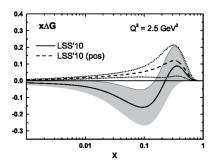
Gluon polarization measurements from longitudinally polarized proton-proton collisions at STAR

Zilong Chang For the STAR Collaboration

Brookhaven National Laboratory, Upton, New York 11973

June 27th, 2019

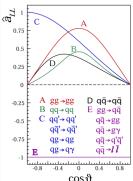


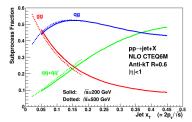
The Proton Spin

Proton spin sum rule:

$$S_z = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q,g}$$

- $\Delta\Sigma \colon \sim 0.3$ constrained by DIS and SIDIS
- ullet ΔG : poorly constrained by DIS and SIDIS
- $L_{q,g}$: unconstrained




• With fit to DIS and SIDIS data, $\Delta G = -0.34 \pm 0.46$, $\Delta G = 0.32 \pm 0.19$ for pos, Leader et al. PRD 82. 114018

Exploring Gluon Polarization at RHIC

 In longitudinally polarized pp collisions, define longitudinal double-spin asymmetry A_{II} as:

$$A_{LL} = rac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} \sim rac{\Delta f_a \Delta f_b}{f_a f_b} \hat{a}_{LL}$$

- Experimentally $A_{LL} = \frac{1}{P_B P_Y} \frac{N_{++} R \times N_{+-}}{N_{++} + R \times N_{+-}}$, with beam polarizations $P_{B(Y)}$, and relative luminosity R
- gg and qg dominate jet production + large $\hat{a}_{LL} \rightarrow$ making A_{LL} for jets sensitive to gluon polarization at both $\sqrt{s} = 200$ and 500 GeV

RHIC Facilities and STAR Detectors

- Polarization orientation varies from RF bunches to RF bunches (9.4 MHz).
- Spin rotators provide choice of polarization orientation (longitudinal or transverse)
- ullet Tracking with TPC: $|\eta| < 1.3$
- \bullet EM energy with BEMC, -1.0 $<\eta<$ 1.0, EEMC, 1.0 $<\eta<$ 2.0, and FMS, 2.65 $<\eta<$ 3.9

Longitudinally polarized pp Dataset at STAR

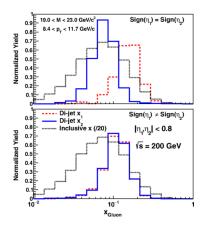
• Selected longitudinally polarized pp datasets at $\sqrt{s}=200$ and 510 GeV:

Year	\sqrt{s} (GeV)	Recorded Luminosity (pb^{-1})	B/Y polarization $\langle P \rangle$
2009	200	25	55
2012	510	82	50/53
2013	510	300	51/52
2015	200	52	53/57

- 2009 and 2012 data are in publication
- 2013 and 2015 data are under analysis

Impact of STAR 200 GeV pp data

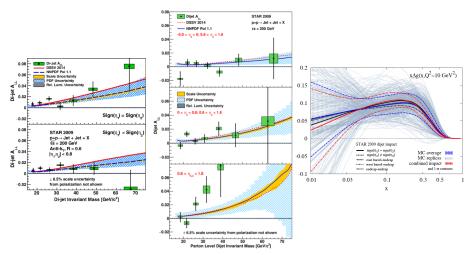
Inclusive Jet and Dijet Measurements


STAR has measured a series of inclusive jet and dijet cross-sections and longitudinal double-spin asymmetry A_{LL} s at $\sqrt{s}=200$ GeV

- Inclusive jets: x_g as low as ~ 0.05 at $\sqrt{s} = 200$ GeV
- Dijets: two jet correlation unfolds x₁ and x₂ at the leading order

$$x_{1} = \frac{1}{\sqrt{s}} (p_{T,3}e^{\eta_{3}} + p_{T,4}e^{\eta_{4}})$$

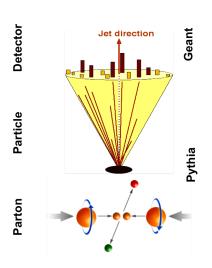
$$x_{2} = \frac{1}{\sqrt{s}} (p_{T,3}e^{-\eta_{3}} + p_{T,4}e^{-\eta_{4}})$$


$$M = \sqrt{x_{1}x_{2}s}$$

• Sampled x_g distributions by inclusive and dijets at $\sqrt{s} = 200 \text{ GeV}$ PRD 95, 071103(R)

