

The proton and its spin in 3D momentum space

Andrea Signori

EDS Blois 2019

Quy Nhon, Vietnam (remote talk)

June 27th, 2019

Outline of the talk

Hadron structure ... :

- 1) Transverse-momentum-dependent distributions (TMDs)
- 2) Transverse spin and the Sivers function
- ... and connection to high-energy physics:
- 3) The unpolarized TMD PDF
- 4) impact on W mass determination

TMDs

TMD PDFs

extraction of a parton whose momentum has longitudinal and transverse components with respect to the parent hadron momentum

> richer structure than collinear PDFs

courtesy A. Bacchetta

Hadron tomography

Argonne

Motivations

Nucleon/nuclear tomography in momentum space:

aimed at understanding how hadrons are built in terms of the elementary degrees of freedom of QCD

High-energy phenomenology:

improve our understanding of scattering experiments and their potential to explore BSM physics assuming a certain degree of knowledge of hadron structure

Quark TMD PDFs

 $\Phi_{ij}(k,P;S,T) \sim \text{F.T.} \langle PS \mid \bar{\psi}_j(0) \ U_{[0,\xi]} \ \psi_i(\xi) \mid PS \rangle_{|_{LF}}$

similar table for **gluons** and for **fragmentation**

bold : also collinear

red : time-reversal odd (universality properties)

extraction of a **quark not** collinear with the proton

encode all the possible **spin-spin** and **spin-momentum correlations** between the proton and its constituents

The Sivers function

Quark correlations

scattering process participated by a hadron : need a "transition" from the hadron to a parton

Parton Distribution Function - PDF

Quark correlations

scattering process participated by a hadron : need a "transition" from the hadron to a parton

Parton Distribution Function - PDF

hadronic part described as a **quark-quark correlation** in space-time

$$\Phi(k, P) = F.T.\langle P | \overline{\psi_j}(0) \ U \ \psi_i(\xi) | P \rangle$$

ξ is the Fourier-conjugated of quark momentum k

Gauge invariance

11

operator implementing the parallel transport equation for the spinor

Process dependence

Process dependence

Generalized universality

The hard process determines the direction of the gauge link Thus **the distributions depend on the process**

What happens to the concept of hadron structure?

Generalized universality

The interplay between **time-reversal** symmetry and **gauge** symmetry generates relations between the two different gauge link configurations. For example:

$$f_1^{a \ [+]}(x, k_T^2) = f_1^{a \ [-]}(x, k_T^2)$$

 $f_{1T}^{a\perp \ [+]}(x,k_T^2) = -f_{1T}^{a\perp \ [-]}(x,k_T^2)$

T-even distribution

striking consequence of the symmetries of QCD

The "sign-change" relation for T-odd TMD PDFs, such as the Sivers function, is **yet to be proved experimentally.**

See also talk by A. Quintero

$$f_{1T}^{a\perp \ [+]}(x,k_T^2) = -f_{1T}^{a\perp \ [-]}(x,k_T^2)$$

See also talk by A. Quintero

$$f_{1T}^{a\perp \ [+]}(x,k_T^2) = -f_{1T}^{a\perp \ [-]}(x,k_T^2)$$

Collins, PLB 536 (02)

See also talk by A. Quintero

See also talk by A. Quintero

See also talk by M. Quaresma

The unpolarized TMD PDF

TMD factorization

In certain processes the cross section can be **factorized** in contributions characterized by a specific **scaling of the momenta**

$$d\sigma \sim \mathcal{H} \begin{array}{c} f_1^{bare} & f_1^{bare} \\ & \sim \mathcal{H} \end{array} \begin{array}{c} f_1^{bare} & f_1^{bare} \end{array} \mathcal{S}$$

renormalized TMD PDF :

IR div. : long-distance physics UV div. and rapidity div. cancelled by UV-renormalization and soft factor S

