>>> Constraints on $U(1)_{l_{\mu}-l_{\tau}}$ from LHC Data >>> Improvements for arXiv:1811.12446[†]

Name: ZHANG, Zhongyi 中一[‡] Date: August 14, 2019

[†]Manuel Drees, Meng Shi, Zhongyi Zhang [‡]zhongyi@th.physik.uni-bonn.de

>>> Contents

- 1. Lagrangian and Signals of $U(1)_{l_{\mu}-l_{ au}}$
- 2. Application of Recent LHC Data
- 3. Optimization for 3μ Final States
- 4. Summary

>>> Lagrangian and Signals of $U(1)_{l_{\mu}-l_{ au}}$

 $U(1)_{l_{\mu}-l_{\tau}}$ extension of Standard Model (Anomaly Free, Survive from LEP data) $(g_{\mu}-2$, Lepton Universality Violation) $(2\mu, 3\mu, 4\mu, \mu\tau_h, 2\tau_h, 3\tau_h, 4\tau_h \dots)$ (> 30 analysis with > 300 SRs from LHC) >>> Lagrangian and Feynman Diagrams for Signals

* The Lagrangian for Signals

$$\begin{aligned} \mathcal{L}_{\text{new}} &= (D_{\mu}\phi_{\text{DM}})^{*}D^{\mu}\phi_{\text{DM}} - m_{\text{DM}}^{2}\phi_{\text{DM}}^{*}\phi_{\text{DM}} \\ &- \frac{1}{4}\mathcal{Z}_{\mu\nu}'\mathcal{Z}'^{\mu\nu} + \frac{1}{2}m_{Z'}^{2}Z'^{\mu}Z_{\mu}' \\ &+ g_{\mu\tau}(\bar{\mu}Z'\mu + \bar{\nu}_{\mu}Z'\nu_{\mu} - \bar{\tau}Z'\tau - \bar{\nu}_{\tau}Z'\nu_{\tau}). \end{aligned}$$

>>> Lagrangian and Feynman Diagrams for Signals

* The Lagrangian for Signals

$$\begin{aligned} \mathcal{L}_{\text{new}} &= (D_{\mu}\phi_{\text{DM}})^{*}D^{\mu}\phi_{\text{DM}} - m_{\text{DM}}^{2}\phi_{\text{DM}}^{*}\phi_{\text{DM}} \\ &- \frac{1}{4}\mathcal{Z}_{\mu\nu}'\mathcal{Z}'^{\mu\nu} + \frac{1}{2}m_{Z'}^{2}Z'^{\mu}Z_{\mu}' \\ &+ g_{\mu\tau}(\bar{\mu}Z'\mu + \bar{\nu}_{\mu}Z'\nu_{\mu} - \bar{\tau}Z'\tau - \bar{\nu}_{\tau}Z'\nu_{\tau}) \end{aligned}$$

* Feynman Diagrams for Signals

>>> Results from 2l, 3l and 4l Final States in ATLAS and CMS

* Left (Charge of DM = 1), Right (Charge of DM = 2) * 3l + 4l > 2l, while only 2l relates to DM.

* Dark Matter Phenomenology

>>> Results from 2l, 3l and 4l Final States in ATLAS and CMS

>>> Tasks and Algorithms for Optimization

1. Tasks for Optimization

- * Constraining $g_{\mu\tau}$ in $U(1)_{l_{\mu}-l_{\tau}}$ Signals
- * Large Selection Efficiency for Stability ⇔ Sensitivity = Recall = TP/(TP+FN)
- * Large S/B Ratio after Selection for Stronger Bound ⇔ Precision = TP/(TP+FP)

>>> Tasks and Algorithms for Optimization

1. Tasks for Optimization

- * Constraining $g_{\mu\tau}$ in $U(1)_{l_{\mu}-l_{\tau}}$ Signals
- * Large Selection Efficiency for Stability ⇔ Sensitivity = Recall = TP/(TP+FN)
- ★ Large S/B Ratio after Selection for Stronger Bound ⇔ Precision = TP/(TP+FP)

2. Algorithms for Optimization

- * Traditional Cut Based Event Selection (Published ATLAS and CMS papers)
- * kNN in the Metric Space for Events (arXiv:1902.02346) (Patrick T. Komiske, Eric M. Metodiev, Jesse Thaler)
- * Machine Learning with Selected Features (SVM, RandomForest, AdaBoost, XGBoost, NN and etc)

>>> Feature Importance from XGBoost

>>> Recent Results from Machine Learning

>>> Recent Results from Machine Learning

>>> Summary

- 1. LHC data cannot probe DM phenomenology for $U(1)_{l_{\mu}-l_{\tau}}$ extension.
 - ightarrow Better classifiers are needed.
- 2. New classifiers may have the ability to probe more parameters in larger parameters space. $(g^V, g^A, g^S, m_{Z'} < 2m_{\rm DM}, H_2 \ldots)$
- Information of feature importance decreases the calculating complexity and implies physical properties.
- 4. New Tools for Phenomenology Research?

Thanks