Impact of Recent STAR Results

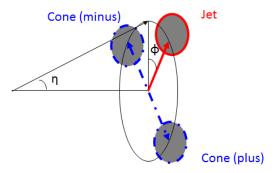
• Recent STAR dijet A_{LL} results: both jets in $|\eta|<$ 0.8, PRD 95, 071103(R) and at least one jet in 0.8 $<\eta<$ 1.8, PRD 98, 032011


• Recent DSSV study with our STAR 200 GeV dijet results:

$$\int_{0.01}^{1} \Delta g(\mathsf{x},Q^2=10\,\mathrm{GeV^2}) = 0.296\pm0.108$$
 arXiv:1902.10548 [hep-ph]

Zilong Chang

Recent study of STAR 510 GeV pp data


Jet Reconstruction and Systematic Uncertainty Studies

- Charged tracks + electro-magnetic towers
- Anti- k_T algorithm with R = 0.5 for $\sqrt{s} = 510$ GeV dataset
- PYTHIA + GEANT + Zero-bias events as embedding sample
 - Data-driven modified PYTHIA Perugia
 Tune
- Correct jet p_T and dijet M_{inv} from measured detector jets to PYTHIA parton jets
- Determine systematic uncertainties:
 - Comparing predicted jet A_{LL} between triggered detector jets and un-biased PYTHIA parton jets → trigger bias and reconstruction uncertainty

Underlying Event Correction to Jet Transverse Energy

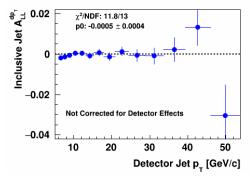
• Two off-axis cones centered at $\pm \frac{\pi}{2}$ away in ϕ and the same η relative to a given jet are used to estimate underlying event for that jet ALICE, PRD 91, 112012.

- The underlying event correction on jet transverse momentum: $dp_T = \frac{1}{2}(\rho_{plus} + \rho_{minus}) \times A_{jet}$
- Sample η dependence of underlying events
- lacktriangle Allow to study the underlying event contribution to jet A_{LL}

Monte Carlo Tune Study

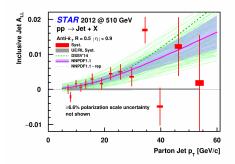
• Choose default Perugia 2012 tune with a smaller $p_{T,0}$ scale parameter $(P_{90} = 0.213 \text{ default } 0.24)$

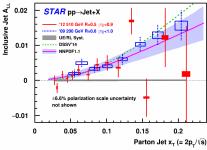
$$\sigma \sim rac{1}{(p_T^2 + p_{T,0}^2)^2}$$
 $ho_{T,0} =
ho_{T,ref} imes (rac{\sqrt{s}}{\sqrt{s_{ref}}})^{
ho_{90}}$

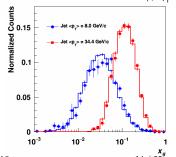

- Reduce multiple parton interaction contribution
- Lead to better matching between PYTHIA simulation and previous STAR charged π^\pm spectrum measurements PLB 637, 161 and PRL 108, 072302
- Jet spectrum comparison for three jet patch triggers, JP0, JP1 and JP2

Markers: data and lines: simulation arXiv:1906.02740 [hep-ex] Counts 10⁷ 10⁶ 10⁵ 10⁴ 10³ 0.2 -0.2(data-simu) 0.0 0.2 0.2 0.2 -0.2Detector Jet p_ [GeV/c]

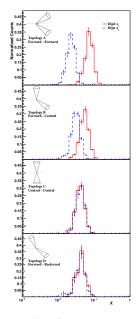
Effects of Underlying Events on Measured Jet A_{LL}

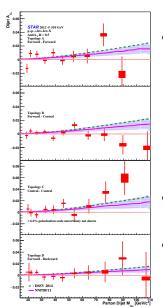

Define underlying event correction dp_T asymmetry:


$$A_{LL}^{dp_T} = \frac{1}{P_A P_B} \frac{\left(< dp_T >^{++} + < dp_T >^{--} \right) - \left(< dp_T >^{+-} + < dp_T >^{-+} \right)}{\left(< dp_T >^{++} + < dp_T >^{--} \right) + \left(< dp_T >^{+-} + < dp_T >^{-+} \right)}$$


- Underlying event correction dp_T asymmetries are consistent with zero arXiv:1906.02740 [hep-ex]
- Underlying event contribution to measured jet A_{LL} is estimated to be $\sim 10^{-4}$, assigned as an uncertainty

STAR 510 GeV Inclusive Jet A_{II} Measurements





- Much reduced systematic uncertainty than the previous measurements at $\sqrt{s} = 200$ GeV, arXiv:1906.02740 [hep-ex]
- Agree with recent polarized PDF predictions
- In the overlapping $x_T = \frac{2p_T}{\sqrt{s}}$ region, both results agree well
- Allow to access x_g as low as 0.015