 $f_1(x, k_T^2; \boldsymbol{\mu}, \boldsymbol{\zeta})$

Evolution with respect to two scales

TMD evolution

$$\begin{aligned} f_1^a(x, b_T^2, \mu_f, \zeta_f) &= f_1^a(x, b_T^2, \mu_i, \zeta_i) & \text{bt, Fourier conjugate of kt} \\ \text{two "evolution scales"} & \times \exp\left\{\int_{\mu_i}^{\mu_f} \frac{d\mu}{\mu} \gamma_F\left[\alpha_s(\mu), \frac{\zeta_f}{\mu^2}\right]\right\} & \text{evolution in mu} \\ \mu_i \to \mu_f & \\ \times \left(\frac{\zeta_f}{\zeta_i}\right)^{-K(b_T, \mu_i)} & \text{evolution in zeta} \\ \zeta_i \to \zeta_f & \end{aligned}$$

Input TMD distribution can be expanded at low b_{T} on the collinear distributions

$$f_1^a(x, b_T^2, \mu_i, \zeta_i) = \sum_b C_{a/b}(x, b_T^2, \mu_i, \zeta_i) \otimes f_b(x, \mu_i)$$

A sensible choice is to set the initial and final scale as:

$$\zeta_i = \mu_i^2 = 4e^{-2\gamma_E}/b_T^2 \equiv \mu_b^2$$
$$\zeta_f = \mu_f^2 = Q^2$$

TMD evolution

Non-perturbative contributions

Non-perturbative contributions

The W mass determination

References :

- Bacchetta, Bozzi, Radici, Ritzmann, AS 1807.02101
- Bozzi, AS 1901.01162

The W mass

ATLAS Collab. arXiv:1701.07240

 $m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$ = 80370 ± 19 MeV,

 $m_{W^+} - m_{W^-} = -29 \pm 28$ MeV.

W boson production

(TMD) parton distribution functions

(TMD) parton distribution functions

Kinematics (W)

$Q = m_W$	mass
y	rapidity
q_T	Transverse
	momentum

Kinematics (partons)

$$x_{1,2} = \frac{Q}{\sqrt{s}}e^{\pm y}$$

Collinear momentum fractions

 $k_{T1,2}$

Transverse momenta

If the W were exactly collinear ($p_{TW}=0$, no TMD effects), the distribution of events would look like this

If the W were exactly collinear ($p_{TW}=0$, no TMD effects), the distribution of events would look like this

If TMDs are taken into consideration, the distribution gets modified like this

If the W were exactly collinear ($p_{TW}=0$, no TMD effects), the distribution of events would look like this

Detector effects cause further changes

If TMDs are taken into consideration, the distribution gets modified like this

Which kind of effect are we after?

 $\dot{M}_W = 80.398 \text{ GeV}$ $M_W = 80.418 \text{ GeV}$ $\frac{d\sigma}{dp_{\perp}^{l}} \; [\mathrm{pb}]$ _100 Ц LHC W^+ 8 TeV p_{\perp}^l [GeV]

see, e.g., Bozzi, Rojo, Vicini, arXiv:1104.2056

Which kind of effect are we after?

see, e.g., Bozzi, Rojo, Vicini, arXiv:1104.2056

A change of 10 MeV in the W mass induces distortions at the per mille level only: challenging

Which kind of effect are we after?

see, e.g., Bozzi, Rojo, Vicini, arXiv:1104.2056

A change of 10 MeV in the W mass induces distortions at the per mille level only: challenging

Our findings

The fact that quark intrinsic transverse momentum can be flavordependent leads to an additional uncertainty on M_w, not considered so far:

$$-6 \le M_{W^+} \le 9 \text{ MeV}$$

 $-4 \le M_{W^-} \le 3 \text{ MeV}$

Statistical uncertainty: ±2.5 MeV

- The four-loop QCD corrections generates a shift of -2.2 MeV
- The expectation from missing higher orders is 4 MeV

Eur.Phys.J. C74 (2014) 3046

Conclusions

Transverse-momentum-dependent parton distribution functions are a precious tool to map hadron structure in a 3D momentum space

The **symmetries of QCD** (in particular the gauge symmetry and time-reversal invariance) predict a **sign change** for certain distributions, such as the Sivers function

More progress from the theoretical and experimental point of view is needed to confirm this striking prediction of the theory

