Overview of recent ALICE results

Róbert Vértesi
Wigner RCP Budapest
vertesi.robert@wigner.mta.hu
(for the ALICE collaboration)

This work has been supported by the Hungarian NKFIH/OTKA K 120660 grant and the János Bolyai scholarship of the Hungarian Academy of Sciences
It all started with a big bang...
“Little bangs” in the laboratory

Relativistic Heavy-Ion Collisions

Initial energy density → Hadronization → QGP phase

Kinetic freeze-out → final detected particles distributions

Collision overlap zone

Pre-equilibrium dynamics → Viscous hydrodynamics → Free streaming

\(\tau \sim 0 \text{ fm/c} \) → \(\tau \sim 1 \text{ fm/c} \) → \(\tau \sim 10 \text{ fm/c} \) → \(\tau \sim 10^{15} \text{ fm/c} \)

Courtesy of Paul Sorensen and Chun Shen
"Soft" processes

- Bulk physics: many, low-momentum particles
- From the later stages
- Thermal behavior
- Collective dynamics ("flow")
Probing the nuclear matter

- "Soft" processes
 - Bulk physics: many, low-momentum particles
 - From the later stages
 - Thermal behavior
 - Collective dynamics ("flow")

- "Hard" processes
 - Few, high-momentum particles
 - Early production in analytically calculable pQCD processes
 - Heavy flavor probes
 - Tomography of the QGP, modification in the medium
ALICE (Run-2)

A dedicated heavy-ion experiment at the LHC, excellent PID
ALICE (Run-2)

EMCal: energy, electron ID

TRD: hadron rejection by transition radiation

TOF: identification by precise time of flight

central barrel: $|\eta|<0.9$

V0A (-2.8<\(\eta\)<5.1) & **V0C** (-3.7 \(<\eta<-1.7\)):
centrality

ITS: charged-particle tracking, secondary vertex

TPC: charged-particle tracking, identification

Muon spectrometer:
forward: -4<\(\eta<-2.5\)
muon trigger and tracking

A dedicated heavy-ion experiment at the LHC, excellent PID
Reconstructed heavy-ion collision

- Up to 600 million events per second
- Signals of up to thousands of particles to be identified, processed
- 2-4 GB data every second
ALICE data collected: Run-1 & Run-2

<table>
<thead>
<tr>
<th>System</th>
<th>year(s)</th>
<th>$\sqrt{s_{NN}}$ (TeV)</th>
<th>L_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>2009-2013</td>
<td>0.9</td>
<td>\sim200 μb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.76</td>
<td>\sim100 μb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>\sim1.5 pb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>\sim2.5 pb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2015-2018</td>
<td>5.02</td>
<td>\sim1.3 pb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>\sim59 pb$^{-1}$</td>
</tr>
<tr>
<td>p-Pb</td>
<td>2013</td>
<td>5.02</td>
<td>\sim15 nb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>5.02</td>
<td>\sim3 nb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>8.16</td>
<td>\sim25 nb$^{-1}$</td>
</tr>
<tr>
<td>Xe-Xe</td>
<td>2017</td>
<td>5.44</td>
<td>\sim0.3 μb$^{-1}$</td>
</tr>
<tr>
<td>Pb-Pb</td>
<td>2010-2011</td>
<td>2.76</td>
<td>\sim75 μb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>5.02</td>
<td>\sim250 μb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>5.02</td>
<td>0.9 nb$^{-1}$</td>
</tr>
</tbody>
</table>

- Small to large systems
- Several different collision energies
ALICE data collected: Run-1 & Run-2

