: no structure at large $|t|$ → rules out most models
Dip position: moves to lower $|t|$ with increasing energy

New measurement @ 2.76 TeV, $\beta^* = 11m$:
very limited t-range (0.08 – 0.4 GeV2) \Rightarrow dip not reached
Elastic Scattering: the Dip and beyond (A4)

\[R = \frac{\frac{d\sigma}{dt} (\text{bump})}{\frac{d\sigma}{dt} (\text{dip})} \]
pp Cross-Section Measurements: TOTEM vs. ALFA

8 TeV: tension with ATLAS-ALFA due to normalisation (elastic slopes compatible)