As for collinear PDFs, the transverse structure and its flavor-dependence can have an impact on precision studies at high-energies

This is an example of the **connection** between **hadron structure studies beyond the collinear** picture and **HEP**

We need **more flavor-sensitive data** (e.g. SIDIS) to constrain the flavor-dependence of the unpolarized TMD PDFs (**Electron-lon Collider**)

Backup

Data

Towards an EIC

New kinematic windows :

JLab12 will explore the **valence** quark region (large x) EIC will explore the region dominated by **sea quarks** and **gluons**

see R. Ent - INT 17-3 program

The "sweet spot" for the EIC parameters is a balance of

- High enough **energies** to probe hadron structure in new kinematic windows and better control factorization
- High enough luminosity for precise nucleon imaging
- multi-purpose and specialized detectors

unpolarized collinear PDF - f1(x)

Structure vs radiation

high predictive power weak influence of non-perturbative part

low predictive power strong influence of non-perturbative part

 \mathcal{X}

Can we prove this formally? Yes : saddle point approximation

Experimental data

EW observables

Eur.Phys.J. C74 (2014) 3046

- tension between direct measurements and indirect determinations/global EW fit
- larger uncertainty in direct determinations

Systematic uncertainties @ ATLAS

W-boson charge	W^{\perp}		W^+		<i>W</i> ⁻		Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}		
$m_W [MeV]$								
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7		
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4		
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5		
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9		
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6		
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3		
Total	15.9	18.1	14.8	17.2	11.6	12.9		

Systematic uncertainties @ ATLAS

_								
	W-boson charge	W^+		W^-		Combined		EXPERIMEN
	Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	_
	δm_W [MeV]							-
X	Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7	
	AZ tune	3.0	3.4	3.0	3.4	3.0	3.4	
	Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5	
	Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9	
	Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6	
	Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3	
_	Total	15.9	18.1	14.8	17.2	11.6	12.9	_

This contribution contains also intrinsic transverse momentum of partons. The MC has been tuned to describe Z-boson data

TMD factorization

38

Transverse mass

рт

mτ

Transverse mass

Transverse mass: important detector smearing effects, weakly sensitive to p_{TW} modelling Lepton p_T : moderate detector smearing effects, extremely sensitive to p_{TW} modelling

Transverse mass

Transverse mass: important detector smearing effects, weakly sensitive to p_{TW} modelling Lepton p_T : moderate detector smearing effects, extremely sensitive to p_{TW} modelling

*p*_{TW} modelling depends on flavour and all-order treatment of QCD corrections

Results

We compute the chi2 between templates and pseudo data, find which template gives the best description and determine ΔM_W

The statistical uncertainty of the template-fit procedure has been estimated by considering statistically equivalent those templates for which $\Delta\chi^2 = \chi^2 - \chi^2_{min} \leq 1$

$W^+ vs W^-$

ATLAS finding : $m_{W^+} - m_{W^-} = -29 \pm 28$ MeV. $m_{W^-} > m_{W^+}$

ATLAS Collab. arXiv:1701.07240

Part of the discrepancy between the mass of the W+ and the W- can be **artificially induced** by not considering the flavor structure in transverse momentum.

For example, sets 1 and 2 imply $\,\Delta m_{W^-} > \Delta m_{W^+}$

This implies that building templates with sets 1,2, instead of flavor-independent values, the **difference would be reduced**.

	ΔM	l_{W^+}	ΔM_{W^-}			
Set	m_T	$p_{T\ell}$	m_T	$p_{T\ell}$		
1	0	-1	-2	3		
2	0	-6	-2	0		
3	-1	9	-2	-4		
4	0	0	-2	-4		
5	0	4	-1	-3		

Gluon TMDs

$$e \ p \to e \ \text{jet jet } X \qquad p \ p \to J/\psi \ \gamma \ X \qquad p \ p \to \eta_c \ X$$

- factorization properties in effective theories

- first extraction of the unpolarized gluon TMD PDF from quarkonium-pair production at LHC (1710.01684)

Data in unpolarized TMD "global" fit

high predictive power weak influence of NP

low predictive power strong influence of NP

