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® QCD to String

(Lattice Simulation)

® String to QCD

(New symmetry breaking mechanism)
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Gauge/Gravity Duality

(Maldacenal 997, ltzhaki-Maldacena-Sonnenschein-Yankielowicz 1998, ...)
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By deriving various field theories from string theory and considering their large /N limit
we have shown that they contain in their Hilbert space excitations describing supergravity
on various spacetimes. We further conjectured that the field theories are dual to the full

quantum M /string theory on various spacetimes. In principle, we can use this duality to

give a definition of M/string theory on flat spacetime as (a region of) the large N limit of

the field theories. Notice that this is a non-perturbative proposal for defining such theories.

since the corresponding field theories can, in principle, be defined non-perturbatively. We

Maldacena,
“The Large N Limit of Superconformal
Field Theories and Supergravity”
(1997)




® QCD to String

(Lattice Simulation)
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(New symmetry breaking mechanism)



Gauge/Gravity Duality

(Maldacenal 997, ltzhaki-Maldacena-Sonnenschein-Yankielowicz 1998)

lIA/IIB string around |

black p-brane definition

(p+1)-d U(N)SYM
(Dp-branes+strings)

p=3 = AdS5xS5 / p:O,1 ,2,3

Solve it by using lattice methods.

And learn about quantum gravity.
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SYMurce  STRING

large-IN, SUGRA
strong coupling easier

tree-level string
» (SUGRA+Q)
more difficult

Quantum string

(8:>0)
very difficult

large-IN,
finite coupling

finite-N,
finite coupling

that’s cool, but we want to learn
about quantum gravity



SYMurce  STRING
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+ Integrability, supersymmetric nonrenormalization, ...
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SYMurce  STRING

large-IN, SUGRA
strong coupling easier

tree-level string
(SUGRA+X’)

large-IN,

finite coupling ' more difficult
finite-N, Qua?;uToitrlng
very difficult

finite coupling

But this part is more important...
Lattice Gauge Theory Simulation
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diagonal elements = particles (D-branes)
off-diagonal elements = open strings

(Witten, 1994)

black hole = bound state of D-branes and strings
= deconfined phase



N=o0 opbtained from N=16, 24, 32
Continuum limit from 8,12,16, ..., 64 lattice points
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Monte Carlo String/M-theory Collaboration



E/N2=aT'45 + b 1235 + ¢ 1295  3-parameter fit
(4-parameter is too much)

a= /.33 +/_ 0.35 1606.04951 [hep-lat] + recent data
T
v

E/N2=7.41T145 4+ b T235 + ¢ T295 4+... + O(1/N?)




E/N2=7.41T14/5 + b Tp + ¢ Tr+6/5  3-parameter fit

(4-parameter is too much)
0=4.6+/-0.3
1606.04951 [hep-lat]

E/N2=7.41T15 + b T235 + ¢ T295 +... + O(1/N?)

% \We are adding more data points to make the fit even more reliable; especially
studying the parameter region where higher order terms become smaller.



 Higher dimensions can also be studied by lattice
simulation. (Serious attempts by several groups.)

* 1/N correction vs quantum correction tested as well.

(MH-Hyakutake-Ishiki-Nishimura, Science 2014)



o QCD to String

(Lattice Simulation)

® String to QCD

(New symmetry breaking mechanism)

G. Ishiki H. Watanabe

C. Pen
J A. JevicKki

N. Wintergerst



® Confinement phase: E ~ N9

® Deconfinement phase: E ~ N2
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What if E ~ N2/100?




® Confinement phase: E ~ N9

® Deconfinement phase: E ~ N2 Nv
—
NﬂO
What if E ~Naytoo V107 I A
N
‘partially’ deconfine !

(MH-Maltz, 2016) N




Why is it interesting”?

® We have studied black hole with positive specific heat

T A2 E /

® Schwarzschild black hole has negative specific heat

T~ E

Partial deconfinement
~ Schwarzschild black hole




Black Hole in AdSsxS% = 4d N=4 SYM on S3

Large BH
E E ~ N2T4

A ‘five dimensional’
— SSis filled
microcanonical
ensemble
(E fix) To

Small BH ‘ten dimensional’
E ~N2T-7 — localized along S°
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E @ -

Small BH E ~ N°T*

E ~ N2T-7
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Black Hole in AdSsxS% = 4d N=4 SYM on S3

Large BH
E E ~ N2T4
A ‘five dimensional’
— SSis filled

canonical
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Small BH ‘ten dimensional’
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strongly coupled
4d SYM
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strongly coupled -
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separation in color d.o.f separation in space
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partially deconfined



M D-branes form the bound state

SU(M) is deconfined — ‘partial deconfinement’

Can explain E ~ N2T-7 for 4d SYM, N3/2T-8 for ABJM

(String Theory — 10d) (M-Theory — 11d)

(MH-Maltz, 2016)



Why can negative specific heat appear?

N2
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T~E/N2 T'~E'/[2x(N/2)?]

T'>T if E'>E/2



Why can negative specific heat appear?

i £

T ~ E/M?

M is a function of E
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strongly coupled

NeH

4d SYM

T

NeH

weakly coupled
4d SYM

Ti=T>

QCD at large quark mass

Ta/

/

Ti=T: T

NgH

QCD at physical quark mass

T2




e (Can explain E ~ N2T-7 for 4d SYM.

N .
e \Various consistency checks, with and without assuming

e (Can be proven for some weakly-coupled theories.

e (Gauge symmetry gets broken, then restored.

SU(N) = SUM)xSU(N-M)xU(1) = SU(N)

® No need for center symmetry, in order to define ‘deconfinement’.

e U(1) deconfinement, SU(2) confinement phase in QCD?

M.H.-Maltz, 2016, JHEP

M.H.-Ishiki-Watanabe, 2018, JHEP
M.H.-Jevicki-Peng-Wintergerst, to appear, hep-th
Evans-M.H.-O’Bannon-Robinson, in progress

(For details and precise meanings, please ask me questions anytime after the talk!)
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transition 1: confinement to partial deconfinement
(black hole formation begins)
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transition 1: confinement to partial deconfinement
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(black hole formation ends)
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transition 1: confinement to partial deconfinement
(black hole formation begins)

transition 2: partial deconfinement to complete deconfinement
(black hole formation ends)

SU(N) = SUM)xSU(N-=M)xU(1) = SU(N)



NgH NeH NeH
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transition 1: confinement to partial deconfinement
(black hole formation begins)

transition 2: partial deconfinement to complete deconfinement
(black hole formation ends)

SU(N) = SUM)xSU(N-=M)xU(1) = SU(N)

SU(2) confines in QCD — enhanced chiral symmetry — new ‘pion’?
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Conclusion

Microscopic descriptions
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QCD Quantum Gravity

Weas !
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