What QCD teaches us about Quantum Gravity, and vise versa

Masanori Hanada University of Southampton

QCD

"—"

Quantum Gravity

QCD

"—"

Quantum Gravity

.||•

Super Yang-Mills (SYM)

QCD

"="

Quantum Gravity

.11°

Super Yang-Mills (SYM)

Superstring Theory

Gauge/gravity duality

Quantum Gravity Super Yang-Mills Superstring Theory Gauge/gravity duality

 QCD to String (Lattice Simulation)

String to QCD

(New symmetry breaking mechanism)

AdS/CFT Duality

(Maldacena 1997)

.II° QCD

AdS/CFT Duality

(Maldacena 1997)

.||' QCD

Gauge/Gravity Duality

(Maldacena 1997, Itzhaki-Maldacena-Sonnenschein-Yankielowicz 1998, ...)

By deriving various field theories from string theory and considering their large N limit we have shown that they contain in their Hilbert space excitations describing supergravity on various spacetimes. We further conjectured that the field theories are dual to the full quantum M/string theory on various spacetimes. In principle, we can use this duality to give a definition of M/string theory on flat spacetime as (a region of) the large N limit of the field theories. Notice that this is a non-perturbative proposal for defining such theories, since the corresponding field theories can, in principle, be defined non-perturbatively. We

Maldacena,
"The Large N Limit of Superconformal
Field Theories and Supergravity"
(1997)

QCD to String (Lattice Simulation)

String to QCD

(New symmetry breaking mechanism)

Gauge/Gravity Duality

(Maldacena 1997, Itzhaki-Maldacena-Sonnenschein-Yankielowicz 1998)

Solve it by using lattice methods.

And learn about quantum gravity.

STRING

large-N, strong coupling

large-N, finite coupling

finite-N, finite coupling

SUGRA easier

tree-level string
(SUGRA+α')
more difficult
Quantum string
(g_s >0)
very difficult

STRING

large-N, strong coupling

large-N, finite coupling

finite-N, finite coupling

SUGRA easier

tree-level string
(SUGRA+α')
more difficult
Quantum string
(g_s >0)
very difficult

have to solve it

large-N, strong coupling

large-N, finite coupling

finite-N, finite coupling

STRING

But this is much easier tree-level string $(SUGRA+\alpha')$ more difficult Quantum string $(g_s > 0)$ very difficult

STRING

'applied AdS/CFT'

large-N, strong coupling

SUGRA easier

large-N, finite coupling

finite-N, finite coupling

tree-level string (SUGRA+α') more difficult

Quantum string (gs >0) very difficult

Various cool applications.

STRING

large-N, strong coupling

SUGRA easier

large-N, finite coupling

tree-level string (SUGRA+α') more difficult

finite-N, finite coupling

Quantum string (gs >0) very difficult

that's cool, but we want to learn about quantum gravity

STRING

large-N, strong coupling

+ integrability, supersymmetric nonrenormalization, ...

large-N, finite coupling

finite-N, finite coupling

(SUGRA+α')
more difficult

Quantum string (gs >0) very difficult

STRING

large-N, strong coupling

SUGRA easier

large-N, finite coupling

finite-N, finite coupling

tree-level string (SUGRA+α') more difficult

Quantum string (gs >0) very difficult

But this part is more important... Lattice Gauge Theory Simulation

diagonal elements = particles (D-branes)
off-diagonal elements = open strings
(Witten, 1994)

black hole = bound state of D-branes and strings

= deconfined phase

N=∞ obtained from N=16, 24, 32 Continuum limit from 8,12,16, ..., 64 lattice points

Monte Carlo String/M-theory Collaboration

Gravity = SYM @ finite-T

$$E/N^2 = aT^{14/5} + b T^{23/5} + c T^{29/5}$$

3-parameter fit (4-parameter is too much)

$$a = 7.33 + / - 0.35$$

1606.04951 [hep-lat] + recent data

$$E/N^2 = 7.41T^{14/5} + b T^{23/5} + c T^{29/5} + ... + O(1/N^2)$$

STRING = SYM @ finite-T

$$E/N^2 = 7.41T^{14/5} + b T^p + c T^{p+6/5}$$
 3-parameter fit (4-parameter is too much)

* We are adding more data points to make the fit even more reliable; especially studying the parameter region where higher order terms become smaller.

1/N correction vs quantum correction tested as well.

(MH-Hyakutake-Ishiki-Nishimura, Science 2014)

QCD to String (Lattice Simulation)

String to QCD

(New symmetry breaking mechanism)

J. Maltz

G. Ishiki

H. Watanabe

C. Peng

A. Jevicki

N. Wintergerst

• Confinement phase: $E \sim N^0$

• Deconfinement phase: $E \sim N^2$

• Confinement phase: $E \sim N^0$

• Deconfinement phase: $E \sim N^2$

What if E $\sim N^2/100$?

• Confinement phase: $E \sim N^0$

• Deconfinement phase: $E \sim N^2$

What if $E \sim N^2/100$?

'partially' deconfine

N/10

(MH-Maltz, 2016)

Why is it interesting?

• We have studied black hole with positive specific heat

Schwarzschild black hole has <u>negative specific heat</u>

Partial deconfinement ~ Schwarzschild black hole

Black Hole in $AdS_5 \times S^5 = 4d N = 4 SYM on S^3$

Graviton gas

Hagedorn String

Small BH E ~ N²T⁻⁷

Black Hole in $AdS_5 \times S^5 = 4d N = 4 SYM on S^3$

Black Hole in $AdS_5 \times S^5 = 4d N = 4 SYM on S^3$

strongly coupled 4d SYM

water/ice

How can we explain such difference?

separation in color d.o.f

separation in space

M D-branes form the bound state

SU(M) is deconfined — 'partial deconfinement'

Can explain E ~ N^2T^{-7} for 4d SYM, $N^{3/2}T^{-8}$ for ABJM (String Theory \rightarrow 10d) (M-Theory \rightarrow 11d)

Why can negative specific heat appear?

Why can negative specific heat appear?

 $T \sim E/M^2$

M is a function of E

strongly coupled 4d SYM

strongly coupled 4d SYM

Can explain E ~ N²T⁻⁷ for 4d SYM.

- Various consistency checks, with and without assuming holographic dual.
- Can be proven for some weakly-coupled theories.
- Gauge symmetry gets broken, then restored.

$$SU(N) \rightarrow SU(M) \times SU(N-M) \times U(1) \rightarrow SU(N)$$

- No need for center symmetry, in order to define 'deconfinement'.
- U(1) deconfinement, SU(2) confinement phase in QCD?

M.H.-Maltz, 2016, JHEP M.H.-Ishiki-Watanabe, 2018, JHEP M.H.-Jevicki-Peng-Wintergerst, to appear, hep-th Evans-M.H.-O'Bannon-Robinson, in progress

(For details and precise meanings, please ask me questions anytime after the talk!)

transition 1: confinement to partial deconfinement (black hole formation begins)

transition 1: confinement to partial deconfinement (black hole formation begins)

transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

transition 1: confinement to partial deconfinement (black hole formation begins)

transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

$$SU(N) \rightarrow SU(M) \times SU(N-M) \times U(1) \rightarrow SU(N)$$

transition 1: confinement to partial deconfinement (black hole formation begins)

transition 2: partial deconfinement to complete deconfinement (black hole formation ends)

$$SU(N) \rightarrow SU(M) \times SU(N-M) \times U(1) \rightarrow SU(N)$$

SU(2) confines in QCD → enhanced chiral symmetry → new 'pion'?

Conclusion

Conclusion

Conclusion