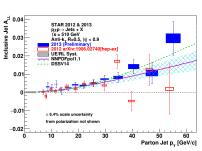
STAR 510 GeV Dijet A_{LL} Measurements

• Dijet A_{LL} vs. invariant mass for four η topologies, arXiv:1906.02740 [hep-ex]

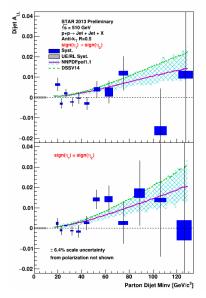
A/Forward-Forward: $0.3 < |\eta_{3,4}| < 0.9$ $\eta_3 \cdot \eta_4 > 0$

 $\begin{array}{l} \text{B/Forward-Central:} \\ |\eta_{3,4}| < 0.3, \\ 0.3 < |\eta_{3,4}| < 0.9 \end{array}$

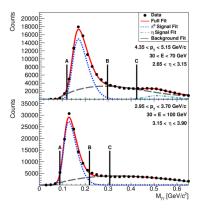
C/Central-Central: $|\eta_{3,4}| < 0.3$

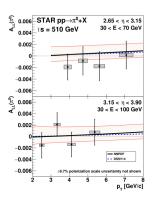

D/Forward-Backward: $0.3 < |\eta_{3,4}| < 0.9$ $\eta_3 \cdot \eta_4 < 0$

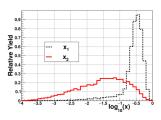
- Topology binning narrows the sampled x_g and the $cos\theta^*$ ranges
- Sampled x_g distributions much narrower than those from inclusive jets


Inclusive and Dijet A_{II} from STAR 2013 510 GeV Data

Preliminary inclusive jet (left) and dijet (right) A_{LL} from STAR 2013 510 GeV

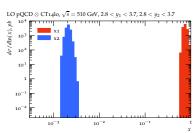

data, arXiv:1809.00923 [nucl-ex]

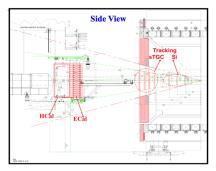

- Same procedure being applied as in 2012 $\sqrt{s} = 510$ GeV data
- The 2012 and 2013 results agree well
- Two η topologies for dijet A_{LL}
- The study of the systematic uncertainty is underway for the final results



STAR 510 GeV Forward π^0 A_{LL}

- π⁰ reconstructed in STAR FMS PRD 98, 032013
- Measured A_{LL} is small, less than 5×10^{-3}
- Allow to access $x_g \sim 10^{-3}$





STAR Forward Upgrade

- STAR is planning to install a Forward Calorimeter System (FCS), including an EMCal and a HCal, and a Forwarding Tracking System (FTS) in time for 2022 RHIC run
- Dijet measurements with one or both jets in the forward region (2.8 < η < 3.7) will be one of the highlights of this upgrade
- With both jets in the FCS, it will provide gluon polarization at $x_g \sim 10^{-3}$

STAR note: PSN0648

Conclusion

- STAR inclusive jet and dijet double-spin asymmetry measurements are unique to explore gluon polarization in the proton
- The 510 GeV results extend gluon polarization over $x \sim 0.015$ to $x \sim 0.2$, arXiv:1906.02740 [hep-ex]
 - Inclusive jets will constrain the magnitude of the gluon polarization
 - 2 Dijets will constrain the shape of $\Delta g(x)$
- Inclusive jet and dijet A_{LL} are being studied from the 2013 pp at $\sqrt{s}=510$ GeV
- ullet Combined inclusive jet A_{LL} from the larger 2015 200 GeV and the smaller published 2009 data will improve the statistical precision by a factor of about 1.6
- The forward upgrade will provide new opportunities to probe low $x\sim 10^{-3}$ gluon polarization where the current polarized PDF studies show large uncertainties

Backup

Underlying Event Systematics on Jet A_{LL}

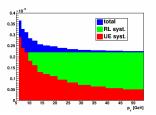


Figure: Underlying event systematic uncertainty on inclusive jet A_{LL} for 2012 510 GeV data compared with systematic uncertainty due to relative luminosity.

STAR Charged π^{\pm} Spectrum

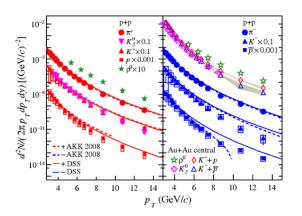


Figure: STAR charged π^{\pm} yields. PRL 108, 072302, 2012