<table>
<thead>
<tr>
<th>System</th>
<th>year(s)</th>
<th>$\sqrt{s_{NN}}$ (TeV)</th>
<th>L_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>2009-2013</td>
<td>0.9</td>
<td>$\sim200\ \mu$b$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.76</td>
<td>$\sim100\ \mu$b$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>$\sim1.5\ pb^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>$\sim2.5\ pb^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2015-2018</td>
<td>5.02</td>
<td>$\sim1.3\ pb^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>$\sim59\ pb^{-1}$</td>
</tr>
<tr>
<td>p-Pb</td>
<td>2013</td>
<td>5.02</td>
<td>$\sim15\ nb^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>5.02</td>
<td>$\sim3\ nb^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.16</td>
<td>$\sim25\ nb^{-1}$</td>
</tr>
<tr>
<td>Xe-Xe</td>
<td>2017</td>
<td>5.44</td>
<td>$\sim0.3\ \mu$b$^{-1}$</td>
</tr>
<tr>
<td>Pb-Pb</td>
<td>2010-2011</td>
<td>2.76</td>
<td>$\sim75\ \mu$b$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>5.02</td>
<td>$\sim250\ \mu$b$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>5.02</td>
<td>0.9 (nb^{-1})</td>
</tr>
</tbody>
</table>

- Small to large systems
- Several different collision energies

=> Towards a comprehensive understanding of the strongly interacting nuclear matter
Spectra of identified particles (π, K, p)

- High-precision measurements of identified particles
Spectra of identified particles (π, K, p)

- High-precision measurements of identified particles
- Mass-dependent hardening of spectra with increasing multiplicity

$$T_{\text{eff}} \sim T_{\text{kin}} + \frac{1}{2} m<u_T>^2 \quad \text{(at low } p_T)$$

$$\implies \text{Collective radial expansion}$$
Kinetic freezeout via blast-wave fits

- **Blast-Wave model**
 - particle production from expanding hypersurface
 - β_T: radial expansion velocity
 - T_{kin}: kinetic freeze-out temperature

Schnedermann et al., PRC (1993) 48, 2462

- Simultaneous fits to π, K, p spectra in bins of multiplicity/centrality
- Similar trend observed in pp, p-Pb, Pb-Pb collisions
- Larger β_T in small systems at similar multiplicity
Particle production across systems

- Strangeness enhancement once considered as a sign of QGP
 Rafelski, Müller, PRL 48, 1066 (1986)

- Enhancement increases with strangeness content

- No significant energy and system dependence at given multiplicity

- Smooth evolution with system size
Particle production across systems

- Strangeness enhancement once considered as a sign of QGP
 Rafelski, Müller, PRL 48, 1066 (1986)

- Enhancement increases with strangeness content

- No significant energy and system dependence at given multiplicity

- Smooth evolution with system size

Production of light and strange particles are driven by the characteristics of the final state
Collectivity

- Azimuthal momentum anisotropy
 - parametrized by Fourier coefficients
 \[E \frac{d^3 N}{d^3 p} = \frac{1}{\pi} \frac{d^2 N}{dp_T^2 dy} \left[1 + 2v_1 \cos (\varphi - \Psi_R) + 2v_2 (2[\varphi - \Psi_R]) + \ldots \right] \]
 - \(v_1 \): Radial expansion
 - \(v_2 \): Azimuthal anisotropy ("elliptic flow")
 \[v_2 = \langle \cos (2[\varphi - \Psi_R]) \rangle \]
Collectivity

- Azimuthal momentum anisotropy
 - parametrized by Fourier coefficients
 \[E \frac{d^3N}{d^3p} = \frac{1}{\pi} d^2 \frac{N}{dp_T^2 dy} \left[1 + 2v_1 \cos(\varphi - \Psi_R) + 2v_2 (2[\varphi - \Psi_R]) + \ldots \right] \]
 - \(v_1 \): Radial expansion
 - \(v_2 \): Azimuthal anisotropy ("elliptic flow")
 \[v_2 = \langle \cos(2[\varphi - \Psi_R]) \rangle \]

- Flow caused many surprises...
 1. RHIC: Substantial \(v_2 \), perfect hydro, NCQ scaling
 \(\rightarrow \) strongly coupled QGP
 2. Higher harmonics are important (\(v_2 \sim v_3 \))
 \(\rightarrow \) initial state fluctuations
 3. LHC: Small systems "flow"
 \(\rightarrow \) hydro description \(!=\) QGP
Elliptic flow: light and strange particles

ν_n are sensitive to the full evolution of the system
- initial conditions
- QGP phase
- hadronic phase
Elliptic flow: light and strange particles

- v_n are sensitive to the full evolution of the system
 - initial conditions
 - QGP phase
 - hadronic phase

- Low p_T: hadron mass ordering
Elliptic flow: light and strange particles

- v_n are sensitive to the full evolution of the system
 - initial conditions
 - QGP phase
 - hadronic phase

- Low p_T: hadron mass ordering
- Intermediate p_T (~ 2.5 GeV): ordering by NCQ
 - ϕ meson: clearly determined by mass at low p_T and quark content at intermediate p_T
Elliptic flow: light and strange particles

- v_n are sensitive to the full evolution of the system
 - initial conditions
 - QGP phase
 - hadronic phase

- Low p_T: hadron mass ordering
- Intermediate p_T (~ 2.5 GeV): ordering by NCQ
 - ϕ meson: clearly determined by mass at low p_T and quark content at intermediate p_T
- High p_T: parton energy loss dominant
Flow harmonics across systems

- Long-range multiparticle correlations in all systems
- Two-particle, multi-particle and subevent methods are qualitatively the same
Flow harmonics across systems

- Long-range multiparticle correlations in all systems
 - Two-particle, multi-particle and subevent methods are qualitatively the same
- Same ordering of v_2, v_3 and v_4
 - Quantitative match at low multiplicities
Flow harmonics across systems

- Long-range multiparticle correlations in all systems
 - Two-particle, multi-particle and subevent methods are qualitatively the same
- Same ordering of \(v_2 \), \(v_3 \) and \(v_4 \)
 - Quantitative match at low multiplicities
 - At higher values, \(v_2 \) does not scale with \(N_{ch} \): different initial geometries in small and large systems
Flow harmonics across systems

- Long-range multiparticle correlations in all systems
 - Two-particle, multi-particle and subevent methods are qualitatively the same

- Same ordering of v_2, v_3 and v_4
 - Quantitative match at low multiplicities
 - At higher values, v_2 does not scale with N_{ch}: different initial geometries in small and large systems

- Model description of pp and p-Pb data is not satisfactory (PYTHIA8, IP-Glasma+MUSIC+UrQMD)
Direct photons are all photons except from hadron decays: Hard scattering, jet radiation, sQGP, hadron gas
Direct photons are all photons except from hadron decays: Hard scattering, jet radiation, sQGP, hadron gas

Excess in direct photon production over models and pp at low p_T

Thermal radiation
Thermal photons: QGP temperature

- Direct photons are all photons except from hadron decays: Hard scattering, jet radiation, sQGP, hadron gas

- Excess in direct photon production over models and pp at low p_T
 - Thermal radiation

- Effective ('average') temperature: $T_{\text{eff}} \approx 297 \pm 12(\text{stat}) \pm 41(\text{syst})$ MeV
 - much higher than $T_C \sim 170$ MeV
 - \Rightarrow deconfined matter!

- $T_{\text{ini}} \sim 300 - 600$ MeV (via models)
Direct photons in p-Pb collisions

- **Excess in direct photon production over models and pp at low p_T**
 - Thermal radiation

- **No such excess seen in pPb collisions above model calculations**
Flow of direct photons

- Direct photon flow is as large as decay photon flow (ie. final state)
Direct photon flow is as large as decay photon flow (ie. final state)

No role of earlier states at all?

These results question the current understanding of thermal photons!
Penetrating probes of the medium

- **pp**: pQCD benchmark and reference for larger systems
- **p-A**: cold nuclear matter effects
- **A-A**: hot nuclear matter effects
Penetrating probes of the medium

- **pp**: pQCD benchmark and reference for larger systems
- **p-A**: cold nuclear matter effects
- **A-A**: hot nuclear matter effects

- **Nuclear modification**

\[
R_{AA}(p_T) = \frac{1}{\langle N_{\text{coll}} \rangle} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}
\]

- Clearly an effect of the QGP in AA collisions
Light and strange hadron energy loss

- **Universal, strong suppression at high-\(p_T\)**
 - Regardless of hadron types (light or strange)
- **Sensitivity to radial flow, hadronization at low-\(p_T\)**

![Graph 1](image1.png)

PRC 98 (2018), 044901

![Graph 2](image2.png)

PRC 95 (2017), 064606
Jet-medium interactions

- **Low p_T:** Azimuthal h-h correlations, per-trigger normalized
 - **Broadening** of central angular correlation peaks in the $\Delta \eta$ direction
 - Understanding: rescattering with radial flow (AMPT)
Jet-medium interactions

- **Low** p_T: Azimuthal h-h correlations, per-trigger normalized
 - Broadening of central angular correlation peaks in the $\Delta \eta$ direction
 - Understanding: rescattering with radial flow (AMPT)
- **Higher** p_T: Azimuthal h-h correlations, $I_{AA} = Y_{AA}/Y_{pp}$
 - Narrowing of the peak in central events in the $\Delta \eta$ direction
 - Jet structure modifications? No proper understanding by models.
Jet Substructure

- First intra-jet splitting z_g

$$z_g = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$
Jet Substructure

- First intra-jet splitting z_g
 - At small angles ($\Delta R < 0.1$): consistent z_g distributions in Pb-Pb and vacuum

$$z = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$
Jet Substructure

- First intra-jet splitting z_g
 - At small angles ($\Delta R < 0.1$): consistent z_g distributions in Pb-Pb and vacuum
 - At large angles ($\Delta R > 0.2$): z_g distributions are steeper in medium than in vacuum

- Early jet development influenced by medium
Probes with heavy flavor

- Heavy quarks are...
 - (Mostly) produced in early hard processes
 \[\tau_{c,b} \sim \frac{1}{2} m_{c,b} \sim 0.1 \text{ fm} \ll \tau_{\text{QGP}} \sim 5-10 \text{ fm} \]
 - Their numbers are (almost) conserved:
 No flavour changing, negligible thermal production
 → Very little production or destruction in the sQGP
 \[m >> \Lambda \ (m_c \sim 1.5 \text{ GeV}, \ m_b \sim 5 \text{ GeV}) \]
Probes with heavy flavor

- Heavy quarks are...
 - (Mostly) produced in early hard processes
 \[\tau_{c,b} \sim \frac{1}{2} m_{c,b} \sim 0.1 \text{ fm} \ll \tau_{\text{QGP}} \sim 5-10 \text{ fm} \]
 - Their numbers are (almost) conserved:
 No flavour changing, negligible thermal production
 \[\rightarrow \] Very little production or destruction in the sQGP
 \[m \gg \Lambda \ (m_c\sim 1.5 \text{ GeV}, \ m_b\sim 5 \text{ GeV}) \]

- Open heavy flavor: Transport through the whole system
 - Access to transport properties of the system
 - Flavor-dependent hadronization
 fragmentation: color charge effects, dead cone; coalescence
 - Penetrating probes down to low momenta

Probes with heavy flavor

- Heavy quarks are...
 - (Mostly) produced in early hard processes
 \(\tau_{c,b} \sim \frac{1}{2} m_{c,b} \sim 0.1 \text{ fm} \ll \tau_{\text{QGP}} \sim 5-10 \text{ fm} \)
 - Their numbers are (almost) conserved:
 No flavour changing, negligible thermal production
 \(\rightarrow \) Very little production or destruction in the sQGP
 \(m \gg \Lambda \) (\(m_{c} \sim 1.5 \text{ GeV}, m_{b} \sim 5 \text{ GeV} \))

- Open heavy flavor: Transport through the whole system
 - Access to transport properties of the system
 - Flavor-dependent hadronization
 fragmentation: color charge effects, dead cone; coalescence
 - Penetrating probes down to low momenta

- Quarkonia: dissociation and regeneration in the QGP
 - Debye screening of the color charge
 - Sequential melting of different states
 \(\rightarrow \) QGP thermometer
 - However: strong regeneration of charmonia at LHC!
Heavy flavor jets in p-Pb

- Heavy-flavor jets measured down to $p_T = 10$ GeV/c
- No mid-rapidity nuclear modification of HFE jets visible
 - Regardless of chosen jet resolution parameter
- Cross section of beauty jets tagged with displaced vertices also described by POWHEG HVQ x A (pp) within uncertainty
Pb-Pb - Heavy-flavor energy loss

- **Strong suppression at high-$$p_T$$**
 - Charm is suppressed similarly to light and strange quarks
 - No mass ordering (dead cone, color charge & fragmentation effects)
- **Less suppression for D mesons at low-$$p_T$$**

\[
R_{AA}(p_T) = \frac{1}{\langle N_{\text{coll}} \rangle} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}
\]
Pb-Pb - Heavy-flavor energy loss

- **Strong suppression at high-**p_T**:**
 - Charm is suppressed similarly to light and strange quarks
 - No mass ordering (dead cone, color charge & fragmentation effects)

- **Less suppression for** D **and** D_S **mesons at low-**p_T**:**

Mathematical expression:

$$R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}$$
Pb-Pb - Heavy-flavor energy loss

- **Strong suppression at high-\(p_T\)**
 - Charm is suppressed similarly to light and strange quarks
 - No mass ordering (dead cone, color charge & fragmentation effects)

- **Less suppression for \(D\) and \(D_s\) mesons at low-\(p_T\)**

- **HFE: beauty appears less suppressed than charm**
 - Mass ordering
Open charm and collectivity

- Precise data constrains models at low p_T
 - Simultaneous description of R_{AA} and v_2 for both D and D_s
 - Charm - light quark coalescence on top of shadowing and collisional/radiative energy loss
Open charm flow vs. event shapes

- Unbiased D-meson flow similar in magnitude to LF flow
- Small (large) \(q_2 \) corresponds to smaller (larger) D-meson flow
- Reasonable description by transport models

\[
q_2 = \frac{\mathcal{Q}_2}{\sqrt{M}},
\]

\[
\mathcal{Q}_2 = \left(\frac{\sum_{i=1}^{M} \cos(2\phi_i)}{\sum_{i=1}^{M} \sin(2\phi_i)} \right)
\]
Quarkonia

- Quarkonium suppression due to dissociation of bound states in a colored medium (Debye-screening of qqbar potential)
- J/ψ: less suppression at LHC than at RHIC. “The J/ψ puzzle”
 - Understanding: later recombination of the c-cbar pairs
Quarkonia

- Quarkonium suppression due to **dissociation** of bound states in a colored medium (**Debye-screening** of qqbar potential)
- **J/ψ**: less suppression at **LHC** than at **RHIC**. "The J/ψ puzzle"
 - Understanding: later recombination of the c-cbar pairs
- **ϒ**: strong suppression - regeneration effect is small
 - Models: \(T_{ini} \sim 520-750 \text{ MeV} \) in \(\sqrt{s_{NN}}=5.02 \text{ TeV} \) Pb-Pb collisions (consistent with thermal photon measurements)
Anisotropy of charmonium: J/ψ

- **Substantial J/ψ v_2 and v_3**
 - RHIC: at low-p_T, flow is consistent with 0
 - LHC: Sizeable, less than LF or D
 - Consistent with strong charmonium recombination
 - Quantitative description challenging
Anisotropy of bottomonium: $Y(1S)$

- First measurement
- v_2 consistent with 0: **Only hadron at LHC**
 - Early production, decouples from medium
 - Later recombination is not strong (#b<<#c)
Charmed baryons in \(pp: \Lambda_c^+/D^0, \Xi_c^0/D^0 \)

- \(\Xi_c^0/D^0 \) as well as \(\Lambda_c^+/D^0 \) is underestimated by models based on \(ee \) collisions: Does charm hadronization depend on collision system?
 - PYTHIA8 with string formation beyond leading colour approximation?
 Christiansen, Skands, JHEP 1508 (2015) 003
 - Feed-down from augmented set of charm-baryon states?
 He, Rapp, 1902.08889

\[\Xi_c^0/D^0 \]
\(\Lambda_c^0 / D \) in p-Pb and Pb-Pb

- A hint of higher \(\Lambda_c^+ / D^0 \) ratio in central Pb-Pb collisions than in pp
- Trend from pp through p-Pb to Pb-Pb is not clear by current precision
A hint of higher Λ_c^+/D^0 ratio in central Pb-Pb collisions than in pp
- Trend from pp through p-Pb to Pb-Pb is not clear by current precision
- Catania model including both coalescence and fragmentation describes the Λ_c^+/D^0 ratio in Pb-Pb collisions
ALICE Upgrade for Run-3 and Run-4

- Up to 50 kHz Pb-Pb interaction rate
- Requested Pb-Pb luminosity: 13 nb⁻¹ (50-100x Run2 Pb-Pb)
- Improved tracking efficiency and resolution at low pT
- Detector upgrades: ITS, TPC, MFT, FIT
- Faster, continuous readout
ALICE Upgrade for Run-3 and Run-4

- Up to 50 kHz Pb-Pb interaction rate
- Requested Pb-Pb luminosity: 13 nb⁻¹ (50-100x Run2 Pb-Pb)
- Improved tracking efficiency and resolution at low pT
- Detector upgrades: ITS, TPC, MFT, FIT
- Faster, continuous readout

ITS upgrade

Projected performance

Expected precision

Summary and outlook

- High-luminosity Run-1 + Run-2 data available
Summary and outlook

- High-luminosity Run-1 + Run-2 data available
- System size and energy dependence
 - Onset of QGP effects, origin of collectivity
Summary and outlook

- High-luminosity Run-1 + Run-2 data available
- System size and energy dependence
 - Onset of QGP effects, origin of collectivity
- Detailed understanding of QGP properties
 - Particle production - global properties
 - Collective behavior - bulk properties
 - Penetrating probes - interactions, jet development
Summary and outlook

- High-luminosity Run-1 + Run-2 data available
- System size and energy dependence
 - Onset of QGP effects, origin of collectivity
- Detailed understanding of QGP properties
 - Particle production - global properties
 - Collective behavior - bulk properties
 - Penetrating probes - interactions, jet development
- Flavor-dependent studies
 - Precision charm and a wide set of beauty measurements
Summary and outlook

- High-luminosity Run-1 + Run-2 data available
- System size and energy dependence
 - Onset of QGP effects, origin of collectivity
- Detailed understanding of QGP properties
 - Particle production - global properties
 - Collective behavior - bulk properties
 - Penetrating probes - interactions, jet development
- Flavor-dependent studies
 - Precision charm and a wide set of beauty measurements
- Run-3 after LS2 (2021): improved luminosity, detectors
 - Precision measurements: charmed barions, beauty etc.
 - Jet structures, event shapes: understand soft-hard boundary
Thank you!

...and stay tuned for new great results

This work has been supported by the Hungarian NKFIH/OTKA K 120660 grant and the János Bolyai scholarship of the Hungarian Academy of Sciences
Multiplicities in pp, p-Pb, Xe-Xe, Pb-Pb

- Charged-particle multiplicity density and total multiplicity vs. centrality
 - Deviation from N_{part} scaling: Steeper rise in most central Xe-Xe and Pb-Pb collisions due to upward fluctuations
- Collision geometry plays an important role in particle production!
- Production of light nuclei is exponentially suppressed by A
- Production is consistent with thermal model
- d/p ratio depends on multiplicity
 - pp, p-Pb, Pb-Pb
 - 2.76 through 13 TeV
Measurement down to $p_T = 40 \text{ GeV}/c \Rightarrow$ redistribution of energy

Only weak dependence seen in data on jet resolution R

Challenge to some models: stronger R dependence predicted than in data
- R_{pPb} of inclusive J/ψ at $\sqrt{s_{NN}} = 8.16$ TeV and $\sqrt{s_{NN}} = 5.02$ TeV are consistent within uncertainties
- Rapidity dependence for $p_T > 0$ are described by models including CNM effects